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Chapter 1

Introduction

The goal of this course is to provide numerical analysis background for finite difference methods

for solving partial differential equations. The focuses are the stability and convergence theory. The

partial differential equations to be discussed include

• parabolic equations,

• elliptic equations,

• hyperbolic conservation laws.

1.1 Finite Difference Approximation

Our goal is to appriximate differential operators by finite difference operators. How to perform

approximation? What is the error so produced? We shall assume the underlying function u : R→ R

is smooth. Let us define the following finite difference operators:

• Forward difference: D+u(x) :=
u(x+h)−u(x)

h ,

• Backward difference: D−u(x) :=
u(x)−u(x−h)

h ,

• Centered difference: D0u(x) :=
u(x+h)−u(x−h)

2h .

Here, h is called the mesh size. By Taylor expansion, we can get

• u′(x) = D+u(x) +O(h),

• u′(x) = D−u(x) +O(h),

• u′(x) = D0u(x) +O(h2).

We can also approximate u′(x) by other finite difference operators with higher order errors. For

example,

u′(x) = D3u(x) +O(h3),

3



4 CHAPTER 1. INTRODUCTION

where

D3u(x) =
1

6h
(2u(x+ h) + 3u(x)− 6u(x− h) + u(x− 2h)) .

These formulae can be derived by performing Taylor expansion of u at x. For instance, we expand

u(x+ h) = u(x) + u′(x)h+
h2

2
u′′(x) +

h3

3!
u′′′(x) + · · ·

u(x− h) = u(x)− u′(x)h+
h2

2
u′′(x)− h3

3!
u′′′(x) + · · · .

Substracting these two equations yields

u(x+ h)− u(x− h) = 2u′(x)h+
2h3

3!
u′′′(x) + · · · .

This gives

u′(x) = D0u(x)−
h2

3!
u′′′(x) + · · · = D0u(x) +O(h2).

In general, we can derive finite difference approximation for u(k) at specific point x by the values

of u at some nearby stencil points xj, j = 0, ..., n with n ≥ k. That is,

u(k)(x) =

n∑

j=0

cju(xj) +O(hp−k+1)

for some p as larger as possible. Here, the mesh size h denotes max{|xi − xj |}. As we shall see

later that we can choose p = n. To find the coefficients cj , j = 0, ..., n, we make Taylor expansion

of u(xj) about the point x:

u(xj) =

p∑

i=0

1

i!
(xj − x)iu(i)(x) +O(hp+1).

We plug this expansion formula of u(xj) into the finite difference approximation formula for

u(k)(x):

u(k)(x) =
n∑

j=0

cj

p∑

i=0

1

i!
(xj − x)iu(i)(x) +O(hp−k+1).

Comparing both sides, we obtain

n∑

j=0

1

i!

(xj − x)i
hi

cj =

{
1 if i = k
0 otherwise

}
, for i = 0, ..., p

There are p+1 equations here, it is natural to choose p = n to match the n+1 unknowns. This is a

n×nVandermonde system. It is nonsingular if xi are different. The matlab code fdcoeffV(k,xbar,x)

can be used to compute these coefficients. Reference: Randy LeVeque’s book and his Matlab code.
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In the case of uniform grid, using central finite differencing, we can get high order approxima-

tion. For instance, let xj = jh, where j ∈ Z. Let uj = u(xj). Then

u′(0) =
u1 − u−1

h
+O(h2)

u′′(0) =
u1 − 2u0 + u−1

h2
+O(h2)

u(3) =
1

2h3
(u2 − 2u1 + 2u0 − 2u−1 + u−2) +O(h2).

Homeworks.

1. Consider xi = ih, i = 0, ..., n. Let x̄ = xm. Find the coefficients ci for u(k)(x̄) and the

coefficient of the leading truncation error for the following cases:

• k = 1, n = 2, 3, m = 0, 1, 2, 3.

• k = 2, n = 2, m = 0, 1, 2.

1.2 Basic Numerical Methods for Ordinary Differential Equations

The basic assumption to design numerical algorithm for ordinary differential equations is the smooth-

ness of the solutions, which is in general valid provided the coefficients are also smooth. Basic

designning techniques include numerical interpolation, numerical integration, and finite difference

approximation.

Euler method

Euler method is the simplest numerical integrator for ODEs. The ODE

y′ = f(t, y) (2.1)

is discretized by

yn+1 = yn + kf(tn, yn). (2.2)

Here, k is time step size of the discretization. This method is called the forward Euler method. It

simply replace dy/dt(tn) by the forward finite difference (yn+1− yn)/k. By Taylor expansion, the

local truncation error is

τn := y′(tn)− y(tn+1)− y(tn)
k

= O(k)

Let en := yn − y(tn) be the true error.

Theorem 2.1. Assume f ∈ C1 and suppose the solution y′ = f(t, y) with y(0) = y0 exists on

[0, T ]. Then the Euler method converges at any t ∈ [0, T ]. In fact, the true error en has the

following estimate:

|en| ≤ eλt

λ
O(k)→ 0, as n→∞. (2.3)

Here, λ = max |∂f/∂y| and nk = t.
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Proof. From the regularity of the solution, we have y ∈ C2[0, T ] and

y(tn+1) = y(tn) + kf(tn, y(tn)) + kτn. (2.4)

Taking difference of (2.2) and (2.4), we obtain

|en+1| ≤ |en|+ k|f(tn, yn)− f(tn, y(tn))|+ k|τn|
≤ (1 + kλ)|en|+ k|τn|.

where

|f(t, x)− f(t, y)| ≤ λ|x− y|.
The finite difference inequality has a fundamental solution Gn = (1 + λk)n, which is positive

provided k is small. Multiplying above equation by (1 + λk)−n−1, we obtain

|em+1|G−m−1 ≤ |em|G−m + kG−m−1|τm|.

Summing in m from m = 0 to n− 1, we get

|en| ≤
n−1∑

m=0

Gn−m−1k|τm| ≤
n−1∑

m=0

GmO(k2)

=
Gn − 1

G− 1
O(k2) ≤ Gn

λ
O(k) ≤ eλt

λ
O(k),

where t = nk and we have used (1 + λk)n ≤ eλt.

Remarks.

1. The theorem states that the numerical method converges in [0, T ] as long as the solutions of

the ODE exists.

2. The error is O(k) if the solution is in C2[0, T ].

3. The proof above relies on the existence and smoothness of the solution. However, one can

also use this approach to prove the local existence theorem by showning the approximate

solutions generated by the Euler method form a Cauchy sequence.

Backward Euler method

In many applications, the system is relaxed to a stable solution in a very short period of time. For

instance, consider

y′ =
ȳ − y
τ

.

The corresponding solution y(t)→ ȳ as t ∼ O(τ). In the above forward Euler method, practically,

we should require

1 + kλ ≤ 1
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in order to have Gn remain bounded. Here, λ is the Lipschitz constant. In the present case, λ = 1/τ .

If τ is very small, the the above forward Euler method will require very small k and lead to inefficient

computation. In general, forward Euler method is inefficient (require small k) if

max

∣∣∣∣
∂f(t, y)

∂y

∣∣∣∣ >> 1.

In the case ∂f/∂y >> 1, we have no choice to resolve details. We have to take a very small k.

However, if ∂f/∂y < 0, say for example, y′ = −λy with λ >> 1. then the backward Euler method

is recommended:

yn+1 = yn + kf(tn+1, yn+1).

The error satisfies

|en+1| ≤ en − λk|en+1|+O(k2)

The corresponding fundamental solution is Gn := (1 + λk)−n. Notice that the error satisfies

|en| ≤
n−1∑

m=0

(1 + λk)−mO(k2)

≤ (1 + λk)−n+1

λk
O(k2)

≤ e−λT

λ
O(k).

There is no restriction on the size of k.

Leap frog method

We integrate y′ = f(t, y) from tn−1 to tn+1:

y(tn+1)− y(tn−1) =

∫ tn+1

tn−1

f(τ, y(τ)) dτ.

We apply the midpoint rule for numerical integration, we then get

y(tn+1)− y(tn−1) = 2kf(tn, y(tn)) +O(k3).

The midpoint method (or called leapfrog method) is

yn+1 − yn−1 = 2kf(tn, yn). (2.5)

This is a two-step explicit method.

Homeworks.

1. Prove the convergence theorem for the backward Euler method.

Hint: show that en+1 ≤ en + (1 + kλ)en+1 + kτn, where λ is the Lipschitz constant of f .

2. Prove the convergence theorem for the leap-frog method.

Hint: consider the system yn1 = yn−1 and yn2 = yn.
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1.3 Runge-Kutta methods

The Runge-Kutta method (RK) is a strategy to integrate
∫ tn+1

tn f dτ by some quadrature method.

RK2 For instance, a second order RK, denoted by RK2, is based on the trapezoidal rule of nu-

merical integration. First, we integrate the ODE y′ = f(t, y) to get

y(tn+1)− yn =

∫ tn+1

tn
f(τ, y(τ)) dτ.

Next, this integration is approximated by

1/2(f(tn, yn) + f(tn, yn+1))k.

The latter term involves yn+1. An explicit Runge-Kutta method approximate yn+1 by yn+kf(tn, yn).
Thus, RK2 reads

ξ1 = f(tn, yn)

yn+1 = yn +
k

2
(f(tn, yn) + f(tn+1, yn + kξ1)).

Another kind of RK2 is based on the midpoint rule of integration. It reads

ξ1 = f(tn, yn)

yn+1 = yn + kf(tn+1/2, yn +
k

2
ξ1)

The truncation error of RK2 is

y(tn+1)− y(tn) = yn+1 − y(tn) +O(k3).

RK4 The 4th order Runge-Kutta method has the form

yn+1 = yn +
k

6
(ξ1 + 2ξ2 + 2ξ3 + ξ4)

ξ1 = f(tn, yn)

ξ2 = f(tn +
1

2
k, yn +

k

2
ξ1)

ξ3 = f(tn +
1

2
k, yn +

k

2
ξ2)

ξ4 = f(tn + k, yn + kξ3)

The truncation error of RK4 is

y(tn+1)− y(tn) = yn+1 − y(tn) +O(k5).
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General explicit Runge-Kutta methods The method takes the following general form

yn+1 = yn + k

s∑

i=1

biξi,

where

ξ1 = f(tn, yn),

ξ2 = f(tn + c2k, y
n + ka21ξ1),

ξ3 = f(tn + c3k, y
n + ka31ξ1 + ka32ξ2),

...

ξs = f(tn + csk, y
n + k(as1ξ1 + · · ·+ as,s−1ξs−1)).

We need to specify s (the number of stages), the coefficients aij(1 ≤ j < i ≤ s), bi(i = 1, ..., s)
and ci(i = 2, ..., s). We list them in the following Butcher table.

There are s(s−1)/2+s+(s−1) unknowns to be determined for a specific scheme. We require the

0

c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

truncation error to be O(kp+1). To find these coefficients, we need to expand the truncation error

formula

y(tn+1)− yn = yn+1 − yn +O(kp+1)

about (tn, yn) in terms of derivatives of y(·) at tn. Then we can get linear equations for the coeffi-

cients.

Convergence proof, an example Let us see the proof of the convergence of the two stage Runge-

Kutta method. The scheme can be expressed as

yn+1 = yn + kΨ(yn, tn, k) (3.6)

where

Ψ(yn, tn, k) := f(y +
1

2
kf(y)). (3.7)

Suppose y(·) is a true solution, the corresponding truncation error

τn :=
y(tn+1)− y(tn)

k
−Ψ(y(tn), tn, k) = O(k2)
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Thus, the true solution satisfies

y(tn+1)− y(tn) = kΨ(y(tn), tn, k) + kτn

The true error en := yn − y(tn) satisfies

en+1 = en + k(Ψ(yn, tn, k)−Ψ(y(tn), tn, k))− kτn.

This implies

|en+1| ≤ |en|+ kλ′|en|+ k|τn|,

where λ′ is the Lipschitz constant of Ψ(y, t, k) with respect to y. Hence, we get

|en| ≤ (1 + kλ′)n|e0|+ k
n−1∑

m=0

(1 + kλ′)n−1−m|τm|

≤ eλ
′t|e0|+ eλ

′t

λ′
max
m
|τm|

Reference:

• Lloyd N. Trefethen, Finite Difference and Sprectral Methods for Ordinary and Partial Differ-

ential Equations,

• Randy LeVeque,

• You may also google Runge-Kutta method to get more references.

1.4 Multistep methods

The idea of multi-step method is to derive a relation between, for instance, yn+1, yn, yn−1 and

y′n and y′n−1
so that the corresponding truncation is small. The simplest multistep method is the

midpoint method. Suppose yn and yn−1 is given. The new state yn+1 is defined by

yn+1 − yn−1 = 2ky′n = 2kf(tn, yn)

The truncation error is

τn :=
1

k

(
y(tn+1)− y(tn−1)− 2ky′(tn)

)
= O(k2).

Thus, the method is second order.

We can also design a method which involves yn+1, yn, yn−1 and y′n, y′n−1
. For instance,

yn+1 = yn +
k

2
(3f(yn)− f(yn−1))
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The truncation error

τn :=
1

k

(
yn+1 − yn +

k

2
(3f(yn)− f(yn−1))

)
= O(k2).

A general r-step multistep method can be written in the form

r∑

m=0

amy
n+1−r+m = k

r∑

m=0

bmy
′n+1−r+m

= k

r∑

m=0

bmf
n+1−r+m. (4.8)

We will always assume ar 6= 0. When br = 0 the method is explicit; otherwise it is implicit. Ror a

smooth solution of (2.1), we define the truncation error τn to be

τn :=
1

k

(
r∑

m=0

amy(t
n+1−r+m)− k

r∑

m=0

bmy
′(tn+1−r+m)

)

Definition 4.1. A multispep method is called of order p if τn = O(kp) uniformly in n. It is called

consistent if τn(k)→ 0 uniformly in n as k → 0.

Remark. When f is smooth, the solution of ODE y′ = f(y) is also smooth. Then the truncation is

a smooth function of k. In this case, τ(k) → 0 is equivalent to τ(k) = O(k) as k → 0. Let us set

am = 0, bm = 0 for m > r for notational convinience. Taking Taylor expansion about tn+1−r, we

get

kτn =

r∑

m=0

am

∞∑

j=0

1

j!
y(j)(mk)j − k

r∑

m=0

bm

∞∑

j=1

1

(j − 1)!
y(j)(mk)j−1

=

(
r∑

m=0

am

)
y(0) +

∞∑

j=1

1

j!

r∑

m=0

(
mjam − jmj−1bm

)
kjy(j)

=

(
r∑

m=0

am

)
y(0) +

∞∑

j=1

1

j!

r∑

m=0

mj−1 (mam − jbm) kjy(j)

=
∞∑

j=0

1

j!

∑

m=0

mj−1 (mam − jbm) kjy(j)

=

∞∑

j=0

Cjy
(j).

Here, the derivatives of y(·) are evaluated at tn+1−r. We list few equations for the coefficients a and
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b:

C0 = a0 + · · ·+ ar

C1 = (a1 + 2a2 + · · · rar)− (b0 + · · ·+ br)

C2 =
1

2

(
(a1 + 22a2 + · · · r2ar)− 2(b1 + · · ·+ rbr)

)

...

Cp =

r∑

m=0

mp

p!
am −

r∑

m=1

mp−1

(p− 1)!
bm

To obtain order p scheme, we need to require

Cj = 0, for j = 0, ..., p.

There are 2(r+1) unknowns for the coefficients {am}rm=0, {bm}rm=0. In principle, we can choose

p = 2r + 1 to have the same number of equations. Unfortunately, there is some limitation from

stability criterion which we shall be explained in the next section. The order of accuracy p satisfies

p ≤





r + 2 if r is even,

r + 1 if r is odd,

r if it is an explicit scheme.

This is the first Dahlquist stability barrier. We shall not discuss here. See Trefethen. Let us see

some concrete examples below.

Explicit Adams-Bashforth schemes When br = 0, the method is explicit. Here are some exam-

ples of the explicit schemes called Adams-Bashforth schemes, where ar = 1:

• 1-step: yn+1 = yn + kf(yn)

• 2-step: yn+1 = yn + k
2 (3f(y

n)− f(yn−1))

• 3 step: yn+1 = yn + k
12 (23f(y

n)− 16f(yn−1) + 5f(yn−2))

The step size is r and the order is p = s.

Implicit Adams-Moulton schemes Another examples are the Adams-Moulton schemes, where

br 6= 0 and and the step size r = p

• 1-step: yn+1 = yn + k
2 (f(y

n+1) + f(yn))

• 2-step: yn+1 = yn + k
12(5f(y

n+1) + 8f(yn)− f(yn−1))

• 3 step: yn+1 = yn + k
24 (9f(y

n+1) + 19f(yn)− 5f(yn−1) + f(yn−2))
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Sometimes, we can use an explicit scheme to guess yn+1 as a predictor in an implicit scheme.

Such a method is called a predictor-corrector method. A standard one is the following Adams-

Bashforth-Moulton scheme: Its predictor part is the Adams-Bashforth scheme:

ŷn+1 = yn +
k

12
(23f(yn)− 16f(yn−1) + 5f(yn−2))

The corrector is the Adams-Moulton scheme:

yn+1 = yn +
k

24
(9f(ŷn+1) + 19f(yn)− 5f(yn−1) + f(yn−2))

The predictor-corrector is still an explicit scheme. However, for stiff problem, we should use im-

plicit scheme instead.

Formal algebra Let us introduce the shift operator Zyn = yn+1, or in continuous sense, Zy(t) =
y(t+ k). Let D be the differential operator. The Taylor expansion

y(t+ k) = y(t) + ky′(t) +
1

2!
k2D2y(t) + · · ·

can be expressed formally as

Zy =

(
1 + (kD) +

1

2!
(kD)2 + · · ·

)
y = ekDy.

The multistep method can be expressed as

Ly := (a(Z)− kb(Z)D) y =
(
a(ekD)− kDb(ekD)

)
y = (C0 + C1(kD) + · · ·) y.

Here,

a(Z) =
r∑

m=0

amZ
m, b(Z) =

r∑

m=0

bmZ
m

are the generating functions of {am} and {bm}. A multistep method is of order p means that
(
a(ekD)− kDb(kD)

)
y = O((kD)p+1)y.

We may abbreviate kD by a symbol κ. The above formula is equivalent to

a(eκ)

b(eκ)
= κ+O(κp+1) as κ→ 0. (4.9)

We have the following theorem

Theorem 4.2. A multistep method with b(1) 6= 0 is of order p if and only if

a(z)

b(z)
= log z +O((z − 1)p+1) as z → 1.

It is consistent if and only if

a(1) = 0 and a′(1) = b(1).
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Proof. The first formula can be obtain from (4.9) by writing eκ = z. For the second formula, we

expand log z about 1. We can get

a(z) = b(z)

(
(z − 1)− (z − 1)2

2
+

(z − 1)3

3
+ · · ·

)
+O((z − 1)p+1).

We also expand a(z) and b(z) about z = 1, we can get

a(1) + (z − 1)a′(1) = b(1)(z − 1) +O((z − 1)2).

Thus, the scheme is consistent if and only if a(1) = 0 and a′(1) = b(1).

Homeworks.

1. Consider the linear ODE y′ = λy, derive the finite difference equation using multistep method

involving yn+1, yn, yn−1 and y′n and y′n−1
for this linear ODE.

2. Solve the linear finite difference equations derived from previous exercise.

1.5 Linear difference equation

Second-order linear difference equation. In the linear case y′ = λy, the above difference

scheme results in a linear difference equation. Let us consider general second order linear difference

equation with constant coefficients:

ayn+1 + byn + cyn−1 = 0, (5.10)

where a 6= 0. To find its general solutions, we try the ansatz yn = ρn for some number ρ. Here, the

n in yn is an index, whereas the n in ρn is a power. Plug this ansatz into the equation, we get

aρn+1 + bρn + cρn−1 = 0.

This leads to

aρ2 + bρ+ c = 0.

There are two solutions ρ1 and ρ2. In case ρ1 6= ρ2, these two solutions are independent. Since the

equation is linear, any linear combination of these two solutions is again a solution. Moreover, the

general solution can only depend on two free parameters, namely, once y0 and y−1 are known, then

{yn}n∈Z is uniquely determined. Thus, the general solution is

yn = C1ρ
n
1 +C2ρ

n
2 ,

where C1, C2 are constants. In case of ρ1 = ρ2, then we can use the two solutions ρn2 and ρn1 with

ρ2 6= ρ1, but very closed, to produce another nontrivial solution:

lim
ρ2→ρ1

ρn2 − ρn1
ρ2 − ρ1

This yields the second solution is nρn−1
1 . Thus, the general solution is

C1ρ
n
1 + C2nρ

n−1
1 .
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Linear finite difference equation of order r . We consider general linear finite difference equa-

tion of order r:

ary
n+r + · · · + a0y

n = 0, (5.11)

where ar 6= 0. Since yn+r can be solved in terms of yn+r−1, ..., yn for all n, this equation together

with initial data y0, ..., y−r+1 has a unique solution. The solution space is r dimensions.

To find fundamental solutions, we try the ansatz

yn = ρn

for some number ρ. Plug this ansatz into equation, we get

arρ
n+r + · · · + a0ρ

n = 0,

for all n. This implies

a(ρ) := arρ
r + · · ·+ a0 = 0. (5.12)

The polynomial a(ρ) is called the characteristic polynomial of (??) and its roots ρ1, ..., ρr are called

the characteristic roots.

• Simple roots (i.e. ρi 6= ρj , for all i 6= j): The fundamental solutions are ρni , i = 1, ..., r.

• Multiple roots: if ρi is a multiple root with multiplicity mi, then the corresponding indepen-

dent solutions

ρni , nρ
n−1
i , Cn

2 ρ
n−2
i ..., Cn

mi−1ρ
n−mi+1
i

Here, Cn
k := n!/(k!(n− k)!). The solution Cn

2 ρ
n−2
i can be derived from differentiation d

dρC
n
1 ρ

n−1

at ρi.

In the case of simple roots, we can express general solution as

yn = C1ρ
n
1 + · · ·+ Crρ

n
r ,

where the constants C1, ..., Cr are determined by

yi = C1ρ
i
1 + · · · + Crρ

i
r, i = 0, ...,−r + 1.

System of linear difference equation. The above rth order linear difference equation is equiva-

lent to a first order linear difference system:

A0y
n+1 = Ayn (5.13)

where

yn =




yn1
...

ynr


 =




yn−r+1

...

yn
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A0 =

(
I(r−1)×(r−1) 0

0 ar

)
, A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−1



.

We may divide (5.13) by A0 and get

yn+1 = Gyn.

We call G the fundamental matrix of (5.13). For this homogeneous equation, the solution is

yn = Gny0

Next, we compute Gn in terms of eigenvalues of G.

In the case that all eigenvalues ρi, i = 1, ..., r of G are distinct, then G can be expressed as

G = TDT−1, D = diag (ρ1, · · · , ρr),

and the column vectors of T are the corresponding eigenvectors.

When the eigenvalues of G have multiple roots, we can normalize it into Jordan blocks:

G = TJT−1, J = diag (J1, · · · ,Js),

where the Jordan block Ji corresponds to eigenvalue ρi with multiplicity mi:

Ji =




ρi 1 0 · · · 0
0 ρi 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · ρi




mi×mi

.

and
∑s

i=1mi = r. Indeed, this form also covers the case of distinct eigenvalues.

In the stability analysis below, we are concerned with whether Gn is bounnded. It is easy to see

that

Gn = TJnT−1,Jn = diag (Jn
1 , · · · ,Jn

s )

Jn
i =




ρni nρn−1
i Cn

2 ρ
n−2 · · · Cn

mi−1ρ
n−mi+1
i

0 ρni nρn−1
i · · · Cn

mi−2ρ
n−mi+2
i

...
...

...
. . .

...

0 0 0 · · · nρn−1
i

0 0 0 · · · ρni




mi×mi

.

where Cn
k := n!

k!(n−k)! .

