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Chapter 1

Some Motivation from Calculus of
Variations

1.1 Introduction

In mathematical sciences, physical world problems are usually modeled by algebraic equations,
differential equations, integral equations, or the extrema (minima or maxima) of some functions or
functionals (functions that defined on a function space). For instance, in economics, we minimize
cost function under certain constraints. In geometry, we look for geodesics which minimize the
arc lengths, surfaces. In mechanics, we find an extremum of so-called action over all possible
trajectories. In medical imaging problems, we minimizes some prior functional under the constraint
of measurement error. These problems can be viewed as finding extrema (minima or maxima)
of some functionals in some function spaces. Likewise, many time-dependent partial differential
equations can be viewed as evolution processes in function spaces.

The analytic approach to these problems is to find an appropriate function space and to solve the
equations in that space. Most techniques were developed in 18 – 20 centuries. However, students do
not need to learn all details of them. More importantly, students need to learn the motivations, the
key parts of the techniques and their applications. Thus, this lecture provides a short path to learn
these basic analytic techniques. They include

Analytic Techniques

• Some motivation from calculus of variations

• Basic notion of function spaces: Metric spaces, Banach spaces and Hilbert spaces

• Methods of Contraction mapping

• Hilbert spaces: Approximation Theory, Fourier Series

• Compactness
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4 CHAPTER 1. SOME MOTIVATION FROM CALCULUS OF VARIATIONS

• Bounded Operators in Hilbert spaces, Spectral theory.

Many materials of this lecture note come from the book written by
John K. Hunter and Bruno Nachtergaele, Applied Analysis.
Especially, I will use the homeworks in their book. Nevertheless, I will emphasize more on con-
structive approach and examples.

1.2 A short story about Calculus of Variations

The development of calculus of variations has a long history. It may goes back to the brachis-
tochrone problem proposed by Johann Bernoulli (1696). This is an ancient Greek problem, which
is to find a path (or a curve) connecting two points A and B with B lower than A such that it takes
minimal time for a ball to roll from A to B under gravity. Hohann Bernoulli used Fermat principle
(light travels path with shortest distance) to prove that the curve for solving the brachistochrone
problem is the cycloid.

Euler (1707-1783) and Lagrange (1736-1813) are two important persons in the development of
the theory of calculus of variation. I quote two paragraphs below from Wiki for you to know some
story of Euler and Lagrange.

“Lagrange was an Italian-French Mathematician and Astronomer. By the age of 18 he was
teaching geometry at the Rotal Artillery School of Turin, where he organized a discussion group
that became the Turin Academy of Sciences. In 1755, Lagrange sent Euler a letter in which he
discussed the Calculus of Variations. Euler was deeply impressed by Lagrange’s work, and he held
back his own work on the subject to let Lagrange publish first.”

“Although Euler and Lagrange never met, when Euler left Berlin for St. Petersburg in 1766, he
recommended that Lagrange succeed him as the director of the Berlin Academy. Over the course
of a long and celebrated career (he would be lionized by Marie Antoinette, and made a count by
Napoleon before his death), Lagrange published a systemization of mechanics using his calculus of
variations, and did significant work on the three-body problem and astronomical perturbations.”

1.3 Problems from Geometry

Geodesic curves Find the shortest path connecting two points A and B on the plane. Let y(x) be
a curve with (a, y(a)) = A and (b, y(b)) = B. The geodesic curve problem is to minimize∫ b

a

√
1 + y′(x)2 dx

among all paths y(·) connecting A to B.

isoperimetric problem This was an ancient Greek problem. It is to find a closed curve with a
given length enclosing the greatest area. Suppose the curve is described by (x(s), y(s)), where s is
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the arc length. We may assume the total length is 2π. Thus, 0 ≤ s ≤ 2π. The isoperimetric problem
is

max
1

2

∫
T

(x(s)ẏ(s)− y(s)ẋ(s)) ds

subject to ∫
T

√
ẋ(s)2 + ẏ(s)2 ds = 2π.