Definition 5.2. The fundamental matrix G is called stable if Gn remains bounded under certain

norm ‖ · ‖ for all n.
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Theorem 5.3. The fundamental matrix G is stable if and only if its eigenvalues satisfy the following

condition:
either |ρ| = 1 and ρ is a simple root,
or |ρ| < 1

(5.14)

Proof. It is easy to see that the nth power of a Jordan form Jn
i is bounded if its eigenvalue |ρi| < 1

or if ρi| = 1 but simple. On the other hand, if |ρi| > 1 then Jn
i is unbounded; or if ρi| = 1 but not

simple, then the term nρn−1
i in Jn

i will be unbounded.

Nonhomogeneous linear finite difference system In general, we consider the nonhomogeneous

linear difference system:

yn+1 = Gyn + fn (5.15)

with initial data y0. Its solution can be expressed as

yn = Gyn−1 + fn−1

= G(Gyn−2 + fn−2) + fn−1

...

= Gny0 +

n−1∑

m=0

Gn−1−mfm

Homeworks.

1. Consider the linear ODE

y′ = λy

where λ considered here can be complex. Study the linear difference equation derived for this

ODE by forward Euler method, backward Euler, midpoint. Find its general solutions.

2. Consider linear finite difference equation with source term

ayn+1 + byn + cyn−1 = fn

Given initial data ȳ0 and ȳ1, find its solution.

3. Find the characteristic roots for the Adams-Bashforth and Adams-Moulton schemes with

steps 1-3 for the linear equation y′ = λy.

1.6 Stability analysis

There are two kinds of stability concepts.

• Fix t = nk, the computed solution yn remains bounded as n→∞ (or equivalently, k → 0).

• Fix k > 0, the computed solution yn remains bounded as n→∞.

The first one is refered to zero stability. The second is called absolute stability.
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1.6.1 Zero Stability

Our goal is to develop general convergence theory for multistep finite difference method for ODE:

y′ = f(t, y) with initial condition y(0) = y0. An r-step multistep finite difference scheme can be

expressed as

Lyn =

r∑

m=0

amy
n+1−r+m − k

r∑

m=0

bmf(t
n+1−r+m, yn+1−r+m) = 0. (6.16)

Definition 6.3. The truncation error τn(k) for the above finite difference scheme is defined by

τn(k) :=
1

k

(
r∑

m=0

amy(t
n+1−r+m)− k

r∑

m=0

bmf(t
n+1−r+m, y(tn+1−r+m))

)
,

where y(·) is a true solution of the ODE.

Definition 6.4. A difference scheme is called consistent if the corresponding truncation error τn(k)→
0 uniformly in n as the mesh size k → 0. The scheme is of order p if τn(k) = O(kp) uniform in n.

In the multistep method, the consistency is equivalent to τ(k) = O(k) because we assume y(·)
is smooth and the truncation error is a smooth function in k. The consistency is τ(k)→ 0 as k → 0.

Thus the smoothness of τ implies τ(k) = O(k).

Definition 6.5. A difference scheme is called zero stable if its solutions at time step n remain

bounded as the mesh size k → 0 (nk = T is fixed, according n→∞).

The main theorem is the follows. We will postpone its proof at the end of this section.

Theorem 6.4 (Dahlquist). For finite difference schemes for ODE y′ = f(t, y),

consistency + zero-stability ⇔ convergence

Stability criterion Let us investigate the condition on the coefficients a and b of an explicit mul-

tistep method for the stability

Lyn = 0

to be bounded. We assume ar = 1 and br = 0. Let us write it in matrix form:

yn+1 = Ayn + kBfn

where

A =




0 1
0 1

. . .
. . .

0 1
−a0 · · · −ar−2 −ar−1



, yn =




yn−r

· · ·
yn


 ,
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B =




0 0
0 0

. . .
. . .

0 0
b0 · · · br−2 br−1



, fn =




fn−r

· · ·
fn


 ,

In order to have solution to be bounded for a multistep scheme Ly = 0 for arbitrary f , it has at least

to be valid when f ≡ 0. In this case, we need to invetigate the boundedness for the homogeneous

equation:

yn+1 = Ayn

We have seen in the last section that

Theorem 6.5. The necessary and sufficient condition for ‖An‖ to be bounded is that the charac-

teristic roots ρi of the characteristic equation a(z) = 0 satisfies:

either |ρi| < 1

or |ρi| = 1 but simple.

Convergence⇒ Stability

Proof. We only need to find an f such that the corresponding multistep is not stable implies that it

does not converge. We choose f ≡ 0. Since An is unbounded, which means there is an eigenvalue

ρi with eigenvector yi such that |ρi| > 1 or |ρi| = 1 but not simple. We discuss the formal case.

The latter case can also be prove easily. In the former case, we choose y0 such that y0 · yi 6= 0.

Then the corresponding bfyn := Any0 will be unbounded. Hence it cannot converge to a constant,

as k → 0. Here, we use that fact that y0 · yi 6= 0. We generate bfy0 = (yr−1
0 , · · · , y0)T by

some explicit scheme starting from y0. The point is that bfy0 depends on the mesh size k and

y0(k) → (y0, · · · , y0)T as k → 0. With this, given any yi, we can always construct y0(k) such

that y0(k) · yi 6= 0 when k 6= 0.

Convergence⇒ Consistency

Proof. We need to show that a(1) = 0 and a′(1) = b(1). To show the first, we consider y′ = 0 with

y(0) = 1. For the second, we consider y′ = 1 and y(0) = 0.

• Show a(1) = 0: We choose y0 = (1, · · · , 1)T . From y1 = Ay0, we get

yr = −a0y0 − · · · − ar−1y
r−1 = −a0 − · · · − ar−1.

Since yr is independent of k, and we should have yr → 1 as k → 0 (by convergence), we

conclude that yr = 1. Thus, we get a(1) = a0 + · · · + ar−1 + 1 = 0.
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• Show a′(1) = b(1). We choose f ≡ 1, y(0) = 0. The corresponding ODE solution is

y(t) = t. The multistep method gives

a(Z)yn − kb(Z)1 = 0. (6.17)

We write

a(Z) = a′(1)(Z − 1) +O((Z − 1)2), b(Z)1 = b(1).

Then the principal part of the above finite difference is

(Z − 1)y − k b(1)
a′(1)

= 0.

This is an arithmetic series. Its solution is yn = nk b(1)
a′(1) . Indeed, this sequence also satisfies

(6.17) provided its initial data yn has the same form for 0 ≤ n < r. Since nk = t, the

convergence yn → t as n→∞ forces
b(1)
a′(1) = 1.

Stability + Consistency⇒ Convergence

Proof. We recall that we can express the scheme as

yn+1 = Ayn + kBfn.

Let Y be an exact solution, then plug it into the above =scheme, we get

Yn+1 = AYn + kBFn + kτn.

We substract these two and call en := Yn − yn. We get

en+1 = Aen + kB (Fn − fn) + kτn.

The term Fn − fn can be repressed as

Fn − fn = (f(Y n−r)− f(yn−r), · · · , f(Y n)− f(yn))T

= (L−re
n−r, · · · , L0e

n)T

:= Lne
n

where

L−m :=

∫ 1

0
f ′(yn−m + ten−m) dt.

Thus, we get

en+1 = (A+ kBLn) e
n + kτn

= Gn(k)e
n + kτn

with C independent of n and k. The reason is the follows. First, we assume that f is Lipschitz.

Thus, the functions L−m above are uniformly bounded (independent of n). Hence the term ‖BL‖
is uniformly bounded. Second we have a lemma
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Lemma 6.1. If ‖An‖ is bounded and ‖Bn‖ are uniformly bounded, then the product

‖(A+
1

n
B1) · · · (A+

1

n
Bn)‖

is also uniformly bounded.

We have

en ≤ Gn−1e
n−1 + kτn−1

≤ Gn−1Gn−2e
n−2 + k

(
Gn−2τ

n−2 + τn−1
)

≤ Gn−1Gn−2 · · ·G0e
0

+k
(
Gn−2 · · ·G0τ

0 + · · ·+Gn−2τ
n−2 + τn−1

)

From the lemma, we get

‖en‖ ≤ C‖e0‖+ nkCmax
n
‖τn‖ ≤ C‖e0‖+O(kp).
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Chapter 2

Finite Difference Methods for Linear

Parabolic Equations

2.1 Finite Difference Methods for the Heat Equation

2.1.1 Some discretization methods

Let us start from the simplest parabolic equation, the heat equation:

ut = uxx

Let h = ∆x, k = ∆t be the spatial and temporal mesh sizes. Define xj = jh, j ∈ Z and tn = nk,

n ≥ 0. Let us abbreviate u(xj , t
n) by unj . We shall approximate unj by Un

j , where Un
j satisfies some

finite difference equations.

Spatial discretization : The simplest one is that we use centered finite difference approximation

for uxx:

uxx =
uj+1 − 2uj + uj−1

h2
+O(h2)

This results in the following systems of ODEs

U̇j(t) =
Uj+1(t)− 2Uj(t) + Uj−1(t)

h2

or in vector form

U̇ =
1

h2
AU

where U = (U0, U1, ...)
t, A = diag (1,−2, 1).

23



24 CHAPTER 2. FINITE DIFFERENCE METHODS FOR LINEAR PARABOLIC EQUATIONS

Homeworks.

1. Derive the 4th order centered finite difference approximation for uxx:

uxx =
1

h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) +O(h4).

2. Derive a 2nd order centered finite difference approximation for (κ(x)ux)x.

Temporal discretization We can apply numerical ODE solvers

• Forward Euler method:

Un+1 = Un +
k

h2
AUn (1.1)

• Backward Euler method:

Un+1 = Un +
k

h2
AUn+1 (1.2)

• 2nd order Runge-Kutta (RK2):

Un+1 − Un =
k

h2
AUn+1/2, Un+1/2 = Un +

k

2h2
AUn (1.3)

• Crank-Nicolson:

Un+1 − Un =
k

2h2
(AUn+1 +AUn). (1.4)

These linear finite difference equations can be solved formally as

Un+1 = GUn

where

• Forward Euler: G = 1 + k
h2A,

• Backward Euler: G = (1− k
h2A)

−1,

• RK2: G = 1 + k
h2A+ 1

2

(
k
h2

)2
A2

• Crank-Nicolson: G =
1+ k

2h2
A

1− k
2h2

A

For the Forward Euler, We may abbreviate it as

Un+1
j = G(Un

j−1, U
n
j , U

n
j+1), (1.5)

where

G(Uj−1, Uj , Uj+1) = Uj +
k

h2
(Uj−1 − 2Uj + Uj+1)
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2.1.2 Stability and Convergence for the Forward Euler method

Our goal is to show under what condition can Un
j converges to u(xj , t

n) as the mesh sizes h, k → 0.

To see this, we first see the local error a true solution can produce. Plug a true solution u(x, t)
into (1.1). We get

un+1
j − unj =

k

h2
(
unj+1 − 2unj + unj−1

)
+ kτnj (1.6)

where

τnj = Dt,+u
n
j − (ut)

n
j − (D+D−u

n
j − (uxx)

n
j ) = O(k) +O(h2).

Let enj denote for unj − Un
j . Then substract (1.1) from (1.6), we get

en+1
j − enj =

k

h2
(
enj+1 − 2enj + enj−1

)
+ kτnj . (1.7)

This can be expressed in operator form:

en+1 = Gen + kτn. (1.8)

‖en‖ ≤ ‖Gen−1‖+ k‖τn−1‖
≤ ‖G2en−2‖+ k(‖Gτn−2‖+ ‖τn−1‖)
≤ ‖Gne0‖+ k(‖Gn−1τ0‖+ · · ·+ ‖Gτn−2‖+ ‖τn−1‖)

Suppose G satisfies the stability condition

‖GnU‖ ≤ C‖U‖

for some C independent of n. Then

‖en‖ ≤ C‖e0‖+ Cmax
m
|τm|.

If the local truncation error has the estimate

max
m
‖τm‖ = O(h2) +O(k)

and the initial error e0 satisfies

‖e0‖ = O(h2),

then so does the global true error satisfies

‖en‖ = O(h2) +O(k) for all n.

The above analysis leads to the following definitions.

Definition 1.6. A finite difference method is called consistent if its local truncation error τ satisfies

‖τh,k‖ → 0 as h, k → 0.
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Definition 1.7. A finite difference scheme Un+1 = Gh,k(U
n) is called stable under the norm ‖ · ‖

in a region (h, k) ∈ R if

‖Gn
h,kU‖ ≤ C‖U‖

for all n with nk fixed. Here, C is a constant independent of n.

Definition 1.8. A finite difference method is called convergence if the true error

‖eh,k‖ → 0 as h, k → 0.

In the above analysis, we have seen that for forward Euler method for the heat equation,

stability + consistency ⇒ convergence.

2.2 L2 Stability – von Neumann Analysis

Since we only deal with smooth solutions in this section, the L2-norm or the Sobolev norm is a

proper norm to our stability analysis. For constant coefficient and scalar case, the von Neumann

analysis (via Fourier method) provides a necessary and sufficient condition for stability. For system

with constant coefficients, the von Neumann analysis gives a necessary condition for statbility. For

systems with variable coefficients, the Kreiss’ matrix theorem provides characterizations of stability

condition.

Below, we give L2 stability analysis. We use two methods, one is the energy method, the other

is the Fourier method, that is the von Neumann analysis. We describe the von Neumann analysis

below.

Given {Uj}j∈Z, we define

‖U‖2 =
∑

j

|Uj |2

and its Fourier transform

Û(ξ) =
1

2π

∑
Uje

−ijξ.

The advantages of Fourier method for analyzing finite difference scheme are

• the shift operator is transformed to a multiplier:

T̂U(ξ) = eiξÛ(ξ),

where (TU)j := Uj+1;

• the Parseval equility

‖U‖2 = ‖Û‖2

≡
∫ π

−π
|Û (ξ)|2 dξ.
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If a finite difference scheme is expressed as

Un+1
j = (GUn)j =

m∑

i=−l

ai(T
iUn)j,

then

Ûn+1 = Ĝ(ξ)Ûn(ξ).

From the Parseval equality,

‖Un+1‖2 = ‖Ûn+1‖2

=

∫ π

−π
|Ĝ(ξ)|2 |Ûn(ξ)|2 dξ

≤ max
ξ
|Ĝ(ξ)|2

∫ π

−π
|Ûn(ξ)|2 dξ

= |Ĝ|2∞‖U‖2

Thus a sufficient condition for stability is

|Ĝ|∞ ≤ 1. (2.9)

Conversely, suppose |Ĝ(ξ0)| > 1, fromĜ being a smooth function in ξ, we can find ǫ and δ such

that

|Ĝ(ξ)| ≥ 1 + ǫ for all |ξ − ξ0| < δ.

Let us choose an initial data U0 in ℓ2 such that Û0(ξ) = 1 for |ξ − ξ0| ≤ δ. Then

‖Ûn‖2 =

∫
|Ĝ|2n(ξ)|Û0|2

≥
∫

|ξ−ξ0|≤δ
|Ĝ|2n(ξ)|Û0|2

≥ (1 + ǫ)2nδ →∞ as n→∞

Thus, the scheme can not be stable. We conclude the above discussion by the following theorem.

Theorem 2.6. A finite difference scheme

Un+1
j =

m∑

k=−l

akU
n
j+k

with constant coefficients is stable if and only if

Ĝ(ξ) :=

m∑

k=−l

ake
−ikξ

satisfies

max
−π≤ξ≤π

|Ĝ(ξ)| ≤ 1. (2.10)
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Homeworks.

1. Compute the Ĝ for the schemes: Forward Euler, Backward Euler, RK2 and Crank-Nicolson.

2.3 Energy method

We write the finite difference scheme as

Un+1
j = αUn

j−1 + βUn
j + γUn

j+1, (3.11)

where

α, β, γ ≥ 0 and α+ β + γ = 1.

We multiply (3.11) by Un+1
j on both sides, apply Cauchy-Schwarz inequality, we get

(Un+1
j )2 = αUn

j−1U
n+1
j + βUn

j U
n+1
j + γUn

j+1U
n+1
j

≤ α

2
((Un

j−1)
2 + (Un+1

j )2) +
β

2
((Un

j )
2 + (Un+1

j )2) +
γ

2
((Un

j+1)
2 + (Un+1

j )2)

Here, we have used α, β, γ ≥ 0. We multiply this inequality by h and sum it over j ∈ Z. Denote

‖U‖2 :=


∑

j

|Uj |2h




1/2

.

We get

‖Un+1‖2 ≤ α

2
(‖Un‖2 + ‖Un+1‖2) + β

2
(‖Un‖2 + ‖Un+1‖2) + γ

2
(‖Un‖2 + ‖Un+1‖2)

=
1

2
(‖Un‖2 + ‖Un+1‖2).

Here, α+ β + γ = 1 is applied. Thus, we get the energy estimate

‖Un+1‖2 ≤ ‖Un‖2. (3.12)

Homeworks.

1. Can the RK-2 method possess an energy estimate?
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2.4 Stability Analysis for Montone Operators– Entropy Estimates

Stbility in the maximum norm

We notice that the action of G is a convex combinition of Uj−1, Uj , Uj+1, provided

0 <
k

h2
≤ 1

2
. (4.13)

Thus, we get

min {Un
j−1, U

n
j , U

n
j+1} ≤ Un+1

j ≤ max {Un
j−1, U

n
j , U

n
j+1}.

This leads to

minjU
n+1
j ≥ minjU

n
j ,

maxjU
n+1
j ≤ maxjU

n
j

and

maxj |Un+1
j | ≤ maxj|Un

j |
Such an operator G is called a monotone operator.

Definition 4.9. An operator G : ℓ∞ → ℓ∞ satisfying U ≤ V ⇒ GUgV is called a monotone

operator.

Entropy estimates

The property that Un+1 is a convex combination (average) of Un is very important. Given any

convex function η(u), called entropy function, by Jenson’s inequality, we get

η(Un+1
j ) ≤ αη(Un

j−1) + βη(Un
j ) + γη(Un

j+1) (4.14)

Summing over all j and using α+ β + γ = 1, we get

∑

j

η(Un+1
j ) ≤

∑

j

η(Un
j ). (4.15)

This means that the “entropy” decreases in time. In particular, we choose

• η(u) = |u|2, we recover the L2 stability,

• η(u) = |u|p, 1 ≤ p <∞, we get

∑

j

|Un+1
j |p ≤

∑

j

|Un
j |p

This leads to 
∑

j

|Un+1
j |ph




1/p

≤


∑

j

|Un
j |ph




1/p

,

the general Lp stability. Taking p→∞, we recover L∞ stability.
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• η(u) = |u− c| for any constant c, we obtain

∑

j

|Un+1
j − c| ≤

∑

j

|Un
j − c|

This is called Kruzkov’s entropy estimate. We will see this in hyperbolic quations again.

Homeworks.

1. Show that the solution of the difference equation derived from the RK2 satisfies the entropy

estimate. What is the condition required on h and k for such entropy estimate?

2.5 Entropy estimate for backward Euler method

In the backward Euler method, the amplification matrix is given by

G = (I − λA)−1 (5.16)

where

λ =
k

h2
, A = diag(1,−2, 1).

The matrix M := I − λA has the following property:

mii > 0, mij ≤ 0,
∑

j 6=i

|mij| ≤ mii (5.17)

Such a matrix is called an M-matrix.

Theorem 5.7. The inverse of an M-matrix is a nonnegative matrix, i.e. all its entries are non-

negative.

I shall not prove this general theorem. Instead, I will find the inverse ofM for the above specific

M-matrix. Let us express

M = I − λ diag(1,−2, 1) = 1 + 2λ

2
diag (−a, 2,−a).

Here,

a =
2λ

1 + 2λ
, and 0 < a < 1 if h, k > 0.

The general solution of the difference equation

−auj−1 + 2uj − auj+1 = 0 (5.18)

has the form:

uj = C1ρ
j
1 + C2ρ

j
2
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where ρ1, ρ2 are the characteristic roots, i.e. the roots of the polynomial equation

−aρ2 + 2ρ− a = 0.

Thus,

ρi =
1±
√
1− a2
a

.

From the assumption of the M-matrix, 0 < a < 1, we have ρ1 < 1 and ρ2 > 1.

Now, we define a fundamental solution:

gj =

{
ρj1 for j ≥ 0

ρj2 for j < 0
.

We can check that gj → 0 as |j| → ∞. Moreover, gj satisfies the difference equation (5.18) for

|j| ≥ 1. For j = 0, we have

−ag−1 + 2g0 − ag1 = −aρ−1
2 + 2− aρ1 = 2− a(ρ1 + ρ−1

2 ) = d

We reset gj ← gj/d. Then we have
∑

j

gi−jmj,k = δi,k.

Thus, M−1 = (gi−j) is a positive matrix (i.e. all its entries are positive). Further more,
∑

j

gi−j = 1 for all i.

Such a matrix appears commonly in probability theory. It is called transition matrix of a Markov

chain.

Let us go back to our backward Euler method for the heat equation. We get that

Un+1 = (1− λA)−1 = GUn,

where

(GU)i =
∑

j

gi−jUj .

From gi−j > 0 and
∑

j gi−j = 1. This is because that gj is the solution U1
j of the finite difference

equation

Un+1
j = Un

j + λdiag(1,−2, 1)Un+1
j

with initial data U0
j = δj . This finite difference equation is conservative, namely,

∑
j U

n
j is inde-

pendent. This can easily be checked. Thus, we get
∑

j gj =
∑

j δj = 1. With this and the positivity

of gj , we can think Un+1
j is a convex combination of Un

j with weights gj . Thus, G is a monotone

operator. With this property, we can apply Jansen’s inequality to get the entropy estimates:

Theorem 5.8. Let η(u) be a convex function. Let Un
j be a solution of the difference equation derived

from the backward Euler method for the heat equation. Then we have
∑

j

η(Un
j ) ≤

∑

j

η(U0
j ). (5.19)
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Remark. It is important to note that there is no restriction on the mesh sizes h and k for stability

for the Backward Euler method.

Homeworks.

1. Can the Crank-Nicolson method for the heat equation satisfy the entropy estimate? What is

the condition on h and k?

2.6 Existence Theory

We can prove existence theorem of PDEs through finite difference approximation. In order to do

so, let us define continuous and discrete Sobolev spaces and make a connection between them.

The continuous Sobolev space

Hm := {u : R→ R|u, u′, ..., u(m) ∈ L2(R)}

The discrete Sobolev space for functions defined on grid Gh := {jh|j ∈ Z}.

Hm
h := {U : Gh → R|U,Dx,+U, ...,D

m
x,+U ∈ ℓ2}.

Here, (Dx,+U)nj := (Un
j+1 − Un

j )/h

For any discrete function Uj ∈ Hm
h we can construct a function u in Hm defined by

u(x) :=
∑

j

Ujφh(x− xj) (6.20)

where φh(x) = sinc(x/h). We have

uh(xj) = Uj

It can be shown that

‖Dm
x uh‖ ≡ ‖Dm

x,+U‖. (6.21)

Similarly, the space L∞
k (Hm

h ) can be embeded into L∞(Hm) by defining

uh,k(x, t) =
∑

n≥0

∑

j

Un
j φk(t)φh(x)

The discrete norm and the continuous norm are equivalent.

2.6.1 Existence via forward Euler method

The forward Euler method for the heat equation ut = uxx reads

Un+1
j = Un

j +
k

h2
(
Un
j−1 − 2Un

j + Un
j+1

)
.
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Here, We have seen that we can get the energy estimate:

‖Un‖ ≤ ‖U0‖.

We perform finite difference operation on the above equation, say the forward Euler equation, for

instance, let V n
j = (Dx,+U)nj := (Un

j+1 − Un
j )/h. Then V n

j satisfies the same finite difference

equation

V n+1
j = V n

j +
k

h2
(
V n
j−1 − 2V n

j + V n
j+1

)
.

Thus, it also possesses the same energy estimate. Similar estimate for D2
x,+U . In general, we have

‖Dm
x,+U

n‖ ≤ ‖Dm
x,+U

0‖. (6.22)

If we assume the initial data f ∈ H2, then we get Un ∈ H2
h for all n ≥ 0.

Theorem 6.9. If the initial data u0 ∈ Hm,m ≥ 2 and k/h2 ≤ 1/2, then the solution of forward

Euler equation has the estimate

‖Dm
x,+U

n‖ ≤ ‖Dm
x,+U

0‖, ‖Dt,+U
n‖ ≤ ‖D2

x,+U
0‖ (6.23)

Further, the corresponding smoothing function uh,k has the same estimate and has a subsequence

converges to a solution u(x, t) of the original equation.

Proof. The functions uh,k are unformly bounded in W 1,∞(H2). Hence they have a subsequence

converges to a function u ∈ W 1,∞(H2) weakly in W 1,∞(H2) and strongly in L∞(H1). The

functions uh,k satisfy

uh,k(xj , t
n+1)− uh,k(xj , tn) =

k

h2
(uh,k(xj−1, t

n)− 2uh,k(xj , t
n) + uh,k(xj+1, t

n))

Multiply a test smooth function φ, sum over j and n, take summation by part, we can get the

subsubsequence converges to a solution of ut = uxx weakly.

2.6.2 A Sharper Energy Estimate for backward Euler method

In this subsection, we will get a sharper energy estimate for solutions obtained from the backward

Euler method. Recall the backward Euler method for solving the heat equation is

Un+1
j − Un

j = λ(Un+1
j−1 − 2Un+1

j + Un+1
j+1 ) (6.24)

where λ = k/h2. An important technique is the summation by part:

∑

j

(Uj − Uj−1)Vj = −
∑

j

Uj(Vj+1 − Vj) (6.25)

There is no boundary term because we consider periodic condition in the present case.
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We multiply both sides by Un+1
j , then sum over j. We get

∑

j

(Un+1
j )2 − Un+1

j Un
j = −λ

∑

j

|Un+1
j+1 − Un+1

j |2.

The term

Un+1
j Un

j ≤
1

2
((Un+1

j )2 + (Un
j )

2)

by Cauchy-Schwartz. Hence, we get

1

2

∑

j

(
(Un+1

j )2 − (Un
j )

2)
)
≤ −λ

∑

j

|Un+1
j+1 − Un+1

j |2

Or
1

2
Dt,−‖Un+1‖2 ≤ −h

2

k

k

h2
‖Dx,+U

n+1‖ = −‖Dx,+U
n+1‖2. (6.26)

where,

Dt,−V
n+1
j :=

V n+1
j − V n

j

k
, Dx,+U

n+1
j :=

Un+1
j+1 − Un+1

j

h
,

We sum in n from n = 1 to N , we get the following theorem.

Theorem 6.10. For the backward Euler method, we have the estimate

‖UN‖2 +C
N∑

n=1

‖Dx,+U
n‖2 ≤ ‖U0‖2 (6.27)

This gives controls not only on ‖Un‖2 but also on ‖Dx,+U
n‖.

Homeworks.

1. Show that the Crank-Nicolson method also has similar energy estimate.

2. Can forward Euler method have similar energy estimate?

2.7 Relaxation of errors

In this section, we want to study the evolution of an error. We consider

ut = uxx + f(x) (7.28)

with initial data φ. The error enj := u(xj , t
n)− Un

j satisfies

en+1
j = enj + λ(enj−1 − 2enj + enj+1) + kτnj (7.29)
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We want to know how error is relaxed to zero from an initial error e0. We study the homogeneous

finite difference quation first. That is

en+1
j = enj + λ(enj−1 − 2enj + enj+1). (7.30)

or en+1 = G(un). The matrix is a tridiagonal matrix. It can be diagonalized by Fourier method.

The eigenfunctions and eigenvalues are

vk,j = e2πijk/N , ρk = 1− 2λ+ 2λ cos(2πk/N) = 1− 4λ sin2(πk/N), k = 0, ..., N − 1.

When λ ≤ 1/2, all eigenvalues are negative except ρ0:

1 = ρ0 > |ρ1| > |ρ2| > · · · .

The eigenfunction

v0 ≡ 1.

Hence, the projection of any discrete function U onto this eigenfunction is the average:
∑

j Uj .

Now, we decompose the error into

en =
∑

enkvk

Then

en+1
k = ρke

n
k .

Thus,

enk = ρnke
0
k.

We see that enk decays exponentially fast except en0 , which is the average of e0. Thus, the average of

initial error never decay unless we choose it zero. To guarantee the average of e0 is zero, we may

choose Un
j to be the cell average of u(x, tn) in the jth cell:

Un
j =

1

h

∫ xj+1/2

xj−1/2

u(x, tn) dx.

instead of the grid data. This implies the initial error has zero local averages, and thus so does the

global average.

The contribution of the truncation to the true solution is:

en+1 = ρke
n
k +∆tτnk

Its solution is

enk = ρnke
0
k +∆t

n−1∑

m=0

ρn−1−m
k τmk

We see that the term en0 does not tend to zero unless τm0 = 0. This can be achieved if we choose Uj

as well as fj to be the cell averages instead the grid data.
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Homeworks.

1. Define Uj := 1
h

∫ xj+1/2

xj−1/2
u(x) dx. Show that if u(x) is a smooth periodic function on [0, 1],

then

u′′(xj) =
1

h2
(Uj−1 − 2Uj + Uj+1) + τ

with τ = O(h2).

2.8 Boundary Conditions

2.8.1 Dirichlet boundary condition

Dirichlet boundary condition is

u(0) = a, u(1) = b. (8.31)

The finite difference approximation of uxx at x1 involves u at x0 = 0. We plug the boundary

contion:

uxx(x1) =
U0 − 2U1 + U2

h2
+O(h2) =

a− 2U1 + U2

h2
+O(h2)

Similarly,

uxx(xN−1) =
UN−2 − 2UN−1 + UN

h2
+O(h2) =

UN−2 − 2UN−1 + b

h2
+O(h2)

The unknowns are Un
1 , ..., U

n
N−1 withN−1 finite difference equations at x1, ..., xN−1. The discrete

Laplacian becomes

A =




−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −2


 . (8.32)

This discrete Laplacian is the same as a discrete Laplacian with zero Dirichlet boundary condition.

We can have energy estimates, entropy estimates as the case of periodic boundary condition.

Next, we exame how error is relaxed for the Euler method with zero Dirichlet boundary con-

dition. From Fourier method, we observe that the eigenfunctions and eigenvalues for the forward

Euler method are

vk,j = sin(2πjk/N), ρk = 1− 2λ+ 2λ cos(2πk/N) = 1− 4λ sin2(πk/N), k = 1, ..., N − 1.

In the present case, all eigenvalues

ρi < 1, i = 1, ..., N − 1.

provided the stability condition

λ ≤ 1/2.
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Thus, the errors eni decays to zero exponentially for all i = 1, ..., N − 1. The slowest mode is ρ1
which is

ρ1 = 1− 4λ sin2(π/N) ≈ 1− 4
( π
N

)2

and

ρn1 ≈
(
1− 4

( π
N

)2)n

≈ e−4π2t

where we have used k/h2 is fixed and nk = t.

2.8.2 Neumann boundary condition

The Neumann boundary condition is

u′(0) = σ0, u
′(1) = σ1. (8.33)

We may use the following disrete discretization methods:

• First order:
U1 − U0

h
= σ0.

• Second order-I:

U1 − U0

h
= ux(x1/2) = ux(0) +

h

2
uxx(x0) = σ0 +

h

2
f(x0)

• Second order-II: we use extrapolation

3U0 − 2U1 + U2

2h2
= σ0.

The knowns are Un
j with j = 0, ..., N . In the mean time, we add two more equations at the

boundaries.

Homeworks.

1. Find the eigenfunctions and eigenvalues for the discrete Laplacian with the Neumann bound-

ary condition (consider both first order and second order approximation at boundary). Notice

that there is a zero eigenvalue.

Hint: You may use Matlab to find the eigenvalues and eigenvectors.

Here, I will provide another method. Suppose A is the discrete Laplacian with Neumann boundary

condition. A is an (N + 1) × (N + 1) matrix. Suppose Av = λv. Then for j = 1, ..., N − 1, v
satisfies

vj−1 − 2vj + vj+1 = λvj , j = 1, ..., N − 1.
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For v0, we have

−2v0 + 2v1 = λv0.

For vN , we have

−2vN + 2vN−1 = λvN .

Then this matrix has the following eigenvectors:

vkj = cos(πjk/N),

with eigenvalue

λk = −2 + 2 cos(πk/N) = −4 sin2
(
πk

2N

)
.

Homeworks.

1. Complete the calculation.

2. Consider

ut = uxx + f(x)

on [0, 1] with Neumann boundary condition u′(0) = u′(1) = 0. If
∫
f(x) dx 6= 0. What wil

happen to u as t→∞?

2.9 The discrete Laplacian and its inversion

We consider the elliptic equation

uxx − αu = f(x), x ∈ (0, 1)

2.9.1 Dirichlet boundary condition

Dirichlet boundary condition is

u(0) = a, u(1) = b (9.34)

The finite difference approximation of uxx at x1 involves u at x0 = 0. We plug the boundary

contion:

uxx(x1) =
U0 − 2U1 + U2

h2
+O(h2) =

a− 2U1 + U2

h2
+O(h2)

Similarly,

uxx(xN−1) =
UN−2 − 2UN−1 + UN

h2
+O(h2) =

UN−2 − 2UN−1 + b

h2
+O(h2)
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The unknowns are Un
1 , ..., U

n
N−1 withN−1 finite difference at x1, ..., xN−1. The discrete Laplacian

becomes

A =




−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −2


 . (9.35)

This is the discrete Lalacian with Dirichlet boundary condition. In one dimension, we can solve

A−1 explicitly. Let us solve (A− 2β)−1 where β = αh2/2. The difference equation

Uj−1 − (2 + 2β)Uj + Uj+1 = 0

has two independent solutions ρ1 and ρ2, where ρi are roots of

ρ2 − (2 + 2β)ρ + 1 = 0.

That is

ρ = 1 + β ±
√

(1 + β)2 − 1

When β = 0, the two solutions are Uj = 1 and Uj = j. This gives the fundamental solution

Gi,j =

{
jCi j ≤ i
(N − j)C ′

i j ≥ i

FromGi,i−1−2Gi,i+Gi,i+1 = 1 and iCi = (N− i)C ′
i we get Ci = −(N− i)/N and C ′

i = −i/N .

When β > 0, the two roots are ρ1 < 1 and ρ2 > 1.

Homeworks.

1. Use matlab or maple to find the fundamental solution Gi,j := (A− 2β)−1 with β > 0.

2. Is it correct that vi,j has the following form?

Gi,j =

{
ρj−i
1 N − 1 > j ≥ i
ρj−i
2 1 < j < i

Let us go back to the original equation:

uxx − αu = f(x)

The above study of the Green’s function of the discrete Laplacian helps us to quantify the the error

produced from the source term. If Au = f and A−1 = G, then an error in f , say τ , will produce an

error

e = Gτ.
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If the off-diagonal part of G decays exponentially (i.e. β > 0), then the error is “localized,” oth-

erwise, it polutes everywhere. The error from the boundary also has the same behavior. Indeed, if

β = 0, then The discrete solution is

u(xj) = aG0(j) + bG1(j) +
∑

j

Gi,jfj

whereG(j) = jh,G1(j) = 1−jh andG = A−1, the Green’s function with zero Dirichlet boundary

condition. Here, G0 solves the equation

G0(i− 1)− 2G0(i) +G0(i+ 1) = 0, i = 1, ..., N − 1,

for j = 1, ..., N − 1 with G0(0) = 1 and G0(N) = 0. And G1 solves the same equation with

G1(0) = 0 and G1(N) = 1.

If β > 0, we can see that both G0 and G1 are also localized.

Project 2. Solve the following equation

uxx − αu+ f(x) = 0, x ∈ [0, 1]

numerically with periodic, Dirichlet and Neumann boundary condition. The equilibrium

1. A layer structure

f(x) =

{
−1 1/4 < x < 3/4
1 otherwise

2. An impluse

f(x) =

{
γ 1/2 − δ < x < 1/2 + δ
0 otherwise

3. A dipole

f(x) =





γ 1/2− δ < x < 1/2
−γ 1/2 < x < 1/2 + δ
0 otherwise

You may choose α = 0.1, 1, 10, observe how solutions change as you vary α.

Project 3. Solve the following equation

−uxx + f(u) = g(x), x ∈ [0, 1]

numerically with Neumann boundary condition. Here, f(u) = F ′(u) and the potential is

F (u) = u4 − γu2.

Study the solution as a function of γ. Choose simple g, say piecewise constant, a delta function, or

a dipole.



Chapter 3

Finite Difference Methods for Linear

elliptic Equations

3.1 Discrete Laplacian in two dimensions

We will solve the Poisson equation

△u = f

in a domain Ω ⊂ R2 with Dirichlet boundary condition

u = g on ∂Ω

Such a problem is a core problem in many applications. We may assume g = 0 by substracting a

suitable function from u. Thus, we limit our discussion to the case of zero boundary condition. Let

h be the spatial mesh size. For simplicity, let us assume Ω = [0, 1] × [0, 1]. But many discussion

below can be extended to general smooth bounded domain.

3.1.1 Discretization methods

Centered finite difference The Laplacian is approximated by

A =
1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) .

For the square domain, the indeces run from 1 ≤ i, j ≤ N − 1 and

U0,j = UN,j = Ui,0 = Ui,N = 0

from the boundary condition.
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If we order the unknowns U by i + j ∗ (N − 1) with j being outer loop index and i the inner

loop index, then the matrix form of the discrete Laplacian is

A =
1

h2




T I
I T I

I T I
. . .

. . .
. . .

I T




This is an (N −1)× (N −1) block tridiagonal matrix. The block T is an (N −1)× (N −1) matrix

T =




−4 1
1 −4 −1

1 −4 1
. . .

. . .
. . .

1 −4




Since this discrete Laplacian is derived by centered finite differencing over uniform grid, it is second

order accurate, the truncation error

τi,j :=
1

h2
(u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1)− 4u(xi, yj))

= O(h2).

3.1.2 The 9-point discrete Laplacian

The Laplacian is approximated by

∇2
9 =

1

6h2




1 4 1
4 −20 4
1 4 1




One can show by Taylor expansion that

∇2
9u = ∇2u+

1

12
h2∇4u+O(h4).

If u is a solution of ∇2u = f , then

∇2
9u = f +

1

12
h2∇2f +O(h4).

Thus, we get a 4th order method:

∇2
9Uij = fij +

h2

12
∇2fij
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3.2 Stability of the discrete Laplacian

We have seen that the true solution of△u = f with Dirichlet boundary condition satisfies

Au = f + τ,

where A is the discrete Laplacian and τ is the truncation error and satisfies τ = O(h2) in maximum

norm. The numerical solution U satisfies AU = f . Thus, the true error satisfies

Ae = τ,

where e = u− U . Thus, e satisfies the same equation with right-hand side τ and with the Dirichlet

boundary condition. To get the convergence result, we need an estimate of e in terms of τ . This is

the stability criterion of A. We say that A is stable if there exists some norm ‖ · ‖ and a constant C
such that

‖e‖ ≤ C‖Ae‖.

3.2.1 Fourier method

Since our domain Ω = [0, 1] × [0, 1] and the coefficients are constant, we can apply Fourier trans-

form. Let us see one dimensional case first. Consider the Laplacian d2/dx2 on domain [0, 1] with

Dirichlet boundary condition. The discrete Laplacian is A = 1
h2 diag (1,−2, 1), where h = 1/N .

From

A sin(iπkh) =
1

h2
(sin((i + 1)πhk) + sin((i− 1)πhk) − 2 sin(iπhk))

=
2

h2
((cos(πhk)− 1) sin(iπhk)) .

The above is valid for i = 1, ..., N − 1 and k = 1, ..., N − 1. We also see that sin(iπkh) sat-

isfies Dirichlet boundary condition at i = 0 and i = N . we see that the eigenvectors of A are

(sin(iπhk))N−1
i=1 for k = 1, ..., N − 1. The corresponding eigenvalues are 2

h2 (cos(πhk)− 1).
For two dimensional case, the eigenfunctions of the discrete Laplacian are

(Uk,ℓ)i,j = sin(iπkh) sin(jπℓh).

The corresponding eigenvalues are

λk,ℓ =
2

h2
(cos(kπh) + cos(ℓπh)− 2)

= − 4

h2
(sin2(kπh/2) + sin2(ℓπh/2))

The smallest eigenvalue (in magnitude) is

λ1,1 = −
8

h2
sin2(πh/2) ≈ −2π2.
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To show the stability, we take Fourier transform of U and A. We then have

∣∣∣〈ÂÛ , Û〉
∣∣∣ ≥ 2π2‖Û‖2.

The left-hand side has ∣∣∣〈ÂÛ , Û 〉
∣∣∣ ≤ ‖ÂÛ‖‖Û‖.

Hence, the L2 norm of Â has the following estimate:

‖ÂÛ‖ ≥ 2π2‖Û‖.

Thus, we get

‖Û‖ ≤ 1

2π2
‖ÂÛ‖.

From Parseval equality, we have

‖U‖ ≤ 1

2π2
‖AU‖

Applying this stability to the formula: Ae = τ , we get

‖e‖ ≤ 1

2π2
‖τ‖ = O(h2).

Homeworks.

1. Compute th eigenvalues and eigenfunctions of the 9-point discrete Laplacian on the domain

[0, 1] × [0, 1] with zero boundary condition.

3.2.2 Energy method

Below, we use energy method to prove the stability result for discrete Laplacian. We shall prive it

for rectangular domain. However, it can be extended to more general domain. To perform energy

estimate, we rewrite the discrete Laplacian as

AUi,j =
1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) = ((Dx+Dx− +Dy+Dy−)U)i,j

where

(Dx+U)i,j =
Ui+1,j − Ui,j

h

the forward differencing. We multiply the discrete Laplacian by Ui,j , then sum over all i, j. By

applying the ummation by part, we get

(AU,U) = ((Dx+Dx− +Dy+Dy−)U,U)

= −(Dx−U,Dx−U)− (Dy−U,Dy−U)

= −‖∇hU‖2h
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Here, the discrete L2 norm is defined by

‖U‖2h =
∑

i,j

|Ui,j|2h2.

The boundary term does not show up beause we consider the zero Dirichlet boundary problem.

Thus, the discrete Poisson equation has the estimate

‖∇hU‖2h = |(f, U)| ≤ ‖f‖h‖U‖h. (2.1)

Next, for the zero Dirichlet boundary condition, we have Poincare inequality. Before stating the

Poincare inequality, we need to clarify the meaning of zero boundary condition in the discrete

sense. We define the Sobolev space H1
h,0 to be the completion of the restriction of all C1

0 functions

to the grid points under the discrete H1 norm. Here, C1
0 function is a C1 function that is zero on the

boundary; the discrete H1 norm is

‖U‖h,1 := ‖U‖h + ‖∇hU‖h.

Lemma 2.2. Let Ω be a bounded domain in R2, then there exist a constant dΩ, which is the diameter

of the domain Ω, such that for any U ∈ H1
h,0,

‖U‖h ≤ dΩ‖∇hU‖h (2.2)

Proof. Let us take Ω = [0,X]×[0, Y ] as an example for the proof. We assume X =Mh,Y = Nh.

From zero boundary condition, we have

U2
i,j = (

i∑

i′=1

Dx−Ui′,jh)
2

≤ (
i∑

i′=1

12) · (
i∑

i′=1

(Dx−Ui′,j)
2)h2 (Hölder’s inequa;ity)

≤ i(
M∑

i′=1

(Dx−Ui′,j)
2)h2

multiply both sides by h2 then sum over all i, j, we get

‖U‖2h =
∑

i,j

U2
i,jh

2

≤ (
M∑

i=1

i)h2
∑

i′,j

(Dx−Ui′,j)
2h2

≤ M2

2
h2
∑

i′,j

(Dx−Ui′,j)
2h2

=
M2

2
h2‖Dx−U‖2h
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Similarly, we have

‖U‖2h ≤
N2

2
h2‖Dy−U‖2h

Thus,

‖U‖2h ≤ h2
1

2
max{M2, N2}‖∇hU‖2

≤ d2Ω‖∇hU‖2h.

With the Poincare inequality, we can obtain two estimates for U .

Proposition 1. Consider the discrete Laplacian with zero boundary condition. We have

‖U‖h ≤ d2Ω‖f‖h, (2.3)

‖∇hU‖ ≤ dΩ‖f‖h. (2.4)

Proof. From

‖∇hU‖2h ≤ ‖f‖h · ‖U‖h
We apply the Poincare inequality to the left-hand side, we obtain

‖U‖2h ≤ d2Ω‖∇U‖2h ≤ d2Ω‖f‖h‖U‖h

This yields

‖U‖h ≤ d2Ω‖f‖h
If we apply the Poincare inequality to the right-hand side, we get

‖∇hU‖2h ≤ ‖f‖h · ‖U‖h ≤ ‖f‖h · dΩ‖∇hU‖h

Thus, we obtain

‖∇hU‖ ≤ dΩ‖f‖h
When we apply this result to Ae = τ , we get

‖e‖ ≤ d2Ω‖τ‖ = O(h2)

‖∇he‖ ≤ dΩ‖τ‖ = O(h2).



Chapter 4

Finite Difference Theory For Linear

Hyperbolic Equations

4.1 A review of smooth theory of linear hyperbolic equations

Hyperbolic equations appear commonly in physical world. The propagation of acoustic wave,

electric-magnetic waves, etc. obey hyperbolic equations. Physical characterization of hyperbol-

icity is that the signal propagates at finite speed. Mathematically, it means that compact-supported

initial data yield compact-supported solutions at all time. This hyperbolicity property has been char-

acterized in terms of coefficients of the corresponding linear partial differential equations through

Fourier method.

They are two techaniques for hyperbolic equations, one is based on Fourier method (Garding et

al.), the other is energy method (Friedrichs’ symmetric hyperbolic equations). A good reference is F.

John’s book. For computational purpose, we shall only study one dimensional cases. For analysis,

the techniques include methods of characteristics, energy methods, Fourier methods.

4.1.1 Linear advection equation

We start from the Cauchy problem of the linear advection in one-space dimension

ut + aux = 0, (1.1)

u(x, 0) = u0(x). (1.2)

Its solution is simply a translation of u0, namely,

u(x, t) = u0(x− at).

More generally, we can solve the linear advection equation with variable coefficients by the method

of characteristics. Consider

ut + a(x, t)ux = 0.
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This equation merely says that the direction derivative of u is 0 in the direction (1, a) ‖ (dt, dx). If

x(t, ξ) is the solution of the ODE
dx

dt
= a(x, t).

with initial data x(0, ξ) = ξ, then

d

dt
|ξu(x(t, ξ), t) = ∂tu+ ∂xu

dx

dt
= ut + aux = 0

In other words, u is unchanged along the curve: dx/dt = a. Such a curve is called the characteristic

curve. Suppose from any point (x, t), t > 0, we can find the characteristic curve ξ(s, t, x) backward

in time and ξ(·, t, x) can be extended to s = 0. Namely, ξ(·, t, x) solves the ODE: dξ/ds = a(ξ, s)
with ξ(t, t, x) = x, and ξ(·, t, x) exists on [0, t]. The solution to the Cauchy problem is then given

by u(x, t) = u0(ξ(0, t, x)).
Note that the characteristics are the curves where signals propagate along.

Homeworks

1. Find the solution of

ut − tanhxux = 0

with initial data u0. Also show that u(x, t)→ 0 as t→∞ , provided u0(x)→ 0 as |x| → ∞.

2. Show that the initial value problem for

ut + (1 + x2)ux = 0

is not well defined. (Show the characteristics issued from x-axis do not cover the entire

domain: x ∈ R, t ≥ 0.)

4.1.2 Linear systems of hyperbolic equations

Methods of characteristics Second-order hyperbolic equations can be expressed as hyperbolic

systems. For example, the wave equation

utt − c2uxx = 0

can be written as (
ux
ut

)

t

−
(

0 1
c2 0

)(
ux
ut

)

x

= 0.

In general, systems of hyperbolic equations have the following form

ut +A(x, t)ux = B(x, t)u+ f.

Here, u is an n-vector and A,B are n × n matrices. Such a system is called hyperbolic if A is

diagonalizable with real eigenvalues. That is, A has real eigenvalues

λ1 ≤ · · · ≤ λn
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with left/right eigenvectors li/ri, respectively. We normalize these eigenvectors so that lirj = δi,j .

Let R = (r1, · · · , rn) and L = (l1, · · · , ln)t. Then

A = RΛL,

Λ = diag (λ1, · · · , λn)
LR = I

We can use L and R to diagonalize this system. First, we introduce v = Lu, then multiply the

equation by L from the left:

Lut + LAux = LBu+ Lf.

This gives

vt + Λvx = Cv + g,

where C = LBR+ LtR+ ΛLxR and g = Lf . The i-th equation:

vi,t + λivi,x =
∑

j

ci,jvj + gi

is simply an ODE in the direction dx/dt = λi(x, t). As before, from a point (x, t) with t > 0, we

draw characteristic curves ξi(·, t, x), i = 1, · · · , n:

dξi
ds

= λi(ξi, s), i = 1, · · · , n
ξi(t, t, x) = x

We integrate the i-th equation along the i-th characteristics to obtain

vi(x, t) = v0,i(ξi(0, t, x)) +

∫ t

0
(
∑

j

ci,jvj + gi)(ξi(s, t, x), s) ds.

An immediate conclusion we can draw here is that the domain of dependence of (x, t) is [ξn(0, t, x), ξ1(0, t, x)],
which, we denote by D(x, t), is finite. This means that if u0 is zero on D(x, t), then u(x, t) = 0.

One can obtain local existence theorem from this integral equation provided v0 and v0,x are

bounded. Its proof is mimic to that of the local existence of ODE. We define a function space

Cb(R), the bounded continuous functions on R, using the sup norm: ‖u‖∞ := supx |u(x)|. Define

a map

Tv = v0,i(ξi(0, t, x)) +

∫ t

0
(
∑

j

ci,jvj + gi)

Then T is a contraction in Cb if the time is short enough. The contraction map T yields a fixed

point. This is the solution.

The global existence follows from a priori estimates (for example, C1-estimates) using the above

integral equations. A necessary condition for global existence is that all characteristics issued from

any point (x, t), x ∈ R, t > 0 should be traced back to initial time. A sufficient condition is that

A(x, t) is bounded in the upper half plane in x− t space.

A nice reference for the method of characteristics for systems of hyperbolic equations in one-

dimension is John’s book, P.D.E., Sec. 5, Chapter 2.
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Energy method for symmetric hyperbolic equations Many physical systems can be written in

the symmetric hyperbolic equations:

A0ut +A(x, t)ux = B(x, t)u+ f,

where A0, A are n×n symmetric matrices and A0 is positive definite. We take inner product of this

equation with u, later we integragte in x over the whole space. For simplicity, we assume A0 and A
are constant matrices temporarily. We get

∂

∂t

1

2
A0u · u+

∂

∂x

1

2
Au · u = Bu · u+ f · u.

Here we have used the symmetric properties of A0 and A:

∂

∂x
Au · u = Aux · u+Au · ux = 2Aux · u.

As we integrate in x over the whole space, we get

d

dt

1

2
(A0u, u) = (Bu, u) + (f, u).

The positivity of A0 yields that (A0u, u) is equivalent to ‖u‖22, namely, there are two constants C1

and C2 such that for any u ∈ L2(R),

C1

∫
|u|2 dx ≤ (A0u, u) ≤ C2

∫
|u|2 dx.

If we use (A0u, u) as a new norm |||u|||2, then we get

d

dt

1

2
|||u(t)|||2 ≤ C|||u|||2 + C ′|||u||| · ‖f‖

Here, we have used the boundedness of B. Eliminating ‖u‖, we get

d

dt
|||u(t)||| ≤ C|||u|||+ C ′‖f‖

This yields (by Gronwell inequality)

‖||u(t)||| ≤ eCt|||u(0)||| + C ′
∫ t

0
eC(t−s)‖f(s)‖ ds

Thus, |||u(t)||| s bounded for any finite time if ‖u(0)‖ is bounded.

We can apply this method to the equations for derivatives of u by differentiating the equations.

This will give us the boundedness of all derivatives, from which we get compactness of approximate

solution and existence theorem. For general “smooth” theory for symmetric hyperbolic systems in

high-dimension we refer to Chapter 6 of John’s book.
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4.2 Finite difference methods for linear advection equation

4.2.1 Design techniques

We shall explain some design principles for the linear advection equation:

ut + aux = 0.

We shall assume a > 0 a constant. Despite of its simplicity, the linear advection equation is a proto-

type equation to design numerical methods for nonlinear hyperbolic equations in multi-dimension.

First, we choose h = ∆x and k = ∆t to be the spatial and temporal mesh sizes, respectively.

We discretize the x − t space by the grid points (xj , tn), where xj = j∆x and tn = n∆t. We

shall use the data Un
j to approximate u(xj , tn). To derive finite difference schemes, we use finite

differences to approximate derivatives. We demonstrate spatial discretization first, then the temporal

discretization.

1. Spatial discretization. There are two important design principles here, the interpolation and

upwinding.

1. Derivatives are replaced by finite differences. For instance, uxj can be replaced by

Uj − Uj−1

h
, or

Uj+1 − Uj−1

2h
, or

3Uj − 4Uj−1 + Uj−2

2h
.

The first one is first-order, one-side finite differencing, the second one is the central differenc-

ing which is second order, the third one is a one-side, second-order finite differencing. This

formulae can be obtained by make Taylor expansion of uj+k about xj .

2. Upwinding. We assume a > 0, this implies that the information comes from left. Therefore,

it is reasonable to approximate ux by “left-side finite difference”:

Uj − Uj−1

h
or

3Uj − 4Uj−1 + Uj−2

2h
.

2. Temporal discretization.

1. Forward Euler: We replace ut
n
j by (Un+1

j −Un
j )/k. As conbining with the upwinding spatial

finite differencing, we obtain the above upwinding scheme.

2. backward Euler: We replace ut
n+1
j by (Un+1

j − Un
j )/k, but replace ux by Dx)

n+1
j , where D

is spatial finite difference above.

3. Leap frog: We replace ut
n
j by (Un+1

j − Un−1
j )/2k.

4. An important trick is to replace high-order temporal derivatives by high-order spatial deriva-

tives through the help of P.D.E.: for instance, in order to achieve high order approximation of

ut, we can expand

un+1
j − unj

k
= unt,j +

k

2
untt,j + · · · ,
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Here, unj , unt,j denotes u(xj , tn), ut(xj , tn), respectively. We can replace utt by

utt = −auxt
= a2uxx,

then approximate uxx by central finite difference. Finally, a high order approximation of ut
is

ut ←
Un+1
j − Un

j

k
− k

2h2
(Un

j+1 − 2Un
j + Un

j−1).

We list some finite difference schemes below. Let σ = ak/h.

Upwind : Un+1
j = Un

j − σ(Un
j − Un

j−1)

Lax-Friedrichs : Un+1
j =

Un
j+1 + Un

j−1

2
+
σ

2
(Un

j+1 − Un
j−1)

Lax-Wendroff : Un+1
j = Un

j −
σ

2
(Un

j+1 − Un
j−1) +

σ2

2
(Un

j+1 − 2Un
j + Un

j−1)

Beam-Warming : Un+1
j = Un

j −
σ

2
(3Un

j − 4Un
j−1 + Un

j−2) +
σ2

2
(Un

j − 2Un
j−1 + Un

j−2)

Backward Euler : Un+1
j − Un

j =
σ

2
(Un+1

j−1 − Un+1
j+1 )

In general, an (explicit) finite difference scheme for the linear advection equation can be expressed

as

Un+1
j = G(Un

j−l, U
n
j−l+1, · · · , Un

j+m)

=

m∑

k=−l

akU
n
j+k

Remark.

1. From characteristics method, u(xj, tn+1) = u(xj − ak, tn). We can approximate it by in-

terpolation at neighboring grid points. For instance, a linear interpolation at xj−1 and xj
gives

un+1
j ≈ ak

h
unj−1 + (1− ak

h
)unj .

The corresponding finite difference scheme is then defined by

Un+1
j =

ak

h
Un
j−1 + (1 − ak

h
)Un

j .

This is the well-known upwind scheme. Where the spatial discretization is exactly the above

one-side, first-order finite differencing.



4.2. FINITE DIFFERENCE METHODS FOR LINEAR ADVECTION EQUATION 53

2. The term (un+1
j −unj )/k in a forward Euler method introduces an anti-diffusion term−a2uxx,

namely,

un+1
j − unj

k
= ut +

k

2
utt +O(k2) = ut +

a2k

2
uxx +O(k2).

Thus, a high-order upwind differencing σ
2 (3U

n
j − 4Un

j−1 + Un
j−2) for aux and first-order

difference in time will be unstable.

Homeworks.

1. Use the trick utt = a2uxx and central finite difference to derive Lax-Wendroff scheme by

yourself.

2. Derive a finite difference using method of characteristics and a quadratic interpolation at

xj−2, xj−1 and xj . Is this scheme identical to the Beam-Warming scheme?

3. Do the same thing with cubic interpolation at xj−2, · · · , xj+1?

4. Write a computer program using the above listed schemes to the linear advection equation.

Use periodic boundary condition. The initial condition are

(a) square wave,

(b) hat function

(c) Gaussian

(d) e−x2/D sinmx

Refine the mesh by a factor of 2 to check the convergence rates.

4.2.2 Courant-Friedrichs-Levy condition

For a finite difference scheme:

Un+1
j = G(Un

j−ℓ, · · · , Un
j+m),

We can define numerical domain of dependence of (xj , tn) (denoted byDn(j, n)) to be [xj−nℓ, xj+nm].
For instance, the numerical domain of upwind method is [xj−n, xj ]. If U0

k = 0 on Dn(j, n), then

Un
j = 0. In order to have our finite difference schemes physically meaningful, a natural condition

is

physical domain of dependence ⊂ numerical domain of dependence

This gives a constraint on the ratio of h and k. Such a condition is called the Courant-Friedrichs-

Levy condition. For the linear advection equation with a > 0, the condition is

0 ≤ ak

ℓh
≤ 1
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If this condition is violated, we can esaily construct an initial condition which is zero on numerical

domain of dependence of (x, t), yet u(x, t) 6= 0. The finite difference scheme will produce 0 at

(x, t). Thus, its limit is also 0.

Below, we shall fix the ratio h/k during the analysis and take h → 0 in the approximation

procedure.

4.2.3 Consistency and Truncation Errors

Let us express our difference scheme in the form:

Un+1 = GUn

Given a smooth solution u(x, t) to the PDE. Let us denote u(jh, nk) by unj . Plug un into this finite

difference equation, then make Taylor expansion about (jh, nk). For instance, we plug a smooth

function u into a upwinding scheme:

1

k
(un+1

j − unj ) +
1

h
(unj − unj−1) = (ut + aux) + k(utt − σuxx) +O(h2 + k2)

Thus, we may define the truncation error as

τn =
un+1 −Gun

k

A finite difference scheme is called consistent if e → 0 as k → 0. Naturally, this is a minimal

requirement of a finite difference scheme. If the scheme is expressed as

Un+1
j =

m∑

k=−l

akU
n
j+k,

then a necessary and sufficient condition for consistency is

m∑

k=−l

ak = 1.

This is easy to see because the constant is a solution.

If e = O(kr), then the scheme is called of order r. We can easily check that e = O(k) for the

upwind method by Taylor expansion:

e =
1

k

(
un+1
j − unj + σ(unj − unj−1)

)

=
1

k

(
utk +

1

2
uttk

2 +
ak

h
(−uxh+

1

2
uxxh

2

)
+HOT

= (ut + aux) +
k

2

(
utt +

ah

k
uxx

)
+HOT

= (ut + aux)−
h2

2k
σ(1 − σ)uxx +HOT
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The term h2

2kσ(1 − σ)uxx is O(h) if we keep σ = ak/h fixed. Thus, the upwind scheme is first

order.

Homeworks.Find the truncation error of the schemes listed above.

4.2.4 Lax’s equivalence theorem

Suppose Un is generated from a finite difference scheme: Un+1 = G(Un), we wish the solution

remain bounded under certain norm as we let the mesh size ∆t → 0. This is equivalent to let the

time step number n →∞. A scheme is called stable if ‖Un‖ remains bounded under certain norm

‖ · ‖ for all n.

Let u be an exact solution of some linear hyperbolic P.D.E. and U be the solution of a corre-

sponding finite difference equation, We want to estimate the true error enj = unj − Un
j .

First we estimate how much error accumulated in one time step.

en+1 = un+1 − Un+1 = ken +Gun −GUn = ken +Gen.

If we can have an estimate (called stability condition) like

‖GU‖ ≤ ‖U‖ (2.3)

under certain norm ‖ · ‖, then we obtain

‖un − Un‖ ≤ ‖u0 − U0‖+ k(τn−1 + · · ·+ τ1).

From the consistency, we obtain ‖en‖ → 0 as k → 0. If the scheme is of order r, then we obtain

‖en‖ ≤ ‖u0 − U0‖+O(kr).

We have the following theorems.

Theorem 2.11 (Lax equivalence theorem). Given a linear hyperbolic partial differential equation.

Then a consistent finite difference scheme is stable if and only if is is convergent.

We have proved stability⇒ convergence. We shall prove the other part in the next section.

Theorem 2.12. For smooth solutions, the associated true error computed by a finite difference

scheme of order r is O(kr).

4.2.5 Stability analysis

Since we only deal with smooth solutions in this section, the L2-norm or the Sobolev norm is a

proper norm to our stability analysis. For constant coefficient and scalar case, the von Neumann

analysis (via Fourier method) provides a necessary and sufficient condition for stability. For system

with constant coefficients, the von Neumann analysis gives a necessary condition for statbility. For
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systems with variable coefficients, the Kreiss’ matrix theorem provides characterizations of stability

condition. We describe the von Neumann analysis below.

Given {Uj}j∈Z, we define

‖U‖2 =
∑

j

|Uj |2

and its Fourier transform

Û(ξ) =
1

2π

∑
Uje

−ijξ.

The advantages of Fourier method for analyzing finite difference scheme are

• the shift operator is transformed to a multiplier:

T̂U(ξ) = eiξÛ(ξ),

where (TU)j := Uj+1;

• the Parseval equility

‖U‖2 = ‖Û‖2

≡
∫ π

−π
|Û (ξ)|2 dξ.

If a finite difference scheme is expressed as

Un+1
j = (GUn)j =

m∑

i=−l

ai(T
iUn)j ,

then

Ûn+1 = Ĝ(ξ)Ûn(ξ).

From the Parseval equality,

‖Un+1‖2 = ‖Ûn+1‖2

=

∫ π

−π
|Ĝ(ξ)|2 |Ûn(ξ)|2 dξ

≤ max
ξ
|Ĝ(ξ)|2

∫ π

−π
Ûn(ξ)|2 dξ

= |Ĝ|2∞‖U‖2

Thus a necessary condition for stability is

|Ĝ|∞ ≤ 1. (2.4)

Conversely, Suppose |Ĝ(ξ0)| > 1, fromĜ being a smooth function in ξ, we can find ǫ and δ such

that

|Ĝ(ξ)| ≥ 1 + ǫ for all |ξ − ξ0| < δ.
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Let us choose an initial data U0 in ℓ2 such that Û0(ξ) = 1 for |ξ − ξ0| ≤ δ. Then

‖Ûn‖2 =

∫
|Ĝ|2n(ξ)|Û0|2

≥
∫

|ξ−ξ0|≤δ
|Ĝ|2n(ξ)|Û0|2

≥ (1 + ǫ)2nδ →∞ as n→∞

Thus, the scheme can not be stable. We conclude the above discussion by the following theorem.

Theorem 2.13. A finite difference scheme

Un+1
j =

m∑

k=−l

akU
n
j+k

with constant coefficients is stable if and only if

Ĝ(ξ) :=

m∑

k=−l

ake
−ikξ

satisfies

max
−π≤ξ≤π

|Ĝ(ξ)| ≤ 1. (2.5)

As a simple example, we show that the scheme:

Un+1
j = Un

j +
σ

2
(Un

j+1 − Un
j−1)

is unstable. The operator G = 1 + σ
2 (T − T−1). The corresponding Ĝ(ξ) = 1 + iσ sin ξ, which

cannot be bounded by 1 in magnitude. One the other hand, the Lax-Friedrichs scheme replaces Un
j

in the above scheme by the average (Un
j−1 +Un

j+1)/2. The corresponding Ĝ(ξ) = cos ξ + iσ sin ξ,

which is bounded by 1 in magnitude provided |σ| ≤ 1. The above replacement is equivalent to add

a term (Un
j−1− 2Un

j +Un
j+1)/2 to the right hand side of the above unstable finite difference. It then

stabilizes the scheme. This quantity is called a numerical viscosity. We see the discussion in the

next section.

Homeworks.

1. Compute the Ĝ for the schemes: Lax-Friedrichs, Lax-Wendroff, Leap-Frog, Beam-Warming,

and Backward Euler.
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4.2.6 Modified equation

We shall study the performance of a finite difference scheme to a linear hyperbolic equation. Con-

sider the upwind scheme for the linear advection equation. Let u(x, t) be a smooth function. Expand

u in Taylor series, we obtain

un+1
j −G(un)j = (ut + aux)∆t−

(∆x)2

2∆t
(σ − σ2)uxx +O((∆t)3).

The truncation error for the upwind method is O(∆t) if u satisfies the linear advection scheme.

However, if we fix ∆x and ∆t, then the error is O(∆t3) if u satisfies

ut + aux − νuxx = 0,

where

ν =
(∆x)2

2∆t
(σ − σ2).

This equation is called modified equation. The solution of the finite difference equation is closer to

the solution of this modified equation than the original equation. The role of νuxx is a dissipation

term in the scheme. The constant ν is called numerical viscosity. We observe that ν ≥ 0 if and only

if 0 ≤ σ ≤ 1, which is exactly the (C-F-L as well as von Neumann) stability condition. This is

consistent to the well-postedness of diffusion equations (i.e. ν ≥ 0).

The effect of numerical viscosity is that it will make solution smoother, and will smear out

discontinuities. To see this, let us solve the Cauchy problem:

ut + aux = νuxx

u(x, 0) = H(x) :=

{
1 if x ≥ 0
0 if x < 0

The function H is called the Heaviside function. The corresponding solution is given by

u(x, t) =
1√
4πνt

∫ ∞

−∞
e−

(x−at−y)2

4νt u(y, 0) dy

=
1√
4πνt

∫ ∞

0
e−

(x−at−y)2

4νt dy

= erf((x− at)/
√
4νt),

where

erf(x) :=
2√
π

∫ x

−∞
e−z2 dz.

Let ue(x, t) be the exact solution of ut + aux = 0 with u(x, 0) = H(x). Then

|ue(y + at, t)− u(y + at, t)| = erf(−|y|/
√
4νt).
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Hence,

‖ue(·, t)− u(·, t)‖L1 = 2

∫ 0

−∞
erf(

y√
4νt

) dy

= C
√
νt

Since ν = O(∆t), we see that

‖une − un‖ = O(
√
∆t).

On the other hand, if U is the solution of the finite difference equation, then we have ‖Un − un‖ =
O(∆t2). Hence

‖Un − une ‖L1 = O(
√
∆t).

Thus, a first order scheme is only of half order for “linear discontinuities.”

One can also observe the smearing (averaging ) of discontinuities from the finite difference

directly. In upwind scheme, Un+1
j may be viewed as weighted averages of Un

j and Un
j−1:

Un+1
j = (1− σ)Un

j + σUn
j−1.

If Un
j−1 = 0 and Un

j = 1, then Un+1
j is a value between 0 and 1. This is a smearing process

(averaging process). The smearing process will spread out. Its width is (
√
n∆x) = O(

√
∆t) from

the estimate of binomial distribution.

It should be noticed that the magnititute of the numerical viscosity of the upwind method is

smaller than that of the Lax-Friedrichs method. The upwind method uses the information of chara-

teristic speed whereas the Lax-Friedrichs does not use this information.

Homeworks.

1. Find the modified equations for the following schemes:

Lax-Friedrichs : ut + aux =
(∆x)2

2∆t
(1− σ2)uxx

Lax-Wendroff : ut + aux =
(∆x)2

6
a(σ2 − 1)uxxx

Beam-Warming : ut + aux =
(∆x)2

6
a(2− 3σ + σ2)uxxx

2. Expand u up to uxxxx, find the modified equation with the term uxxxx for the Lax-Wendroff

scheme and Beam-Warming. That is

ut + aux = µuxxx + κuxxxx.

Show that the coefficient κ < 0 for both scheme if and only if the C-F-L stability condition.
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3. Find the solution Un
j of the upwind scheme with initial data U0

j = δj0. (Hint: a binomial

distribution.) Now, condider the Heaviside function as our initial data. Using the above solu-

tion formula, superposition principle and the Stirling formula, show that
∑

j |unj −Un
j |∆x =

O(
√
n∆x) = O(

√
∆t).

Next, we study second-order scheme for discontinuities. We use Fourier method to study the

solution of the modified equation:

ut + aux = µuxxx.

By taking Fourier transform, we find

ût = (−iaξ − iµξ3)û = −iω(ξ)û

Hence

u(x, t) =

∫
ei(xξ−ω(ξ)t)û(ξ, 0) dξ.

The initial data we consider here is the Heaviside function H(x). However, in the discrete domain,

its Fourier expansion is truncated. The corresponding inversion has oscillation on both side of the

discontinuity, called Gibb’s phenomena. The width is O(∆x), the height is O(1). We propagate

such an initial data by the equation ut + aux = µuxxx. The superposition of waves in different

wave number ξ cause interference of waves. Eventually, it forms a wave package: a high frequency

wave modulated by a low frequency wave. By the method of stationary phase, we see that the major

contribution of the integral is on the set when

d

dξ
(xξ − ω(ξ)t) = 0.

The correspond wave ei(x−ω′(ξ)t) is the modulated wave. Its speed ω′(ξ) is called the group velocity.

For the Lax-Wendroff scheme, we see that the group speed is

vp = a+ 3µξ2.

For the Beam-Warming, vp = a + 3µξ2. Since µ < 0 for the Lax-Wendroff, while µ > 0 for the

Beam-Warming, we observe that the wave package leaves behind (ahead) the discontinuity in the

Lax-Wendroff (Beam-Warming).

One can also observe this oscillation phenomena directly from the scheme. In Beam-Warming,

we know that Un+1
j is a quadratic interpolation of Un

j−2, U
n
j−1 and Un

j . If Un
j−2 = 0, and Un

j−1 =

Un
j = 1, then the quadratic interpolation gives an overshoot at Un+1

j (that is, Un+1
j > 1). Similarly,

in the Lax-Wendroff scheme, Un+1
j is a quadratic interpolation of Un

j−1, U
n
j and Un

j+1. If Un
j−1 =

Un
j = 0, and Un

j+1 = 1, then Un+1
j < 0 (an undershoot).

Homeworks.

1. Measure the width of the oscillation as a function of number of time steps n.
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4.3 Finite difference schemes for linear hyperbolic system with con-

stant coefficients

4.3.1 Some design techniques

We consider the system

ut +Aux = 0

with A being a constant n×nmatrix. The first designing principle is to diagonal the system. Using

the left/right eigenvectors, we decompose

A = RΛL

= R(Λ+ − Λ−)L

= A+ −A−

Here, Λ = diag(λ1, · · · , λn) and Λ± are the positive/negative parts of Λ.

With this decomposition, we can define the upwind scheme:

Un+1
j = Un

j +
∆t

∆x
A+(Un

j−1 − Un
j )−

∆t

∆x
A−(Un

j+1 − Un
j ).

The Lax-Friedrichs is still

Un+1
j =

Un
j−1 + Un

j+1

2
+

∆t

2∆x
A(Un

j−1 − Un
j+1)

= Un
j +

∆t

2∆x
A(Un

j−1 − Un
j+1) +

Un
j−1 − 2Un

j + Un
j+1

2

We see the last term is a dissipation term. In general, we can design modified L-F scheme as

Un+1
j = Un

j +
∆t

2∆x
A(Un

j−1 − Un
j+1) +D

Un
j−1 − 2Un

j + Un
j+1

2

where D is a positive constant. D is chosen so that the scheme is stable by the von-Neumann

analysis.

The Lax-Wendroff scheme is given by

Un+1
j = Un

j +
∆t

2∆x
A(Un

j−1 − Un
j+1) +

(∆t)2

2(∆x)2
A2(Un

j+1 − 2Un
j + Un

j−1).

The C-F-L condition for upwind, L-F, L-W are

max
i
|λi|

∆t

∆x
≤ 1.
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Homeworks.

1. Find the modified equation for the above schemes.

2. What is the stability condition on D for the modified L-F scheme.

3. Write a compute program to compute the solution of the wave equation:

ut = vx

vt = c2ux

using upwind, modified L-F, L-W schemes. The initial data is chosen as those for the linear

advection equation. Use the periodic boundary condition.

4.3.2 Stability analysis

The definition of L2-stability is that the L2-norm of the solution of finite difference scheme

∑

j

|Un
j |2∆x

is uniformly bounded.

This L2-theory for smooth solutions was well developed in the 60s. First, Lax’s equivalence

theorem was originally proved for well-posed linear systems even in multi-dimension. Thus, the

essential issue for finite difference scheme is still the stability problem.

Let us suppose the system is expressed as

ut =
∑

i

Aiuxi +Bu+ f

Here, Ai, B are constant matrices. We assume that the system is hyperbolic. This means that∑
i ξAi is diagonal with real eigenvalues. Suppose the corresponding finite difference scheme is

expressed as

Un+1 = GUn =
∑

aαT
αUn.

Here, α = (α1, · · · , αn) is multi-index, aα are matrices. Consider the Fourier transform of G:

Ĝ(k) =
∑

α

aαe
i
∑

m αmkm∆xm

If we take ∆xm as a function of ∆t, then Ĝ is a function of (k,∆t). Using Ĝ, we have

Ûn = ĜnÛ0.

From the Parseval equality: ‖U‖2 =
∫
|Û |2, we obtain that the stability of a scheme Un+1 = GUn

is equivalent to ‖Ĝn‖ is uniformly bounded. Von Neumann gave a necessary condition for stability

for system case.
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Theorem 3.14. A necessary condition for stability is that all eigenvalues of Ĝ(k,∆t) satisfies

|λi(k,∆)| ≤ 1 +O(∆t),∀k,∀∆t ≤ τ.

Proof. The spectral radius of Ĝ(k,∆t) is the maximum value of the absolute values of the its

eigenvalues. That is,

ρ(Ĝ) := max
i
|λi|

Since there is an eigenvector v such that |Ĝv| = ρ|v|, we have that

ρ ≤ ‖Ĝ‖ := max
u

|Ĝu|
|u| .

Also, the eigenvalues of Ĝn are λni . Hence we have

ρ(Ĝn) = ρ(Ĝ)n.

Combine the above two, we obtain

ρ(Ĝ)n ≤ ‖Ĝn‖.
Now, if ‖Ĝn‖ is uniformly bounded, say by a constant C depends on t := n∆t, then

ρ ≤ C1/n

≤ 1 +O(∆t).

For single equation, we have seen that von Neumann condition is also a sufficient condition for

stability.

In general, Kreiss provided characterization of matrices which are stable.

Definition 3.10. A family of matrices {A} is stable if there exists a constant C such that for all

A ∈ {A} and all positive integer n,

‖An‖ ≤ C.
Theorem 3.15 (Kreiss matrix theorem). The stability of {A} is equivalent to each of the following

statements:

(i) There exists a constant C such that for all A ∈ {A} and z ∈ C, |z| > 1, (A − zI)−1 exists

and satisfies

‖(A − zI)−1‖ ≤ C

|z| − 1
.

(ii) There exist constants C1 and C2 such that for all A ∈ {A}, there exists nonsingular matrix S
such that (1) ‖S‖, ‖S−1‖ ≤ C1, and (2)B = SAS−1 is upper triangular and its off-diagonal

elements satisfy

|Bij | ≤ C2 min{1− |κi|, 1− |κj |}
where κi are the diagonal elements of B.
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(iii) There exists a constant C > 0 such that for allA ∈ {A}, there exists a positive definite matrix

H such that

C−1I ≤ H ≤ CI

A∗HA ≤ H

Remarks.

1. In the first statement, the spectral radius of A is bounded by 1.

2. In the second statement, it is necessary that all |κi| ≤ 1.

3. The meaning of the last statement means that we should use the norm
∑
|Uj |2 =

∑
j(HUj , Uj)

instead of the Euclidean norm. Then An is nonincreasing under this norm.

4.4 Finite difference methods for linear systems with variable coeffi-

cients

Again, the essential issue is stability because Lax’s equivalence theorem.

Kreiss showed by an example that the local stability (i.e. the stability for the frozen coefficients)

is neither necessary nor sufficient for overall stability of linear variable systems. However, if the

system ut = Au with A being first order, Strang showed that the overall stability does imply

the local stability. So, for linear first-order systems with variable coefficients, the von Neumann

condition is also a necessary condition for the overall stability.

For sufficient condition, we need some numerical dissipation to damp the high frequency com-

ponent from spatial inhomogeneity. To illustrate this, let us consider the following scalar equation:

ut + a(x)ux = 0,

and a finite difference scheme

Un+1(x) = A(x)Un(x−∆x) +B(x)Un(x) + C(x)Un(x+∆x).

For consistency, we need to require

A(x) +B(x) + C(x) = 1

A(x)− C(x) = a(x)

Now, we impose another condition for local stability:

0 ≤ A(x), B(x), C(x) ≤ 1.
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We show stability result. Multiply the difference equation by Un+1(x), use Cauchy-Schwartz in-

equality, we obtain

(Un+1(x))2 = A(x)Un(x−∆x)Un+1(x) +B(x)Un(x)Un+1(x) +C(x)Un(x+∆x)Un+1(x)

≤ A(x)

2
((Un(x−∆x))2 + (Un+1(x))2) +

B(x)

2
((Un(x))2 + (Un+1(x))2)

+
C(x)

2
((Un(x+∆x))2 + (Un+1(x))2)

=
A(x)

2
(Un(x−∆x))2 +

B(x)

2
(Un(x))2 +

C(x)

2
(Un(x+∆x))2 +

1

2
(Un+1(x))2

This implies

(Un+1(x))2 ≤ A(x)(Un(x−∆x))2 +B(x)(Un(x))2 + C(x)(Un(x+∆x))2

= A(x−∆x)(Un(x−∆x))2 +B(x)(Un(x))2 + C(x+∆x)(Un(x+∆x))2

+(A(x)−A(x−∆x))(Un(x−∆x))2 + (C(x)− C(x+∆x))(Un(x+∆x))2

Now, we sum over x = xj for j ∈ Z . This yields

‖Un+1‖2 ≤ ‖Un‖2 +O(∆t)‖Un‖2

Hence,

‖Un‖2 ≤ (1 +O(∆t))n‖U0‖2 ≤ eKt‖U0‖2.
The above analysis show that monotone schemes are stable in L2. Indeed, the scheme has some

dissipation to damp the errors from the variation of coefficient (i.e. the term like (A(x) − A(x −
∆x))).

For higher order scheme, we need to estimate higher order finite difference ∆U , this will in-

volves |∆a|‖∆U‖, or their higher order finite differences. We need some dissipation to damp the

growth of this high frequency modes. That is, the eigenvalues of the amplification matrix should

satisfies

|λi| ≤ 1− δ|k∆x|2r , when |k∆x| ≤ π
for some δ > 0.

To be more precisely, we consider first-order hyperbolic system in high-space dimension:

ut +

d∑

i=1

ai(x)uxi = 0,

where u ∈ RN , ai, i = 1, ..., d, are N ×N matrices. Consider a finite difference approximation:

Un+1(x) =
∑

α

Aα(x)T
αUn(x)

Here α = (α1, · · · , αd) is a multi-index.

Let Ĝ(x,∆t, ξ) =
∑

αAαe
iα·ξ be the Fourier transform of the frozen finite difference operator.
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Definition 4.11. A finite difference scheme with amplification matrix Ĝ(x,∆t, ξ) is called dissipa-

tive of order 2r if there exists a constant δ > 0 such that all eigenvalues of Ĝ satisfy

|λi(x,∆t, ξ)| ≤ 1− δ|ξ|2r

for all maxi |ξi| ≤ π, all x, and all ∆t < τ for some constant τ .

An important theorem due to Kreiss is the following stability theorem.

Theorem 4.16. Suppose the system is symmetric hyperbolic, i.e. the matrices ai are symmetric.

Suppose the coefficient matrices Aα are also symmetric. Assume all coefficients are uniformly

bounded. If the scheme is of order 2r − 1 and is dissipative of order r, then the scheme is stable.



Chapter 5

Scalar Conservation Laws

5.1 Physical models

Many partial differential equations are derived from physical conservation laws such as conservation

of mass, momentum, energy, charges, etc. This class of PDEs is called conservation laws. The scalar

conservation law is a single conservation law.

5.1.1 Traffic flow model

An interesting model is the following traffic flow model on a high way. We use macroscopic model,

which means that ∆x ≈ 100m. Let ρ be the car density, u be the average car velocity. The car

flux at a point x is the number of car passing through x per unit time. In a time period ∆t, the car

which can pass x must be in the region u(x, t)∆t. Thus, the flux at x is (ρ(x, t)u(x, t)∆t)/(∆t) =
ρ(x, t)u(x, t). Now, consider an arbitrary region (a, b), we have

the change of number of cars in (a, b) = the car flux at a− the car flux at b.

In mathematical formula:

d

dt

∫ b

a
ρ(x, t) dx = ρ(a, t)u(a, t) − ρ(b, t)u(b, t)

= −
∫ b

a
(ρu)x dx

This holds for any (a, b). Hence, we have

ρt + (ρu)x = 0. (1.1)

This equation is usually called the continuity equation in continuum mechanics. It is not closed

because it involves two knowns ρ and u. Empirically, u can be teated as a function of ρ which

satisfies u→ 0 as ρ→ ρmax. For instance,

u(ρ) = umax(1−
ρ

ρmax
),

67
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if there is a upper velocity limit, or

u(ρ) = a log(ρmax/ρ)

if there is no restriction of velocity. We can model u to depend on ρx also. For instance,

u = u(ρ)− ν ρx
ρ

which means that if the car number becomes denser (rarefied) , then the speed is reduced (increased).

Here, ν is the diffusion coefficient (viscosity) which is a positive number. Thus, the final equation

is

ρt + f(ρ)x = 0, (1.2)

or

ρt + f(ρ)x = νρxx, (1.3)

where f(ρ) = ρu(ρ).

5.1.2 Burgers’ equation

The Burgers equation is

ut +
1

2
(u2)x = ǫuxx. (1.4)

When ǫ = 0, this equation is called inviscid Burgers equation. This equation is a prototype equation

to study conservation laws.

Homeworks.

1. The Burgers equation can be linearized by the following nonlinear transform: let

v = e−
2
ǫ

∫ x u(ξ,t) dξ,

show that v satisfies the heat equation:

vt = ǫvxx

2. Show that the Cauchy problem of the Burgers equation with initial data u0 has an explicit

solution:

u(x, t) = − ǫ
2

vx
v

=

∫ ∞

−∞

(
x− y
t

)
pǫ(x, t, y) dy,

where

pǫ(x, t, y) =
e−

ǫ
2
I(x,t,y)

∫∞
−∞ e−

ǫ
2
I(x,t,y) dy

,

I(x, t, y) =
(x− y)2

2t
+

∫ y

0
u0(ξ) dξ.
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5.1.3 Two phase flow

The Buckley-Leverett equation models how oil and water move in a reservoir. The unknown u is

the saturation of water, 0 ≤ u ≤ 1. The equation is

ut + f(u)x = 0

where

f(u) =
u2

u2 + a(1− u2)2 .

Unlike previous examples, the flux f here is a non-convex function.

5.2 Basic theory

Let consider scalar conservation law

ut + f(u)x = 0. (2.5)

The equation can be viewed as a directional derivative ∂t + f ′(u)∂x of u is zero. That implies u is

constant along the characteristic curve

dx

dt
= f ′(u(x, t)).

This yields that the characteristic curve is indeed a straight line. Using this we can solve the Cauchy

problem of (2.5) with initial data u0 implicitly:

u = u0(x− ut).

For instance, for inviscid Burgers’ equation with u0(x) = x, the solution u is given by u = x− ut,
or u = x/(1 + t).

Homeworks.

1. If f is convex and u0 is increasing, then the Cauchy problem for equation (2.5) has global

solution.

2. If f is convex and u′0 < 0 at some point, then ux → −∞ at finite time.

The solution may blow up (i.e. |ux| → ∞) in finite time due to the intersection of characteristic

curves. A shock wave (discontinuity) is formed. We have to extend our solution class to to include

these discontinuous solutions. We can view (2.5) in “weak sense.” That is, for every smooth test

function φ with compact support in R× [0,∞),

∫ ∞

0

∫ ∞

−∞
φ[ut + f(u)x] dx dt = 0
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Integrate by part, we obtain

∫ ∞

0

∫ ∞

−∞
[φtu+ φxf(u)] dx dt+

∫ ∞

−∞
φ(x, 0)u(x, 0) dx = 0, (2.6)

In this formulation, it allows u to be discontinuous.

Definition 2.12. A function u is called a weak solution of (2.5) if it satisfies (2.6) for all smooth test

function φ with compact support in R× [0,∞).

Lemma 5.1. Suppose u is a weak solution with discontinuity across a curve x(t). Suppose u is

smooth on the two sides of x(t). Then u satisfies the following jump condition across x(t):

dx

dt
[u] = [f(u)] (2.7)

where [u] := u(x(t)+, t) − u(x(t)−, t).

Homeworks.Work out this by yourself.

5.2.1 Riemann problem

The Riemann problem is a Cauchy problem of (2.5) with the following initial data

u(x, 0) =

{
uℓ for x < 0
ur for x > 0

(2.8)

The reasons why Riemann problem is important are:

(i) Discontinuities are generic, therefore Riemann problem is generic locally.

(ii) In physical problems, the far field states are usually two constant states. Because of the

hyperbolicity, at large time, we expect the solution is a perturbation of solution to the Riemann

problem. Therefore, Riemann problem is also generic globally.

(iii) Both the equation (2.5) and the Riemann data (2.8) are invariant under the Galilean transform:

x→ λx, t→ λt for all λ > 0. If the uniqueness is true, the solution to the Riemann problem

is self-similar. That is, u = u(x/t). The PDE problem is then reduced to an ODE problem.

When f ′′ 6= 0, say, f ′′ > 0, here are two important solutions.

1. shock wave: uℓ ≥ ur
u(x, t) =

{
uℓ for x < σt
ur for x > σt

(2.9)

where σ = (f(ur)− f(uℓ))/(ur − uℓ).
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2. rarefaction wave: uℓ < ur

u(x, t) =





uℓ for x < λℓt
u for λℓ < λ(u) = x

t < λr
ur for x > λrt

(2.10)

where λ(u) = f ′(u) is an increasing function.

These two solution are of fundamental importance. We shall denote them by (uℓ, ur).
The weak solution is not unique. For instance, in the case of uℓ < ur, both (2.10) and (2.9)

are weak solutions. Indeed, there are infinite many weak solutions to such a Riemann problem.

Therefore, additional condition is needed to guarantee uniqueness. Such a condition is called an

entropy condition.

5.2.2 Entropy conditions

To find a suitable entropy condition for general hyperbolic conservation laws, let us go back to

study the gas dynamic problems. The hyperbolic conservation laws are simplified equations. The

original physical equations usually contain a viscous term νuxx, as that in the Navier-Stokes equa-

tion. We assume the viscous equation has uniqueness property. Therefore let us make the following

definition.

Definition 2.13. A weak solution is called admissible if it is the limit of

uǫt + f(uǫ)x = ǫuǫxx, (2.11)

as ǫ→ 0+.

We shall label this condition by (A). In gas dynamics, the viscosity causes the physical entropy

increases as gas particles passing through a shock front. One can show that such a condition is

equivalent to the admissibility condition. Notice that this entropy increasing condition does not

involve viscosity explicitly. Rather, it is a limiting condition as ǫ→ 0+. This kind of conditions is

what we are looking for. For general hyperbolic conservation laws, there are many of them. We list

some of them below.

(L) Lax’s entropy condition: across a shock (uℓ, ur) with speed σ, the Lax’s entropy condition is

λℓ > σ > λr (2.12)

where λℓ (λr) is the left (right) characteristic speed of the shock.

The meaning of this condition is that the information can only enter into a shock, then disap-

pear. It is not allowed to have information coming out of a shock. Thus, if we draw character-

istic curve from any point (x, t) backward in time, we can always meet the initial axis. It can

not stop at a shock in the middle of time because it would violate the entropy condition. In

other words, all information can be traced back to initial time. This is a causality property. It

is also time irreversible, which is consistent to the second law of thermodynamics. However,

Lax’s entropy is only suitable for flux f with f ′′ 6= 0.
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(OL) Oleinik-Liu’s entropy condition: Let

σ(u, v) :=
f(u)− f(v)

u− v .

The Oleinik-Liu’s entropy condition is that, across a shock

σ(uℓ, v) ≥ σ(uℓ, ur) (2.13)

for all v between uℓ and ur. This condition is applicable to nonconvex fluxes.

(GL) The above two conditions are conditions across a shock. Lax proposed another global entropy

condition. First, he define entropy-entropy flux: a pair of function (η(u), q(u)) is called an

entropy-entropy flux for equation (2.5) A weak solution u(x, t) is said to satisfy entropy

condition if for any entropy-entropy flux pair (η, q), u(x, t) satisfies

η(u(x, t))t + q(u(x, t))x ≤ 0 (2.14)

in weak sense.

(K) Another global entropy proposed by Kruzkov is for any constant c,

∫ ∞

0

∫ ∞

−∞
[|u− c|φt + sign(u− c)(f(u)− f(c))φx] dx ≥ 0 (2.15)

for all positive smooth φ with compact support in R× (0,∞). (GL)⇒ (K):

For any c, we choose η(u) = |u − c|, which is a convex function. One can check the cor-

responding q(u) = sign(u − c)(f(u) − f(c)). Thus, (K) is a special case of (GL). We may

remark here that we can choose even simplier entropy-entropy flux:

η(u) = u ∨ c, q(u) = f(u ∨ c),

where u ∨ c := max{u, c}.

When the flux is convex, each of the above conditions is equivalent to the admissibility condi-

tion. When f is not convex, each but the Lax’s entropy condition is equivalent to the admissibility

condition.

We shall not provide general proof here. Rather, we study special case: the weak solution is

only a single shock (uℓ, ur) with speed σ.

Theorem 5.1. Consider the scalar conservation law (2.5) with convex flux f . Let (uℓ, ur) be its

shock with speed σ. Then the above entropy conditions are all equivalent.

Proof. (L)⇔ (OL);

We need to assume f to be convex. This part is easy. It follows from the convexity of f . We leave

the proof to the reader.
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(A)⇔ (OL):

We also need to assume f to be convex. Suppose (uℓ, ur) is a shock. Its speed

σ =
f(ur)− f(uℓ)

ur − uℓ
.

We shall find a solution of (2.11) such that its zero viscosity limit is (uℓ, ur). Consider a solution

haing the form φ((x−σt)/ǫ). In order to have φ→ (uℓ, ur), we need to require far field condition:

φ(ξ)→
{
uℓ ξ → −∞
ur ξ →∞ (2.16)

Plug φ((x− σt)/ǫ) into (2.11), integrate in ξ once, we obtain

φ′ = F (φ). (2.17)

where F (u) = f(u) − f(uℓ) − σ(u − uℓ). We find F (uℓ) = F (ur) = 0. This equation with

far-field condition (2.16) if and only if, for all u between uℓ and ur, (i) F ′(u) > 0 when uℓ < ur,

or (ii) F ′(u) < 0 when uℓ > ur. One can check that (i) or (ii) is equivalent to (OL).

Next, we study global entropy conditions.

(A)⇒ (GL)

If u is an admissible solution. This means that it is the limit of uǫ which satisfy the viscous con-

servation law (2.11). Let (η, q) be a pair of entropy-entropy flux. Multiply (2.11) by η′(uǫ), we

obtain

η(uǫ)t + q(uǫ)x = ǫη′(uǫ)uǫxx
= ǫη(uǫ)xx − ǫη′′(uǫx)2

≤ ǫη(uǫ)xx

We multiply this equation by any positive smooth test function φ with compact support in R ×
(0,∞), then integrate by part, and take ǫ→ 0, we obtain

∫ ∞

0

∫ ∞

−∞
[η(u)φt + q(u)φx] dx dt ≥ 0

This means that η(u)t + q(u)x ≤ 0 in weak sense.

(K)⇒ (OL) for single shock:

Suppose (uℓ, ur) is a shock. Suppose it satisfies (K). We want to show it satisfies (OL). The condi-

tion (GL), as applied to a single shock (uℓ, ur), is read as

−σ[η] + [q] ≤ 0.

Here, we choose η = |u− c|. The condition becomes

−σ(|ur − c| − |uℓ − c|) + sign(ur − c)(f(ur)− f(c))− sign(uℓ − c)(f(uℓ)− f(c)) ≤ 0

Or

−σ(uℓ, ur)(|ur − c| − |uℓ − c|) + |ur − c|σ(ur, c)− |uℓ − c|σ(uℓ, c) ≤ 0 (2.18)

We claim that this condition is equivalent to (OL). First, if c lies outside of uℓ and ur, then the

left-hand side of (2.18) is zero. So (2.18) is always true in this case. Next, if c lies betrween uℓ and

ur, one can easily check it is equivalent to (OL).
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5.2.3 Rieman problem for nonconvex fluxes

The Oleinik-Liu’s entropy condition can be interpreted as the follows graphically. Suppose (uℓ, ur)
is a shock, then the condition (OL) is equivalent to one of the follows. Either uℓ > ur and the graph

of f between uℓ, ur lies below the secant (ur, f(ur)), (uℓ, f(uℓ)). Or uℓ < ur and the graph of

f between uℓ, ur lies above the secant ((uℓ, f(uℓ)), (ur, f(ur))). With this, we can construct the

solution to the Riemann problem for nonconvex flux as the follows.

If uℓ > ur, then we connect (uℓ, f(uℓ)) and (ur, f(ur)) by a convex envelope of f (i.e. the

largest convex function below f ). The straight line of this envelope corresponds to an entropy shock.

In curved part, f ′(u) increases, and this portion corresponds to a centered rarefaction wave. Thus,

the solution is a composition of rarefaction waves and shocks. It is called a copmposite wave.

If uℓ < ur, we simply replace convex envelope by concave envelope.

Example. Consider the cubic flux: f(u) = 1
3u

3. If uℓ < 0, ur > 0 From uℓ, we can draw a line

tangent to the graph of f at u∗ℓ = −uℓ/2. If ur > u∗ℓ , then the wave structure is a shock (uℓ, u
∗
ℓ )

follows by a rarefaction wave (u∗ℓ , ur). If ur ≤ u∗ℓ , then the wave is a single shock. Notice that in

a composite wave, the shock may contact to a rarefaction wave. Such a shock is called a contact

shock.

Homeworks.

1. For the flux f(u) = u3/3, construct the general solution to the Riemann problem for general

left/right states uℓ andur .

5.3 Uniqueness and Existence

Theorem 5.2 (Kruzkov). Assume f is Lipschitz continuous and the initial data u0 is in L1 ∩ BV .

Then there exists a global entropy solution (satisfying condition (K)) to the Cauchy problem for

(2.5). Furthermore, the solution operator is contractive in L1, that is, if u, v are two entropy

solutions, then

‖u(t)− v(t)‖L1 ≤ ‖u(0) − v(0)‖L1 (3.19)

As a consequence, we have uniqueness theorem and the total variation diminishing property:

T.V.u(·, t) ≤ T.V.u(·, 0) (3.20)

Proof. The part of total variation diminishing is easy. We prove it here. The total variation of u is

defined by

T.V.u(·, t) = Suph>0

∫ |u(x+ h, t)− u(x, t)|
h

dx

We notice that if u(x, t) is an entropy solution, so is u(x+ h, t). Apply the contraction estimate for

u(·, t) and v = u(·+ h, t). We obtain the total variation diminishing property.
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To prove the L1-contraction property, we claim that the constant c in the Kruzhkov entropy

condition (K) can be replaced by any other entropy solution v(t, x). That is

∫ ∫
[|u(t, x)− v(t, x)|ψt + sign(u(t, x) − v(t, x))(f(u(t, x)) − f(v(t, x)))ψx] dx dt ≥ 0

for all positive smooth ψ with compact support in R× [0,∞). To see this, we choose a test function

φ(s, x, t, y), the entropy conditions for u and v are

∫ ∫
[|u(s, x)− k|φs(s, x, t, y) + sign(u(s, x) − k)(f(u(s, x))− f(k))φx(s, x, t, y)] dx ds ≥ 0

∫ ∫
[|v(t, y) − k′|φt(s, x, t, y) + sign(v(t, y)− k′)(f(v(t, y)) − f(k′))φy(s, x, t, y)] dx ds ≥ 0

Set k = v(t, y) in the first equation and k′ = u(s, x) in the second equation. Integrate the rest

varibles and add them together. We get

∫ ∫ ∫ ∫
{|u(s, x)− v(t, y)|(φs + φt) + sign(u(s, x)− v(t, y)) · [f(u(s, x))− f(v(t, y))] · (φx + φy)} dx ds dy dt ≥ 0.

Now we choose φ(s, x, t, y) such that it concentrates at the diagonal s = t and x = y. To do

so, let ρh(x) = h−1ρ(x/h) be an approximation of the Dirac mass measure. Let ψ(T,X) be a

non-negative test function on (0,∞) × R. Choosing

φ(s, x, t, y) = ψ

(
s+ t

2
,
x+ y

2

)
ρh

(
s− t
2

)
ρh

(
x− y
2

)
,

we get

∫ ∫ ∫ ∫
ρh

(
s− t
2

)
ρh

(
x− y
2

){
|u(s, x)− v(t, y)|ψT

(
s+ t

2
,
x+ y

2

)

+sign(u(s, x)− v(t, y)) · [f(u(s, x))− f(u(v(t, y)))] · ψX

(
s+ t

2
,
x+ y

2

)}
dx dy ds dt ≥ 0.

Now taking limit h→ 0, we can get the desired inequality.

Next, we choose

ψ(t, x) = [αh(t)− αh(t− τ)] · [1− αh(|x| −R+ L(τ − t))],

where αh(z) =
∫ z
−∞ ρh(s) ds. We can get the desired L1 contraction estimate.

The existence theorem mainly based on the same proof of the uniqueness theorem. Suppose the

initial data is in L1∩L∞∩BV , we can construct a sequence of approximate solutions which satisfy

entropy conditions. They can be construncted by finite difference methods (see the next section), or

by viscosity methods, or by wave tracking methods (by approximate the flux function by piecewise
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linear functions). Let us suppose the approximate solutions are constructed via viscosity method,

namely, uε are solutions of

uεt + f(uε)x = εuεxx.

Following the same proof for (GL) ⇒ (K), we can get that the total variation norms of the ap-

proximate solutions uε are bounded by T.V.u0. This gives the compactness in L1 and a convergent

subsequence leads to an entropy solution.

Remark. The general existence theorem can allow only initial data u0 ∈ L1 ∩L∞. Even the initial

data is not in BV , the solution immediately has finite total variation at any t > 0.



Chapter 6

Finite Difference Schemes For Scalar

Conservation Laws

6.1 Major problems

First of all, we should keep in mind that local stability is necessary in designing finite difference

schemes for hyperbolic conservation laws. Namely, the scheme has to be stable for hyperbolic

conservation laws with frozen coefficients, see Chapter 1. In addition, there are new things that

we should be careful for nonlinear equations. The main issue is how to compute discontinuities

correctly. We list common problems on this issue.

• Spurious oscillation appears around discontinuities in every high order schemes. The reason

is that the solution of finite difference scheme is closer to a PDE with higher order derivatives.

The corresponding dispersion formula demonstrates that oscillation should occur. Also, one

may view that it is incorrect to approximate weak derivative at discontinuity by higher order

finite differences. The detail spurious structure can be analyzed by the study of the discrete

traveling wave corresponding to a finite difference scheme.

To cure this problem, we have to lower down the order of approximation near discontinuities

to avoid oscillation. We shall denote to this issue later.

• The approximate solution may converge to a function which is not a weak solution. For in-

stance, let us apply the Courant-Isaacson-Rees (C-I-R) method to compute a single shock for

the inviscid Burgers equation. The C-I-R method is based on characteristic method. Suppose

we want to update the state Un+1
j . We draw a characteristic curve back to time tn. However,

the slope of the characteristic curve is not known yet. So, let us approximate it by Un
j . Then

we apply upwind method:

Un+1
j − Un

j =
∆t

∆x
Un
j (U

n
j−1 − Un

j ) if Un
j ≥ 0

Un+1
j − Un

j =
∆t

∆x
Un
j (U

n
j − Un

j+1) if Un
j < 0

77
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Now, we take the following initial data:

U0
j =

{
1 for j < 0
0 for j ≥ 0

It is easy to see that Un
j = U0

j . This is a wrong solution. The reason is that we use wrong

characteristic speed Un
j when there is a discontinuity passing xj from tn to tn+1.

To resolve this problem, it is advised that one should use a conservative scheme. We shall

discuss this issue in the next section.

• Even the approximate solutions converge to a weak solution, it may not be an entropy solution.

For instance, consider the invisid Burgers equation ut + uux = 0 with the initial data:

U0
j =

{
−1 for j < 0
1 for j ≥ 0

We define the scheme by

Un+1
j = Un

j +
∆t

∆x
(F (Un

j−1, U
n
j )− F (Un

j , U
n
j+1))

where

F (U, V ) =

{
f(U) if U + V ≥ 0
f(V ) if U + V < 0

We find that F (Un
j , U

n
j+1) = F (Un

j−1, U
n
j ). Thus, the solution is Un

j = U0
j . This is a

nonentropy solution.

6.2 Conservative schemes

A finite difference scheme is called conservative if it can be written as

Un+1
j = Un

j +
∆t

∆x
(F

n+1/2
j−1/2 − F

n+1/2
j+1/2 ) (2.1)

where F
n+1/2
j+1/2 is a function of Un and possibly Un+1. The advantage of this formulation is that the

total mass is conservative: ∑

j

Un
j =

∑

j

Un+1
j (2.2)

There is a nice interpretation of F if we view Un
j as an approximation of the cell-average of the

solution u over the cell (xj−1/2, xj+1/2) at time step n. Let us integrate the conservation law

ut + f(u)x = 0 over the box: (xj−1/2, xj+1/2)× (tn, tn+1). Using divergence theorem, we obtain

ūn+1
j = ūnj +

∆t

∆x
(f̄

n+1/2
j−1/2 − f̄

n+1/2
j+1/2 ) (2.3)
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where

ūnj =
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn) dx

f̄
n+1/2
j+1/2 =

1

∆t

∫ tn+1

tn

f(u(xj+1/2, t)) dt

Thus, in a conservative scheme (2.1), we may view Un
j as an approximation of the cell average

ūnj and F
n+1/2
j+1/2 as an approximation of the flux average f̄

n+1/2
j+1/2 . This formulation is closer to the

original integral formulation of a conservation, and it does not involve derivatives of the unknown

quantity u.

A conservative scheme is consistent if Fj+1/2(U,U) = f(u), where U is a vector with Uj = u.

For explicit scheme, Fj+1/2 is a function of Un only and it only depends on Un
j−ℓ+1, · · · , Un

j+m.

That is

Fj+1/2 = F (Un
j−ℓ+1, · · · , Un

j+m).

We usually assume that the function is a Lipschitz function.

The most important advantage of conservative schemes is the following Lax-Wendroff theorem.

Which says that its approximate solutions, if converge, must to a weak solution.

Theorem 6.3 (Lax-Wendroff). Suppose {Un
j } be the solution of a conservative scheme (2.1). The

Define u∆x := Un
j for [xj−1/2, xj+1/2) × [tn, tn+1). Suppose u∆x is uniformly bounded and

converges to u almost everywhere. Then u is a weak solution of (2.5).

Proof. Let φ be a smooth test function with compact support on R × [0,∞). We multiply (2.1) by

φnj and sum over j and n to obtain

∞∑

n=0

∞∑

j=−∞
φnj (U

n+1
j − Un

j ) =
∆t

∆x

∞∑

n=0

∞∑

j=−∞
φnj [Fj−1/2(U

n)− Fj+1/2(U
n)]

Using summation by part, we obtain

∞∑

j=−∞
φ0jU

0
j +

∞∑

n=1

∞∑

j=−∞
(φnj − φn−1

j )Un
j +

∞∑

n=0

∞∑

j=−∞
(φnj+1 − φnj )Fj+1/2(U

n) = 0

Since φ is of compact support and u∆x, hence F (Un), are uniformly bounded, we obtain the conver-

gence in the above equation is uniformly in j and n. If (xj , tn)→ (x, t), then from the consistency

condition, Fj+1/2(U
n)→ f(u(x, t)). We obtain that u is a weak solution.

Below, we show that many scheme can be written in conservation form. We may view F
n+1/2
j+1/2

as a numerical flux at xj+1/2 between tn and tn+1.

1. Lax-Friedrichs:

F
n+1/2
j+1/2 = F (Uj , Uj+1) =

1

2
(f(Uj+1) + f(Uj)) +

∆t

2∆x
(Uj − Uj+1). (2.4)

The second term is a numerical dissipation.
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2. Two-step Lax-Wendroff:

F
n+1/2
j+1/2 = f(U

n+1/2
j+1/2 )

U
n+1/2
j+1/2 =

Un
j + Un

j+1

2
+

∆t

2∆x

[
f(Un

j )− f(Un
j+1)

]

Homeworks.Construct an example to show that the Lax-Wendroff scheme may produce nonen-

tropy solution.

6.3 Entropy and Monotone schemes

Definition 3.14. A scheme expressed as

Un+1
j = G(Un

j−ℓ, · · · , Un
j+m) (3.5)

is called a monotone scheme if

∂G

∂Uj+k
≥ 0, k = −ℓ, · · · ,m (3.6)

In the case of linear equation, the monotone scheme is

Un+1
j =

m∑

k=−ℓ

akU
n
j+k

with ak ≥ 0. The consistency condition gives
∑

k ak = 1. Thus, a monotone scheme in linear

cases means that Un+1
j is an average of Un

j−ℓ, · · · , Un
j+m. In the nonlinear case, this is more or less

“true.” For instance, the sup norm is nonincreasing, the solution operator is ℓ1-contraction, and the

total variation is dimishing. To be precise, let us define the norms for U = {Uj}:

|U |∞ = sup
j
|Uj |

‖U‖1 =
∑

j

|Uj‖∆x

T.V.(U) =
∑

j

|Uj+1 − Uj|

We have the following theorem.

Theorem 6.4. For a monotone scheme (3.5), we have

(i) ℓ∞- bound:

|Un+1|∞ ≤ |Un|∞
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(ii) ℓ1-contraction: if U , V are two solutions of (2.1), then

‖Un+1 − V n+1‖1 ≤ ‖Un − V n‖1 (3.7)

(iii) total variation diminishing:

T.V.x(U
n+1) ≤ T.V.x(Un) (3.8)

(iv) boundedness of total variation: there exists a constant C such that

T.V.x,t(U) ≤ C (3.9)

Proof. 1.

Un+1
j = G(Un

j−ℓ, · · · , Un
j+m)

≤ G(maxUn, · · · ,maxUn)

= maxUn

Hence, we have maxUn+1 ≤ maxUn. Similarly, we also have minUn+1 ≥ minUn.

2. Let us denote the vector (Un
j ) by Un, the scheme (3.5) by an operator Un+1 = G(Un).

U ≤ V means that Uj ≤ Vj for each j. Denote by U ∨ V for the vector (max{Uj , Vj}). The

monotonicity reads

G(U) ≤ G(V ) if U ≤ V.

We have G(U ∨ V ) ≥ G(V ). Hence,

(G(U) −G(V ))+ ≤ ((G(U ∨ V )−G(V ))+ = G(U ∨ V )−G(V ).

We take summation in j, and use conservative proper of G, namely,
∑

j(G(U))j =
∑

j Uj ,

we obtain

∑

j

(G(U) −G(V ))+j ≤
∑

j

((U ∨ V )− V )j =
∑

j

(U − V )+j .

Similarly, we have ∑

j

(G(V )−G(U))+j ≤
∑

j

(V − U)+j .

Adding these two, we obtain the ℓ1-contraction:

∑

j

|G(U)j −G(V )j | ≤
∑

j

|Uj − Vj |.
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3. Suppose Un
j is a solution of (3.5). We take V n

j to be Un
j+1. Then V n

j also satisfies (3.5). From

the ℓ1-contraction property, we have
∑

j

|Un+1
j+1 − Un+1

j | ≤
∑

j

|Un
j+1 − Un

j |

This shows the total variation dimishing property of (3.5).

4. The total variation of U in x, t with 0 ≤ t ≤ T is defined by

T.V.x,t(U) =
N∑

n=0

∞∑

j=−∞

[
|Un

j+1 − Un
j |

∆x
+
|Un+1

j − Un
j |

∆t

]
∆x∆t

=

N∑

n=0

[
T.V.xU

n∆t+ ‖Un+1 − Un‖L1

]

= T.V.xU
nT +

N∑

n=0

‖Un+1 − Un‖L1 .

Here N∆t = T . We claim that ‖Un+1 − Un‖L1 ≤ O(∆t). If so, then we obtain the result

with C ≤ T +NO(∆t) ≤ T +KT for some constant K . Now, we prove this claim:

|Un+1
j − Un

j | = |G(Un
j−ℓ, · · · , Un

j+m)−G(Un
j , · · · , Un

j )|
≤ L(|Un

j−ℓ − Un
j |+ · · · + |Un

j+m − Un
j |)

≤ L(ℓ+m)2T.V.x(U
n).

Here, we have used that G is Lipschitz continuous. Hence, we conclude
∑

j

|Un+1
j − Un

j |∆x ≤ O(∆t).

The boundedness of total variation of U in (x, t) implies that we can substract a subsequence

u∆x which converges in L1. Below, we show that its limit indeed satisfies entropy condition.

Theorem 6.5. The limiting function of the approximate solutions constructed from a monotone

scheme satisfies Kruzkov’s entropy condition.

Proof. We choose η = (u− c)+ = u∨ c− c. The corresponding entropy flux is q(u) = f(u∨ c)−
f(c). It is natural to choose the numerical entropy flux to be Q(Uj−ℓ+1, · · · , Uj+m) = F (Uj−ℓ+1∨
c, · · · , Uj+m ∨ c)− F (c, · · · , c). We have

(Un+1 ∨ c) = G(Un
j−ℓ, · · · , Un

j+m) ∨G(c, · · · , c)
≤ G(Un

j−ℓ ∨ c, · · · , Un
j+m ∨ c)

= Un
j ∨ c+

∆t

∆x

[
F (Un

j−ℓ ∨ c, · · · , Un
j+m−1 ∨ c)− F (Un

j−ℓ+1 ∨ c, · · · , Un
j+m ∨ c)

]

= Un
j ∨ c+

∆t

∆x

[
Q(Un

j−ℓ, · · · , Un
j+m−1)−Q(Un

j−ℓ+1, · · · , Un
j+m)

]
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Multiply this inequality by φnj , sum over j and n, and apply “summation-by-part”, then take limit

∆t,∆x→ 0. We obtain that u is an entropy solution.

Theorem 6.6 (Harten-Hyman-Lax). A monotone scheme (3.5) is at most first order.

Proof. We claim that the modified equation corresponding to a monotone scheme has the following

form

ut + f(u)x = ∆t[β(u, λ)ux]x (3.10)

where λ = ∆t/∆x,

β =
1

2λ2

m∑

k=−ℓ

k2Gk(u, · · · , u)−
1

2
f ′(u)2 (3.11)

and β > 0 except for some exceptional cases. Since for smooth solution, the solution of finite

difference equation is closer to the modified equation, we see that the scheme is at most first order.

To show (3.10), we take Taylor expansion of G about (u0, · · · , u0):
G(u−ℓ, · · · , um) = G(u0, · · · , u0)

+

m∑

k=−ℓ

Gk(uk − u0)

+
1

2

m∑

j,k=−ℓ

Gj,k(uj − u0) (uk − u0) +O(∆x)3

= u0 +∆xux

m∑

k=−ℓ

kGk +
1

2
(∆x)2uxx

m∑

k=−ℓ

k2Gk

+
∑

j,k

1

2
(∆x)2u2x

∑

j,k

jkGj,k +O(∆x)3

= u0 +∆xux

m∑

k=−ℓ

kGk +
1

2
(∆x)2

(
m∑

k=−ℓ

k2Gkux

)

x

+
∑

j,k

1

2
(∆x)2u2x

∑

j,k

(jk − k2)Gj,k +O(∆x)3

On the other hand,

G(u−ℓ, · · · , um) = u0 + λ(F (ū)− F (T ū))
where ū = (u−ℓ, ·, um−1), T ū = (u−ℓ+1, · · · , um). We differentiate this equation to obtain

Gk = δ0,k + λ[Fk(ū)− Fk−1(T ū)]

Gj,k = λ[Fj,k(ū)− Fj−1,k−1(T ū)]

We differentiate the consistency condition F (u0, · · · , u0) = f(u0) to obtain

m−1∑

−ℓ

Fk(u0, · · · , u0) = f ′(u0).
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Therefore,

m∑

k=−ℓ

Gk = 1

m∑

k=−ℓ

kGk = λ
∑

(Fk − Fk−1)k = −λf ′(u0)
∑

j,k

(j − k)2Gj,k = λ
∑

(j − k)2[Gj−1,k−1 −Gj,k] = 0

Using this and the symmetry Gj,k = Gk,j , we obtain

∑

j,k

Gj,k(jk − k2) = −
1

2

∑
Gj,k(j − k)2 = 0.

Hence we obtain

G(u−ℓ, · · · , um) = u0 −∆xλf ′(u)ux + (
1

2
∆x)2uxx

∑

k

k2Gk +O(∆x)3

Now, from the Taylor expansion:

u10 = u0 +∆tut +
1

2
(∆t)2utt +O(∆t)3

= u0 −∆tf(u)x + (
1

2
∆t)2[f ′(u)2ux]x +O(∆t)3

Combine these two, we obtain that smooth solution of the finite difference equation satisfy the

modified equation up to a truncation error (∆t)2.

To show β ≥ 0, from the monotonicity Gk ≥ 0. Hence

λ2f ′(u)2 =

(∑

k

kGk

)2

=
(∑

k
√
Gk

√
Gk

)2

≤
∑

k2Gk ·
∑

Gk =
∑

k

k2Gk

The equality holds only whenGk(u, · · · , u) = 0 for all k except 1. This means thatG(uℓ, · · · , um) =
u1. This is a trivial case.



Chapter 7

Finite Difference Methods for

Hyperbolic Conservation Laws

Roughly speaking, modern schemes for hyperbolic conservation laws can be classified into the

following two categories.

1) flux-splitting methods

2) high-order Godunov methods

1) is more algebraic construction while 2) is more geometrical construction.

Among 1), there are

• artificial viscosity methods,

• flux correction transport (FCT),

• total variation diminishing (TVD),

• total variation bounded (TVB),

• central scheme,

• relaxation schemes,

• relaxed scheme.

Among 2), there are

• High order Godunov methods,

• MUSCL,

• piecewise parabolic method (PPM),

• essential nonoscillatory. (ENO)

In 1) we describe total variation diminishing method while in 2) we show the high order Godunov

methods.

85
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7.1 Flux splitting methods

The basic thinking for these methods is to add a switch such that the scheme becomes first order

near discontinuity and remains high order in the smooth region.

Suppose we are given

FL a lower order numerical flux

FH a higher order numerical flux

Define

Fj+ 1
2

= FL
j+ 1

2
+ φj+ 1

2
(FH

j+ 1
2
− FL

j+ 1
2
)

= FH
j+ 1

2

+ (1− φj+ 1
2
)(FL

j+ 1
2

− FH
j+ 1

2

).

Here, φj+ 1
2

is a switch or a limiter. We require

φj+ 1
2
∼ 0, i.e. Fj+ 1

2
∼ FL

j+ 1
2

, near a discontinuity,

φj+ 1
2
∼ 1, i.e. Fj+ 1

2
∼ FH

j+ 1
2

, in smooth region.

In FCT, φ is chosen so that maxUn+1
j ≤ max(Un

j−1, U
n
j , U

n
j+1) and minUn+1

j ≥ min(Un
j−1, U

n
j , U

n
j+1).

Design Criterion for φj+ 1
2

7.1.1 Total Variation Diminishing (TVD)

Consider the linear advection equation

ut + aux = 0, a > 0.

We show the ideas by choosing

FL
j+ 1

2

= aUj be upwind’s flux, and

FH
j+ 1

2

= aUj +
1
2a(1− a∆t

∆x )(Uj+1 − Uj) be Lax-Wendroff’s flux.

Then the numerical flux is

Fj+ 1
2
= aUj + φj+ 1

2
(
1

2
a(1− a∆t

∆x
)(Uj+1 − Uj)). (1.1)

Here

φj+ 1
2
= φ(θj+ 1

2
),

θj+ 1
2
:=

Uj − Uj−1

Uj+1 − Uj
.
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Theorem 7.7. 1. If φ is bounded, then the scheme is consistent with the partial differential equa-

tion.

2. If φ(1) = 1, and φ is Lipschitz continuous( or C1) at θ = 1, then the scheme is second order

in smooth monoton region.(i.e., u is smooth and ux 6= 0)

3. If 0 ≤ φ(θ)
θ ≤ 2 and 0 ≤ φ(θ) ≤ 2, then the scheme is TVD.

Proof. 1. Fj+ 1
2
(u, u) = f(u) = au.

2. Hint: Apply truncation error analysis.

3. From (1.1), the next time step Un+1
j is

Un+1
j = Un

j − cnj−1(U
n
j − Un

j−1),

where cnj−1 = ν + 1
2ν(1− ν)(

φ
j+1

2
(Un

j+1−Un
j )−φ

j− 1
2
(Un

j −Un
j−1)

Un
j −Un

j−1
), ν = a∆t

∆x .

In other words, Un+1
j is the average of Un

j and Un
j−1 with weights (1− cnj−1) and cnj−1.

Un+1
j+1 − Un+1

j = (Un
j+1 − cnj (Un

j+1 − Un
j ))− (Un

j − cnj−1(U
n
j − Un

j−1))

= (1− cnj )(Un
j+1 − Un

j ) + cnj−1(U
n
j − Un

j−1)

Suppose 1 ≥ cnj ≥ 0 ∀j, n

|Un+1
j+1 − Un+1

j | ≤ (1− cnj )|Un
j+1 − Un

j |+ cnj−1|Un
j − Un

j−1|

∑

j

|Un+1
j+1 − Un+1

j | ≤
∑

j

(1− cnj )|Un
j+1 − Un

j |+
∑

cnj−1|Un
j − Un

j−1|

=
∑

j

(1− cnj )|Un
j+1 − Un

j |+
∑

cnj |Un
j+1 − Un

j |

=
∑

j

|Un
j+1 − Un

j |,

then the computed solution is total variation diminishing.

Next, we need to find φ such that 0 ≤ cnj ≤ 1, ∀j, n. Consider

φj+ 1
2
(Uj+1 − Uj)− φj− 1

2
(Uj − Uj−1)

Uj − Uj−1
=
φ(θj+ 1

2
)

θj+ 1
2

− φ(θj− 1
2
),

=⇒ cnj−1 = ν +
1

2
ν(1− ν)(

φ(θj+ 1
2
)

θj+ 1
2

− φ(θj− 1
2
)) 0 ≤ ν ≤ 1
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A sufficient condition for 0 ≤ cnj−1 ≤ 1 ∀j is

|
φ(θj+ 1

2
)

θj+ 1
2

− φ(θj− 1
2
)| ≤ 2. (1.2)

If θj+ 1
2
< 0, φ(θj+ 1

2
) = 0.

If 0 ≤ φ(θ)
θ ≤ 2, 0 ≤ φ(θ) ≤ 2, then (1.2) is valid.

0

1

2

1

φ(θ)

θ

φ(θ) ≤ 2

φ(θ)
θ
≤ 2

2

Figure 7.1: The region in which φ(θ) should lie so that the scheme will be TVD.

7.1.2 Other Examples for φ(θ)

1. φ(θ) = 1. This is the Lax-Wendroff scheme.

2. φ(θ) = θ. This is Beam-Warming.

3. Any φ between φB−W and φL−W with 0 ≤ φ ≤ 2, 0 ≤ φ(θ)
θ ≤ 2 is second order.

4. Van Leer’s minmod

φ(θ) =
θ + |θ|
1 + |θ| .

It is a smooth limiter with φ(1) = 1.

5. Roe’s superbee

φ(θ) = max(0,min(1, 2θ),min(θ, 2))
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0

1

2

1

φ(θ)

θ

Lax-Wendroff

2 0

1

2

1

φ(θ)

θ2

Beam-Warming

0

1

2

1

φ(θ)

θ2

van Leer’s minmod

0

1

2

1

φ(θ)

02

Roe’s superbee

Figure 7.2: Several limiters

7.1.3 Extensions

There are two kinds of extensions. One is the a < 0 case, and the other is the linear system case.

For a < 0, we let

FL
j+ 1

2
=

1

2
a(Uj + Uj+1)−

1

2
|a|(Uj+1 − Uj)

=

{
aUj if a > 0
aUj+1 if a < 0

FH
j+ 1

2
=

1

2
a(Uj + Uj+1)−

1

2
νa(Uj+1 − Uj) ν =

a∆t

∆x

Then

Fj+ 1
2

= FL
j+ 1

2
+ φj+ 1

2
(FH

j+ 1
2
− FL

j+ 1
2
)

= FL
j+ 1

2

+ φj+ 1
2

1

2
(sign(ν)− ν)a(Uj+1 − Uj).

Where φj+ 1
2
= φ(θj+ 1

2
), θj+ 1

2
=

Uj′+1−Uj′

Uj+1−Uj
, and j′ = j − sign(ν) = j ± 1.

In the linear system case, our equation is

ut +Aux = 0. (1.3)
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We can decompose A so that A = RΛR−1 with Λ = diag(λ1, · · · , λn) constituting by A’s

eigenvalues and R = [r1, · · · , rn] being right eigenvectors.That is, Ari = λiri. We know that

Uj+1 − Uj =
n∑

k=1

αj,krk, let

νk = λk
∆t

∆x

θj,k =
αj′,k

αj,k
j′ = j − sign(νk).

Therefore,

FL =
1

2
A(Uj + Uj+1)−

1

2
|A|(Uj+1 − Uj)

FH =
1

2
A(Uj + Uj+1)−

1

2

∆t

∆x
A2(Uj+1 − Uj)

where |A| = R|Λ|R−1. The numerical flux is

Fj+ 1
2
= FL

j+ 1
2
+

1

2

∑

k

φ(θj,k)(sign(νk)− νk)λkαj,krk.

7.2 High Order Godunov Methods

Algorithm

1. Reconstruction: start from cell averages {Un
j }, we reconstruct a piecewise polynomial func-

tion ũ(x, tn).

2. “Exact” solver for u(x, t), tn < t < tn+1. It is a Riemann problem with initial data ũ(x, tn).

3. Define

Un+1
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

ũ(x, tn+1) dx.

If 2. is an exact solver, using

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

ut + f(u)x dxdt = 0

we have

Un+1
j = Un

j +
∆t

∆x
(f̃j− 1

2
− f̃j+ 1

2
),

where f̃j+ 1
2
= 1

∆t

∫ tn+1

tn
f(ũ(xj+ 1

2
, t)) dt is the average flux. Thus 2. and 3. can be replaced by

2’. an ‘Exact solver” for u at xj+ 1
2
, tn < t < tn+1 to compute averaged flux f̃j+ 1

2
.
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3’. Un+1
j = Un

j + ∆t
∆x(f̃j− 1

2
− f̃j+ 1

2
)

1. Reconstruction: We want to construct a polynomial in each cell. The main criterions are

(1) high order in regions where u is smooth and ux 6= 0

(2) total variation no increasing.

In other words, suppose we are given a function u(x), let

Uj =
1

∆x

∫ x
j+1

2

x
j− 1

2

u(x) dx

From {Uj}, we can use some reconstruct algorithm to construct a function ũ(x). We want the

reconstruction algorithm to satisfy

(1) |ũ(x)− u(x)| = O(∆x)r , where u is smooth in Ij = (xj− 1
2
, xj+ 1

2
) and ux 6= 0 near Ij .

(2) T.V.ũ(x) ≤ T.V.u(x)(1 +O(∆x))

7.2.1 Piecewise-constant reconstruction

Our equation is

ut + f(u)x = 0 (2.4)

Following the algorithm, we have

(1) approximate u(t, x) by piecewise constant function, i.e., {Un
j } represents the cell average of

u(x, tn) over (xj− 1
2
, xj+ 1

2
).

xj− 1
2 xj+ 1

2

∆x

(2) solve Riemann problem

(uj , uj+1) on the edge xj+ 1
2
, its solution ũ(xj+ 1

2
, t),tn < t < tn+1 can be found, which is a

constant.
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(3) integrate the equation (2.4) over (xj− 1
2
, xj+ 1

2
)× (tn, tn+1)

=⇒ Un+1
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

ũ(x, tn+1) dx

= Un
j +

∆t

∆x

1

∆t

∫ tn+1

tn

(
f(ũ(xj− 1

2
, t))− f(ũ(xj+ 1

2
, t)
)
dt

= unj +
∆t

∆x
[f(ũ(xj− 1

2
, tn+ 1

2
))− f(ũ(xj+ 1

2
, tn+ 1

2
))]

Example 1 f(u) = au a > 0

Riemann problem gives ũ(x, t) =

{
uj if x− xj+ 1

2
< at, tn < t < tn+1

uj+1 if x− xj+ 1
2
> at, tn < t < tn+1

u
n+ 1

2

j+ 1
2

= ũ(xj+ 1
2
, tn+ 1

2
) = uj

Fj+ 1
2

= aUn+1
j+ 1

2

= aUj

.·. Un+1
j = Un

j +
∆t

∆x
(aUn

j−1 − aUn
j )

This is precisely the upwind scheme.

Example 2 Linear system

ut +Aux = 0

Let R−1AR = Λ = diag(λ1, · · · , λn). We need to solve Riemann problem with initial data

(Uj , Uj+1). Let L = (ℓ1, · · · , ℓn) = R−1, ℓiA = λiℓi, i = 1, . . . , n be the left eigenvectors.

Project initial data onto r1, . . . , rn

u(x, tn) =

{
Uj x < xj+ 1

2

Uj+1 x > xj+ 1
2

by ℓirj = δij ,
∑

(ℓiu(x, tn))ri = u(x, tn).

ℓi(ut +Aux) = 0

=⇒ αit + λiαix = 0

=⇒ αi(x, t) = αi(x− λi(t− tn), tn)
= ℓiu(x− λi(t− tn), tn)

ũ(x, t) =
∑

i

(ℓiũ(x− λi(t− tn), tn))ri

ũ(xj+ 1
2
, t) =

∑

λi≥0

(ℓiũ(x− λi(t− tn), tn))ri +
∑

λi<0

(ℓiũ(x− λi(t− tn), tn))ri
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Ũ
n+ 1

2

j+ 1
2

=
∑

i,λi≥0

ℓiUjri +
∑

i,λi<0

ℓiUj+1ri

Fj+ 1
2

= AŨ
n+ 1

2

j+ 1
2

=
∑

i,λi≥0

λiℓiUjri +
∑

i,λi<0

λiℓiUj+1ri

solve ũ(x, t) for x
t = λ

ũ(x, t) =
∑

λi≥λ

λiℓiUjri +
∑

λi<λ

λiℓiUj+1ri

consider the following cases

(1) λ < λ1 < · · · < λn
ũ(x, t) =

∑

λi≥λ

ℓiUjri = Uj

(2) λ1 < λ < λ2 < · · · < λn

ũ(x, t) =
n∑

i=2

ℓiUjri + ℓ1Uj+1r1

=
n∑

i=1

ℓiUjri + ℓ1Uj+1r1 − λ1ℓ1Ujr1

= Uj + ℓ1(Uj+1 − Uj)r1

There is a jump ℓ1(Uj+1 − Uj)r1

(3) λ1 < λ2 < λ < λ3 < · · · < λn

ũ(x, t) = Uj + ℓ1(Uj+1 − Uj)r1 + ℓ2(Uj+1 − Uj)r2

Therefore the structure of the solution of Riemann problem is composed of nwaves ℓ1(Uj+1−
Uj)r1, · · · , ℓn(Uj+1 − Uj)rn with left state Uj and right state Uj+1. Each wave propagate at

speed λi respectively.

· · ·

λ1λ2 λ λℓ λn

xj+ 1

2

Uj Uj+1
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7.2.2 piecewise-linear reconstruction

(1) Reconstruction

Given cell average {Uj}, we want to reconstruct a polynimial ũ(x, tn) in each cell (xj− 1
2
, xj+ 1

2
)

under following criterions

a) high order approximation in smooth regions.

b) TVD or TVB or ENO

(2) Riemann solver

solve equation “exactly” for (tn, tn+1).

Once we have these two, define Un+1
j = Un

j + ∆t
∆x

1
∆t

∫ tn+1

tn
f(ũ(xj− 1

2
, t))− f(ũ(xj+ 1

2
, t)) dt. For

second order temporal discretization,

1

∆t

∫ tn+1

tn

f(ũ(xj+ 1
2
, t)) dt ≈ f(ũ(xj+ 1

2
, tn+ 1

2
)),

Un+1
j = Un

j +
∆t

∆x
[f(ũ(xj− 1

2
, tn+ 1

2
))− f(ũ(xj+ 1

2
, tn+ 1

2
))].

For Scalar Case

(1) Reconstruction

Suppose ũ(x, tn) = a+ b(x− xj) + c(x− xj)2, want to find a, b, c such that the average of

ũ = Uj .

1

∆x

∫ x
j+1

2

x
j− 1

2

ũ(x, tn) dx = Uj

1

∆x

∫ x
j− 1

2

x
j− 3

2

ũ(x, tn) dx = Uj−1

1

∆x

∫ x
j+3

2

x
j+1

2

ũ(x, tn) dx = Uj+1

=⇒ a = Uj, b =
Uj+1 − Uj−1

2∆x
, c = 0

Lemma 7.2. Given a smooth function u(x), let Uj = 1
∆x

∫ x
j+1

2
x
j− 1

2

u(x) dx, and let ũ(x) =

Uj+δUj
x−xj

∆x δUj = (Uj+1−Uj−1)/2, then |ũ(x)−u(x)| = O(∆x)3 for x ∈ (xj− 1
2
, xj+ 1

2
)

When u has discontinuities or ux changes sign, we need to put a “limiter” to avoid oscillation

of ũ.

Example of limiters



7.2. HIGH ORDER GODUNOV METHODS 95

(a)

δUj = minmod(Uj+1 − Uj , Uj − Uj−1)

=





sign(Uj+1 − Uj)min{|Uj+1 − Uj |, |Uj − Uj−1|} if Uj+1−Uj and

Uj − Uj−1 have

the same sign
0 otherwise

(b) δUj = minmod(
Uj+1−Uj−1

2 , 2(Uj − Uj−1), 2(Uj+1 − Uj))

(2) Exact solver for small time step

Consider the linear advection equation

ut + aux = 0.

with precise linear data

ũ(x, tn) =

{
Uj + δUj

x−xj

∆x x < xj+ 1
2

Uj+1 + δUj+1
x−xj+1

∆x x > xj+ 1
2

Then

ũ
n+ 1

2

j+ 1
2

= ũ(xj+ 1
2
− a(t− tn), tn) (a > 0)

= Uj + δUj(xj+ 1
2
− a(tn+ 1

2
− tn)− xj)/∆x

= Uj + δUj(
1

2
− a∆t

2∆x
) let ν =

a∆t

∆x

Fj+ 1
2

= aŨ
n+ 1

2

j+ 1
2

= a(Uj + δUj(
1

2
− ν

2
))

To compare with the TVD scheme, let δUj = minmod(Uj+1 − Uj, Uj − Uj−1)

Fj+ 1
2

= aUj + (
1

2
− ν

2
)a(Uj+1 − Uj) · φj+ 1

2

φj+ 1
2

=
minmod(Uj+1 − Uj , Uj − Uj−1)

Uj+1 − Uj

φ(θ) =





0 θ ≤ 0
θ 0 ≤ θ ≤ 1
1 θ ≥ 1

θ =
Uj − Uj−1

Uj+1 − Uj

Its graph is shown in Fig.(7.3).

If a < 0, then

ũ
n+ 1

2

j+ 1
2

= Uj+1 + δUj+1(−
1

2
− a∆t

2∆x
) |a∆t

∆x
| ≤ 1

Fj+ 1
2

= a(Uj+1 + δUj+1(−
1

2
− ν

2
))
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0

1

2

1

φ(θ)

θ2

Figure 7.3: The limiter of second order Godunov method

For System Case

ut +Aux = 0 (2.5)

(1) Reconstruction

Construct ũ(x, tn) to be a piecewise linear function.

ũ(x, tn) = Un
j + δUn

j (
x− xj
∆x

)

The slope is found by δUn
j = minmod(Uj−Uj−1, Uj+1−Uj). We can write it characteristic-

wisely: let

αL
j,k = ℓk(Uj − Uj−1),

αR
j,k = ℓk(Uj+1 − Uj),

αj,k = minmod(αL
j,k, α

R
j,k).

Then δUj =
∑
αj,krk.

(2) Exactly solver

We trace back along the characteristic curve to get u in half time step.

u
n+ 1

2

j+ 1
2

=
∑

k

ℓkũ(xj+ 1
2
− λk(tn+ 1

2
− tn), tn)rk

=
∑

λk≥0

ℓk(Uj + δUj(
1

2
− νk

2
))rk +

∑

λk<0

ℓk(Uj+1 + δUj+1(−
1

2
− νk

2
))rk

= initial state of Riemann data (Uj , Uj+1) +
∑

λk≥0

(ℓk(
1

2
− νk

2
)rk)δUj +

∑

λk<0

(ℓk(−
1

2
)− νk

2
)rk)δUj+1.
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In another viewpoint, let u
n+ 1

2

j+ 1
2
,L

be the solution of (2.5) with initial data =

{
ũ(x, tn) x ∈ (xj− 1

2
, xj+ 1

2
)

0 otherwise
.

u
n+ 1

2

j+ 1
2
,L

= unj +
∑

λk≥0

ℓkδU
n
j (
xj+ 1

2
− λk∆t

2 − xj
∆x

)rk

= unj +
∑

λk≥0

ℓkδU
n
j (

1

2
− νk

2
)rk

where ℓk, rk are left / right eigenvector, λk is eigenvalue and νk = λk∆t
∆x .

Similarly,

u
n+ 1

2

j+ 1
2
,R

= unj+1 −
∑

λk<0

ℓkδU
n
j+1(

xj+ 1
2
− λk∆t

2 − xj+1

∆x
)rk

= unj+1 −
∑

λk<0

ℓkδU
n
j+1(−

1

2
− νk

2
)rk

Then we solve (2.5) with(u
n+ 1

2

j+ 1
2
,L
, u

n+ 1
2

j+ 1
2
,R
) as the Riemann data. This gives u

n+ 1
2

j+ 1
2

. Therefore

u
n+ 1

2

j+ 1
2

= u
n+ 1

2

j+ 1
2
,L

+
∑

λk≥0

ℓkδUj+ 1
2
(−λk

∆t
2

∆x
)rk

= u
n+ 1

2

j+ 1
2
,L

+
∑

λk≥0

ℓkδUj+ 1
2
(−νk

2
)rk

or u
n+ 1

2

j+ 1
2

= u
n+ 1

2

j+ 1
2
,R
−
∑

λk≤0

ℓkδUj+ 1
2
(−νk

2
)rk

or u
n+ 1

2

j+ 1
2

=
U

n+ 1
2

j+ 1
2
,L

+ U
n+ 1

2

j+ 1
2
,R

2
− 1

2

∑
sign(νk)ℓkδUj+ 1

2

νk
2
rk

where δUj+ 1
2
= U

n+ 1
2

j+ 1
2
,R
− Un+ 1

2

j+ 1
2
,L

.

(3) Un+1
j = Un

j + ∆t
∆x(f(U

n+ 1
2

j− 1
2

)− f(Un+ 1
2

j+ 1
2

)).

7.3 Multidimension

There are two kinds of methods.

1. Splitting method.

2. Unsplitting method.

We consider two-dimensional case.
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7.3.1 Splitting Method

We start from

ut +Aux +Buy = 0. (3.6)

This equation can be viewed as

ut = (−A∂x −B∂y)u.
Then the solution operator is:

e−t(A∂x+B∂y),

which can be approximate by e−tA∂xe−tB∂y for small t. Let A = −A∂x,B = −B∂y, we have

u = et(A+B)u0.

Consider et(A+B),

et(A+B) = 1 + t(A+ B) + t2

2
(A2 + B2 +AB + BA) + · · ·

etB · etA = (1 + tB +
t2

2
B2 + · · · )(1 + tA+

t2

2
A2 + · · · )

= 1 + t(A+ B) + t2

2
(A2 + B2) + t2BA+ · · ·

.·.et(A+B) − etB · etA = t2(
AB − BA

2
) +O(t3).

Now we can design splitting method as:

Given {Un
i,j},

1. For each j, solve ut +Aux = 0 with data {Un
j } for ∆t step. This gives Ūn

i,j .

Ūn
i,j = Un

i,j +
∆t

∆x
(F (Un

i−1,j , U
n
i,j)− F (Un

i,j , U
n
i+1,j))

where F (U, V ) is the numerical flux for ut +Aux = 0.

2. For each i, solve ut +Buy = 0 for ∆t step with data {Ūn
i,j}. This gives Un+1

i,j .

Un+1
i,j = Ūn

i,j +
∆t

∆y
(G(Ūn

i,j−1, Ū
n
i,j)−G(Ūn

i,j , Ū
n
i,j+1))

The error is first order in time n(∆t)2 = O(∆t).
To reach higher order time splitting, we may approximate et(A+B) by polynomials P (etA, etB)

or rationals R(etA, etB). For example, the Trotter product (or strang splitting) is given by

et(A+B) = e
1
2
tAetBe

1
2
tA +O(t3).

For t = n∆t,

et(A+B)u0 = (e
1
2
∆tAe∆tBe

1
2
∆tA) · · · (e 1

2
∆tAe∆tBe

1
2
∆tA)(e

1
2
∆tAe∆tBe

1
2
∆tA)u0

= e
1
2
∆tAe∆tBe∆tAe∆tBe∆tA · · · e∆tAe∆tBe

1
2
∆tAu0

Trotter product is second order.
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7.3.2 Unsplitting Methods

The PDE is

ut + f(u)x + g(u)y = 0 (3.7)

Integrate this equation over (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)× (tn, tn+1). We have

Un+1
i,j = Un

i,j +
∆t

∆x
(f̄

n+ 1
2

i− 1
2
,j
− f̄n+

1
2

i+ 1
2
,j
) +

∆t

∆y
(ḡ

n+ 1
2

i,j− 1
2

− ḡn+
1
2

i,j+ 1
2

)

where

f̄
n+ 1

2

i+ 1
2
,j

=
1

∆t

∫ tn+1

tn

f(u(xi+ 1
2
, yj, t)) dt

ḡ
n+ 1

2

i,j+ 1
2

=
1

∆t

∫ tn+1

tn

g(u(xi, yj+ 1
2
, t)) dt.

Looking for numerical approximations F (Un
i,j+k, U

n
i+1,j+k), G(U

n
i+ℓ,j , U

n
i+ℓ,j+1) for f̄

n+ 1
2

i+ 1
2
,j+k

, ḡ
n+ 1

2

i+ℓ,j+ 1
2

.

We consider Godunov type method.

1. Reconstruction

ũ(x, y, tn) = uni,j + δxUi,j(
x− xi
∆x

)+ δyUi,j(
y − yj
∆y

) in I = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)

For example, δxUi,j = minmod(Ui,j − Ui+1,j , Ui+1,j − Ui,j).

2. We need to solve

ut +Aux +Buy = 0 with data

{
ũ(x, y, tn) for (x, y) ∈ I
0 otherwise

ũ(xj+ 1
2
, yj ,

∆t

2
) = Un

i,j +
∑

a>0

δxUi,j(
xi+ 1

2
− a∆t

2 − xi
∆x

) + δyUi,j(
yj − b∆t

2 − yj
∆y

)

= Un
i,j +

∑

a>0

(δxU
n
i,j) · (

1

2
− νx

2
) + (δyU

n
i,j)(−

νy
2
)

where νx = a∆t
∆x , νy = b∆t

∆y . For system case, λxk, λ
y
k are eigenvalues of A and B.

U
n+ 1

2

i+ 1
2
,L,j

= Un
i,j +

∑

λx≥0

(
1

2
− νxk

2
)(ℓxk · δxUi,j)r

x
k +

∑

k

(−ν
y
k

2
)(ℓyk · δyUi,j)r

y
k

similarly,

U
n+ 1

2

i+ 1
2
,R,j

= Un
i+1,j +

∑

λx
k<0

(−1

2
− νxk

2
)(ℓxk · δxUi,j)r

x
k +

∑

k

(−ν
y
k

2
)(ℓyk · δyUi+1,j)r

y
k
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Finally, solve Riemann problem ut +Aux = 0 with data





U
n+ 1

2

i+ 1
2
,L,j

U
n+ 1

2

i+ 1
2
,R,j

.·.U
n+ 1

2

i+ 1
2
,j
= U

n+ 1
2

i+ 1
2
,L,j

+
∑

λx
k≥0

ℓk · δUi+ 1
2
,jrk



Chapter 8

Systems of Hyperbolic Conservation

Laws

8.1 General Theory

We consider

ut + f(u)x = 0, u =




u1
u2
. . .

un


 f : Rn → Rnthe flux (1.1)

The system (1.1) is called hyperbolic if ∀u, the n × n matrix f ′(u) is diagonalizable with real

eigenvalues λ1(u) ≤ λ2(u) ≤ · · · ≤ λn(u). Let us denote its left/right eigenvectors by ℓi(u)/ri(u),
respectively.

It is important to notice that the system is Galilean invariant, that is , the equation is unchanged

under the transform:

t −→ λt, x −→ λx, ∀λ > 0.

This suggests we can look for special solution of the form u(xt ).

We plug u(xt ) into (1.1) to yield

u′ · (− x
t2
) + f ′(u)u′ · 1

t
= 0

=⇒ f ′(u)u′ =
x

t
u′

This implies that there exists i such that u′ = ri(u) and x
t = λi(u(

x
t )). To find such a solution, we

first construct the integral curve of ri(u): u
′ = ri(u). Let Ri(u0, s) be the integral curve of ri(u)

passing through u0, and parameterized by its arclength. Along Ri, the speed λi has the variation:

d

ds
λi(Ri(u0, s)) = ∇λi ·R′

i = ∇λi · ri.

101
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We have the following definition.

Definition 1.15. The i-th characteristic field is called

1. genuinely nonlinear if ∇λi(u) · ri(u) 6= 0∀u.

2. linearly degenerate if ∇λi(u) · ri(u) ≡ 0

3. nongenuinely nonlinear if ∇λi(u) · ri(u) = 0 on isolated hypersurface in Rn.

For scalar equation, the genuine nonlinearity is equivalent to the convexity( or concavity) of the

flux f , linear degeneracy is f(u) = au, while nongenuine nonlinearity is nonconvexity of f .

8.1.1 Rarefaction Waves

When the i-th field is genuiely nonlinear, we define

R+
i (u0) = {u ∈ Ri(u0)|λi(u) ≥ λi(u0)}.

Now suppose u1 ∈ R+
i (u0), we construct the centered rarefaction wave, denoted by (u0, u1):

(u0, u1)(
x

t
) =





u0 if x
t ≤ λi(u0)

u1 if x
t ≥ λi(u1)

u if λi(u0) ≤ x
t ≤ λi(u1)andλi(u) =

x
t

It is easy to check this is a solution. We call (u0, u1) an i-rarefaction wave.

t

x

λi(u0)
λi(u1)

u0 u1

λi(u) =
x
t

λi

u0

λi(u1)
u1

λi(u0)

Figure 8.1: The integral curve of u′ = ri(u) and the rarefaction wave.

8.1.2 Shock Waves

The shock wave is expressed by:

u(
x

t
) =

{
u0 for x

t < σ
u1 for x

t > σ

Then (u0, u1, σ) need to satisfy the jump condition:

f(u1)− f(u0) = σ(u1 − u0). (1.2)
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Lemma 8.3. (Local structure of shock waves)

1. The solution of (1.2) for (u, σ) consists of n algebraic curves passing through u0 locally,

named them by Si(u0), i = 1, · · · , n.

2. Si(u0) is tangent to Ri(u0) up to second order. i.e., S
(k)
i (u0) = R

(k)
i (u0), k = 0, 1, 2, here

the derivatives are arclength derivatives.

3. σi(u0, u) −→ λi(u0) as u −→ u0, and σ′i(u0, u0) =
1
2λ

′
i(u0)

Proof. 1. Let S(u0) = {u|f(u)−f(u0) = σ(u−u0) for some σ ∈ R}. We claim that S(u0) =
n⋃

i=1
Si(u0), where Si(u0) is a smooth curve passing through u0 with tangent ri(u0) at u0.

When u is on S(u0), rewrite the jump condition as

f(u)− f(u0) = [

∫ 1

0
f ′(u0 + t(u− u0) dt](u− u0)

= Ã(u0, u)(u − u0)
= σ(u− u0)

.·. u ∈ S(u0)⇐⇒ (u− u0) is an eigenvector of Ã(u0, u).

Assume A(u) = f ′(u) has real and distinct eigenvalues λ1(u) < · · · λn(u), Ã(u0, u) also

has real and distinct eigenvalues λ̃1(u0, u) < · · · < λ̃n(u0, u), with left/right eigenvectors

ℓ̃i(u0, u) and r̃i(u0, u), respectively, and they converge to λi(u0), ℓi(u0), ri(u0) as u → u0
respectively. Normalize the eigenvectors: ‖r̃i‖ = 1, ℓ̃ir̃j = δij . The vector which is parallel

to ri can be determined by

ℓ̃k(u0, u)(u− u0) = 0 for k 6= i, k = 1, · · · , n.

Now we define

Si(u0) = {u|ℓ̃k(u0, u)(u− u0) = 0, k 6= i, k = 1, · · · , n}

We claim this is a smooth curve passing through u0. Choose coordinate system r1(u0), · · · , rn(u0).
Differential this equation ℓ̃k(u0, u)(u− u0) = 0 in rj(u0).

∂

∂rj

∣∣∣∣
u=u0

(ℓ̃k(u0, u)(u− u0)) = ℓ̃k(u0, u0) · rj(u0) = δjk,

which is a full rank matrix. By implicit function theorem, there exists unique free parameter

smooth curve Si(u0) passing through u0. Therefore S(u0) =
n⋃

i=1
Si(u0).



104 CHAPTER 8. SYSTEMS OF HYPERBOLIC CONSERVATION LAWS

2,3. Ri(u0) = u0 = Si(u0)

f(u)− f(u0) = σi(u0, u)(u− u0) ∀u ∈ Si(u0)

Take arclength derivative along Si(u0)

f ′(u)u′ = σ′i(u− u0) + σiu
′ and u′ = S′

i.

When u −→ u0
f ′(u0)S

′
i(u0) = σi(u0, u0)S

′
i(u0)

=⇒ S′
i(u0) = ri(u0) and σi(u0, u0) = λi(u0).

Consider the second derivative.

(f ′′(u)u′, u′) + f ′(u)u′′ = σ′′i (u− u0) + 2σ′i · u′ + σiu
′′

At u = u0, u′ = S′
i(u0) = R′

i(u0) = ri(u0) and u′′ = S′′
i (u0),

=⇒ (f ′′ri, ri) + f ′S′′
i = 2σ′iri + σiS

′′
i

On the other hand, we take derivative of f ′(u)ri(u) = λi(u)ri(u) along Ri(u0), then evaluate

at u = u0.

(f ′′ri, ri) + f ′(∇ri · ri) = λ′iri + λi∇ri · ri,

where ∇ri · ri = R′′
i .

=⇒ (f − λi)(S′′
i −R′′

i ) = (2σ′i − λ′i)ri
=⇒ 2σ′i = λ′i

Let S′′
i −R′′

i =
∑
k

αkrk(u0) = αiri

∑
k 6=i(λk − λi)αkrk = 0

=⇒ αk = 0 ∀k 6= i and λ′i = 2σ′i at u0

·.· (R′
i, R

′
i) = 1 (S′

i, S
′
i) = 1

and (R′′
i , R

′
i) = 0 (S′′

i , S
′
i) = 0

.·. (R′′
i − S′′

i )⊥ri
.·. αi = 0

Hence R′′
i = S′′

i at u0.
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Let S−
i (u0) = {u ∈ Si(u0)|λi(u) ≤

λi(u0)}.
If u1 ∈ S −i (u0), define

(u0, u1) =

{
u0 for x

t < σi(u0, u1)
u1 for x

t > σi(u0, u1)

(u0, u1) is a weak solution.

u0

S−
i

R+
i

Ri

Si

We propose the following entropy condition: (Lax entropy condition)

λi(u0) > σi(u0, u1) > λi(u1) (1.3)

If the i-th characteristic field is genuinely nonlinear, then for u1 ∈ S−
i (u0), and u1 ∼ u0, (1.3) is

always valid. This follows easily from λi = 2σ′i and σi(u0, u0) = λi(u0). For u1 ∈ S−
i (u0), we

call the solution (u0, u1) i-shock or Lax-shock.

8.1.3 Contact Discontinuity (Linear Wave)

If∇λi(u) · ri(u) ≡ 0, we call the i-th characteristic field linearly degenerate (ℓ. dg.). In the case of

scalar equation, this correspond f ′′ = 0. We claim

Ri(u0) = Si(u0) and σi(u0, u) = λi(u0) for u ∈ Si(u0) or Ri(u0).

Indeed, along Ri(u0), we have

f ′(u)u′ = λi(u)u
′.

and λi(u) is a constant λi(u0) from the linear degeneracy. We integrate the above equation from u0
to u along Ri(u0), we get

f(u)− f(u0) = λi(u0)(u− u0).

This gives the shock condition. Thus, Si(u0) ≡ Ri(u0) and σ(u, u0) ≡ λi(u0).

Homeworks.

(u0, u1) =

{
u0

x
t < σi(u0, u1)

u1
x
t > σi(u0, u1)

Let Ti(u0) = R+
i (u0)∪ S−

i (u0) be called the i-th wave curve. For u1 ∈ Ti(u0), (u0, u1) is either a

rarefaction wave, a shock, or a contact discontinuity.

Theorem 8.8. (Lax) For strictly hyperbolic system (1.1), if each field is either genuinely nonlin-

ear or linear degenerate, then for uL ∼ uR, the Riemann problem with two end states (ul, uR)
has unique self-similar solution which consists of n elementary waves. Namely, there exist u0 =
uL, · · · , un = uR such that (ui−1, ui) is an i-wave.
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Proof. Given (α1, · · · , αn) ∈ Rn, define ui inductively ui ∈ Ti(ui−1), and the arclength of

(ui−1, ui) on Ti = αi.

ui = f(u0, α1, · · · , αi)

We want to find α1, · · · , αn such that

uR = f(uL, α1, · · · , αn).

u0

u1

T1

T2(u1)

α2

α1

First uL = f(uL, 0, · · · , 0), as uR = uL, (α1, · · · , αn) = (0, · · · , 0) is a solution. When uR ∼ uL
and {ri(u0)} are independent,

∂

∂αi

∣∣∣∣
α=0

f(uL, 0, · · · , 0) = ri(u0)andf ∈ C2

By Inverse function theorem, for uR ∼ uL, there exists unique α such that uR = f(uL, α). Unique-

ness leaves as an exercise.

8.2 Physical Examples

8.2.1 Gas dynamics

The equations of gas dynamics are derived based on conservation of mass, momentum and energy.

Before we derive these equations, let us review some thermodynamics. First, the basic thermo

variables are pressure (p), specific volume (τ ), called state variables. The internal energy (e) is a

function of p and τ . Such a relation is called a constitutive equation. The basic assumption are

∂e

∂p

∣∣∣∣
τ

> 0,
∂e

∂τ

∣∣∣∣
p

> 0

Sometimes, it is convinient to express p as a function of (τ, e).

1-wave

2-wave
n-wave

t

x

u0 = uL un = uR

u1
u2 un−1
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In an adiabetic process (no heat enters or losses), the first law of thermodynamics (conservation

of energy) reads

de+ pdτ = 0. (2.4)

This is called a Pfaffian equation mathematically. A function σ(e, τ) is called an integral of (2.4) if

there exists a function µ(e, τ) such that

dσ = µ · (de+ pdτ).

Thus, σ = constant represents a specific adiabetic process. For Pfaffian equation with only two

independent variables, one can always find its integral. First, one can derive equation for µ: from

σe = µ and στ = µp

and using σeτ = στe, we obtain the equation for µ:

µτ = (µp)e.

This is a linear first-order equation for µ. It can be solved by the method of characteristics in

the region τ > 0 and e > 0. The solutions of µ and σ are not unique. If σ is a solution, so

does σ̄ with dσ̄ = ν(σ)dσ for any function ν(σ). We can choose µ such that if two systems are

in thermo-equilibrium, then they have the same value µ. In other words, µ is only a function of

emperical temperature. We shall denote it by 1/T . Such T is called the absolute temperature. The

corresponding σ is called the physical entropy S. The relation dσ = µ(de+ pdτ) is re-expressed as

de = TdS − pdτ. (2.5)

For ideal gas, which satisfies the laws of Boyle and Gay-Lussac:

pτ = RT, (2.6)

whereR is the universal gas constant. From this and (2.5), treating S and τ as independent variables,

one obtains

ReS(S, τ) + τeτ (S, τ) = 0.

We can solve this linear first-order equation by the method of characteristics. We rewrite this equa-

tion as a directional differentiation:
(
R
∂

∂S
+ τ

∂

∂τ

)
e = 0.

This means that e is constant along the characteristic curves

R
dτ

dS
= τ.

These characteristics can be integrated as

τe−S/R = φ.
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Here φ is a positive constant. The energy e(τ, S) is constant when τe−S/R is a constant. That is,

e = h(φ) for some function h. We notice that h′ < 0 because p = −( ∂e∂τ )S = −e−S/Rh′(τH) > 0.

From T = ( ∂e∂S )τ = − 1
Rh

′(φ) · φ, we see that T is a function of φ. In most cases, T is a decreasing

function of φ. We shall make this as an assumption. With this, we can invert the relation between

T and φ and treat φ as a decreasing function of T . Thus, we can also view e as a function of T , say

e(T ), and e(T ) is now an increasing function. Now, we have five thermo variables p, τ, e, S, T , and

three relations:

pτ = RT

e = e(T )

de = TdS − pdτ

Hence, we can choose two of as independent thermo variables and treat the rest three as dependent

variables.

For instance, e is a linear function of T , i.e. e = cvT , where cv is a constant called specfic heat

at constant volume. Such a gas is called polytropic gas. We can obtain

pτ = RT and e = cvT =
pτ

γ − 1
(2.7)

or in terms of entropy,

p = A(S)τ−γ

T =
A(S)

R
τ−γ+1

e =
cvA(S)

R
τ−γ+1

where

A(S) = (γ − 1) exp((S − S0)/cv)
γ = 1 +R/cv

If we define dQ = TdS, it is easy to see that cv and cp are the specific heat at constant volume and

constant pressure, respectively.

cv =

(
∂Q

∂T

)

τ

=

(
∂e

∂T

)

τ

,

cp :=

(
∂Q

∂T

)

p

= ((
∂e

∂τ
)p + p)/(

∂T

∂τ
)p

=

(
∂e

∂T

)

p

+ p

(
∂τ

∂T

)

p
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In general, cp > cv. Because cp is the amount of heat added to a system per unit mass at constant

pressure. In order to maintain constant pressure, the volume has to expand (otherwise, pressure will

increase), the extra amount of work due to expansion is supplied by the extra amount of heat cp−cv.

Next, we derive the equation of gas dynamics. Let us consider an arbitrary domain Ω ⊂ R3.

The mass flux from outside to inside per unit time per unit area dS is −ρv·, where n is the outer

normal of Ω. Thus, the conservation of mass can be read as

d

dt

∫

Ω
ρ dx =

∫

∂Ω
[−ρv · n]dS

= −
∫

Ω
div (ρ v) dx

This holds for arbitrary Ω, hence we have

ρt + div(ρ v) = 0. (2.8)

This is called the continuity equation.

Now, we derive momentum equation. Let us suppose the only surface force is from pressure

(no viscous force). Then the momentum change in Ω is due to (i) the momentum carried in through

boundary, (ii) the pressure force exerted on the surface, (iii) the body force. The first term is−ρvv·n,

the second term is −pn. Thus, we have

d

dt

∫

Ω
ρv dx =

∫

∂Ω
−[ρvv · n+ pn] dS +

∫
F dx

=

∫

Ω
div[−ρv ⊗ v − pI] + F dx

This yields

(ρv)t + div(ρ v ⊗ v) +∇p = F (2.9)

Here, the notation ∇·ρv⊗ v stands for a vector whoes ith component is
∑

j ∂j(ρv
ivj). The energy

per unit volume is E = 1
2ρ v

2 + ρe. The energy change in Ω per unit time is due to (i) the energy

carried in through boundary (ii) the work done by the pressure from boundary, and (iii) the work

done by the body force. The first term is −Ev · n. The second term is −pv · n. The third term is

F · v. The conservation of energy can be read as

d

dt

∫

Ω
E dx =

∫

∂Ω
[−Ev · n− pv · n] dS +

∫

Ω
F · v dx

By applying divergence theorem, we obtain the energy equation:

Et + div[(E + p)v] = ρF · v. (2.10)

In one dimension, the equations are (without body force)

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

(
1

2
ρu2 + e)t + [(

1

2
ρu2 + e+ p)u]x = 0.
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Here, the unknowns are two thermo variable ρ and e, and one kinetic variable u. Other thermo

variable p is given by the constitutive equation p(ρ, e).

8.2.2 Riemann Problem of Gas Dynamics

We use (ρ, u, S) as our variables.




ρ
u
S




t

+




u ρ 0
c2

ρ u PS
ρ

0 0 u






ρ
u
S




x

= 0

Where p(ρ, S) = A(S)ργ , γ > 1 and c2 = ∂P
∂ρ

∣∣∣
S

. The eigenvalues and corresponding eigenvectors

are
λ1 = u− c λ2 = u λ3 = u+ c

r1 =




ρ
−c
0


 r2 =



−PS

0
c2


 r3 =




ρ
c
0




ℓ1 = (c,−ρ, PS
c ) ℓ2 = (0, 0, 1) ℓ3 = (c, ρ, PS

c )

Note that
∇λ1 · r1 = 1

c (
1
2ρPρρ + c2) > 0

∇λ3 · r3 = 1
c (

1
2ρPρρ + c2) > 0

∇λ2 · r2 ≡ 0.

R1 is the integral curve of (dρ, du, dS) ‖ r1 and (dρ, du, dS) ⊥ ℓ2 and ℓ3. Therefore on R1,

{
(dρ, du, dS) · (0, 0, 1) = 0

(dρ, du, dS) · (c, ρ, PS
c ) = 0.

=⇒
{
dS = 0 along R1

cdρ+ ρdu+ PS
c dS = 0

=⇒
{
cdρ+ ρdu = 0
c2dρ+ PSdS + ρdu = 0 =⇒ dP + ρdu = 0

On R2, (dρ, du, dS) ⊥ ℓ1, ℓ3

=⇒
{
c2dρ+ cρdu+ PSdS = 0
c2dρ− cρdu+ PSdS = 0

=⇒
{
dP + cρdu = 0
dP − cρdu = 0

=⇒
{
dP = 0
du = 0

ρ 6= 0

On R3, (dρ, du, dS) ⊥ ℓ1, ℓ2 {
dS = 0
cdρ− ρdu = 0
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Let ℓ =
∫ c(ρ,S)

ρ dρ. From c =
√
Pρ =

√
A(S)γργ−1, ℓ(P, s) =

√
γA(S) 2

γ−1ρ
γ−1
2 . Then on R′

3,

u− u0 = ∓
∫ ρ

ρ0

c

ρ
dρ = ∓(ℓ− ℓ0)

ℓ =
√
γA(S)

2

γ − 1
ργ−12 =

2

γ − 1

√
γP

ρ

Pρ−γ = A(S) = A(S0) = P0ρ
−γ
0 .

Express ρ interms of P,P0, ρ0, then plug it into ℓ,

ℓ− ℓ0 = ψ(P )

=
2

γ − 1
(

√
γP (

P0

P
)
1
γ ρ−1

0 −
√
γP0

ρ0
)

=
2
√
γ

γ − 1
ρ
− 1

2
0 P

1
2γ

0 (P
γ−1
2γ − P

γ−1
2γ

0 )

.·. R1 u = u0 − ψ0(P )

R3 u = u0 + ψ0(P )

P

u

(ℓ)

R+
3

R+
1

Figure 8.2: The integral curve of the first and the third field on the (u, P ) phase plane.

On R2, which is a contact discontinuity, du = 0, dP = 0. Therefore u = u0, P = P0.

For S1, S3 



ρt + (ρu)x = 0
(ρu)t + (ρu2 + P )x = 0
(12ρu

2 + ρe)t + ((12ρu
2 + ρe+ P )u)x = 0

Suppose the shock is along x− σt. Let v = u− σ (standing shock)




[ρv] = 0
[ρv2 + P ] = 0
[(12ρv

2 + ρe+ P )v] = 0
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Let

m = ρ0v0 = ρv

which is from the first jump condition. The second jump condition says that

ρ0v
2
0 + P0 = ρv2 + P

mv0 + P0 = mv + P

m = −P − P0

v − v0
= − P − P0

mτ −mτ0
where τ = 1

ρ is the specific volume.

.·. m2 = −P−P0
τ−τ0

v − v0 = −P−P0
m

(u− u0)2 = (v − v0)2 = −(P − P0)(τ − τ0)

The third one is

(
1

2
ρ0v

2
0 + ρ0e0 + P0)v0 = (

1

2
ρv2 + ρe+ P )v

=⇒ 1

2
v20 + e0 + P0τ0 =

1

2
v2 + e+ Pτ

By v20 = m2τ20 , v
2 = m2τ2,m2 = −P−P0

τ−τ0
,

=⇒ H(P, τ) = e− e0 +
P + P0

2
(τ − τ0) = 0

Recall e = Pτ
γ−1 . From H(P, τ) = 0,

Pτ

γ − 1
− P0τ0
γ − 1

+ (
P + P0

2
)(τ − τ0) = 0.

Solve fot τ in terms of P,P0, τ0, then plug into

(u− u0)2 = −(P − P0)(τ − τ0)

Set φ(P ) = (P − P0)

√√√√
2

γ+1τ0

P + γ−1
γ+1P0

Then

S1 : u = u0 − φ0(P )
S3 : u = u0 + φ0(P )
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Therefore,

T
(ℓ)
1 : u =

{
u0 − ψ0(P ) P < P0

u0 − φ0(P ) P ≥ P0

T
(ℓ)
3 : u =

{
u0 + ψ0(P ) P > P0

u0 + φ0(P ) P ≤ P0

T
(r)
1 : u =

{
u0 − ψ0(P ) P > P0

u0 − φ0(P ) P ≤ P0

T
(r)
3 : u =

{
u0 + ψ0(P ) P < P0

u0 + φ0(P ) P ≥ P0

P

u

(ℓ)

S−
1

R+
3

R+
1

S−
3

P

u

S+
1

S+
3

R−
1

R−
3

(r)

Figure 8.3: The rarefaction waves ans shocks of 1,3 field on (u, P ) phase plane at left/right state.

Now we are ready to solve Riemann Problem with initial states (ρL, PL, uL) and (ρR, PR, uR).
Recall that in the second field, [P ] = [u] = 0.

ρI , PI , uI ρI , PII , uII

ρL, PL, uL ρR, PR, uR

PI = PII = P∗
uI = uII = u∗
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u

S1

S3

ℓ

P
R1

R3

r

S3

S1

R1

R3

ρL, PL, uL ρR, PR, uR

ρI ρII

P∗, u∗

The vaccum state
P

u

ℓ
r Solution must satisfy P > 0. If uℓ + ℓℓ

is less than ur−ℓr, there is no solution.

For numerical, Godunov gives a procedure, ”Godunove iteration”. The algorithm to find P∗:

uℓ − fℓ(P ) = uI = uII = ur + fr(P )

f0(P ) =

{
ψ0(P ) P < P0

φ0(P ) P ≥ P0

We can solve this equation.

Godunov iteration is {
ZR(u∗ − uR) = P∗ − PR

−ZL(u∗ − uL) = P∗ − PL.

Where

ZR =

√
PR

τR
Φ(

P∗
PR

)

ZL =

√
PL

τL
Φ(
P∗
PL

)
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and

Φ(w) =





√
γ+1
2 w + γ−1

2 w > 1
γ−1
2
√
γ

1−w

1−w
γ−1
2γ

w ≤ 1

This can be solved by Newton’s method.

Approximate Riemann Solver Our equation is ut+f(u)x = 0 with Riemann data (uL, uR).
We look for middle state. Suppose uL ∼ uR, the original equation can be replaced by

ut + f ′(u)ux = 0

ut +A(u)ux = 0

Choose ū =
uL + uR

2
, solve ut + A(ū)ux = 0 with Riemann data u(x, 0) =

{
uL x < 0
uR x > 0

Let

λi, ℓi, ri be eigenvalues and eigenvectors of A. Then

u(
x

t
) = uL +

∑

λi<
x
t

(ℓi · (uR − uL)) · ri.

One severe error in this approximate Riemann solver is that rarefaction waves are approximated

by discontinuities. This will produce nonentropy shocks. To cure this problem, we expand such a

linear discontinuity by a linear fan. Precisely, suppose λi(ui−1) < 0, λi(ui) > 0, this suggests that

there exists rarefaction fan crossing x
t = 0. We then expand this discontinuity by a linear fan. At

x/t = 0, we thus choose

um = (1− α)ui−1 + αui,

α =
−λi(ui−1)

λi(ui)− λi(ui−1)
.
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Chapter 9

Kinetic Theory and Kinetic Schemes

9.1 Kinetic Theory of Gases

9.2 Kinetic scheme

Assume the equilibrium distribution is g0(ξ). It should satisfy (i) momentum conditions, (ii) equa-

tion of states (or flux condition), (iii) positivity. That is, the moment condition:

∫
g0ψα(ξ) dξ = Uα

and flux condition: ∫
g0ξψα(ξ) dξ = Fα(U).

For non-convex case f ,

117