Here, T = [0, 2π] the unit circle. Its solution is the unit circle and the solution to this problem is
usually expressed in the form of so-called isoperimetric inequality (4πA ≤ L2). A geometric proof
was given by Steiner (1838). An analytic proof was given by Weierstrass and by Edler 1. The proof
by Hurwitz (1902) using Fourier method will be given in later Chapter.

Minimal surface spanned by a given contour Suppose a contour in 3D is given by h(x, y) with
(x, y) ∈ ∂Ω, where Ω is a simple domain in R2. The problem is to find surface z(x, y) such that

z(x, y) = h(x, y) for (x, y) ∈ ∂Ω,

and z minimize the area ∫
Ω

√
1 + z2

x + z2
y dx dy.

The minimal surface problem was studied by Lagrange (1762). Classical examples include plane,
catenoids, helicoids. There were many interesting minimal surfaces found in the past two centuries
2.

1.4 Euler-Lagrange Equation

Let us consider the following variational problem: minimize

J [y] :=

∫ b

a
F (x, y(x), y′(x)) dx

subject to the boundary conditions

y(a) = ya, y(b) = yb.

The set
A = {y : [a, b]→ Rn ∈ C1|y(a) = ya, y(b) = yb}

1 You can read a review article by Alan Siegel, A historical review of isoperimetric theorem in 2-D, and its place
in elementary plan geometry, http://www.cs.nyu.edu/faculty/siegel/SCIAM.pdf. For applications, you may find a book
chapter from Fan in http://www.math.ucsd.edu/ fan/research/cb/ch2.pdf

2You may found more interesting minimal surfaces from Wiki http://en.wikipedia.org/wiki/Minimal surface
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is called an admissible class. Here, C1[a, b] denotes the set of functions from [a, b] to Rn which are
continuously differentiable. Given a path y ∈ A, we consider a variation of this path in the direction
of v by

y(x, ε) := y(x) + εv(x).

Here, v is a C1 function with v(a) = v(b) = 0 in order to have y(·, ε) ∈ A for small ε. Such v
is called a variation. Sometimes, it is denoted by δy. We can plug y(·, ε) into J . Suppose y is a
local minimum, then for any such variation v, J [y + εv] takes minimum at ε = 0. This leads to a
necessary condition:

d

dε

∣∣∣
ε=0
J [y + εv] = 0.

Let us compute this derivative

d

dε

∣∣∣
ε=0
J [y + εv] =

∫ b

a

∂

∂ε

∣∣∣
ε=0

F (x, y(x) + εv(x), y′(x) + εv′(x)) dx

=

∫ b

a
Fy(x, y(x), y′(x))v(x) + Fy′(x, y(x), y′(x))v′(x) dx

It is understood that ∂F/∂y′ here means the partial derivative w.r.t. the third variable y′. For in-
stance, suppose F = y′2/2, then ∂F/∂y′ = y′.

Theorem 1.1 (Necessary Condition). A necessary condition for y ∈ A to be a local minimum of J
is ∫ b

a
Fy(x, y(x), y′(x))v(x) + Fy′(x, y(x), y′(x))v′(x) dx = 0 (1.1)

for all v ∈ C1[a, b] with v(a) = v(b) = 0.

If the solution y ∈ C2, then we can take integration by part on the second term to get∫ b

a
Fy′(x, y(x), y′(x))v′(x) dx = −

∫ b

a

d

dx
Fy′(x, y(x), y′(x))v(x) dx.

Here, we have used v(a) = v(b) = 0. Thus, the necessary condition can be rewritten as∫ b

a

(
Fy(x, y(x), y′(x))− d

dx
Fy′(x, y(x), y′(x))

)
v(x) dx = 0

for all v ∈ C1[a, b] with v(a) = v(b) = 0. A fundamental theorem of calculus of variations is that

Theorem 1.2. If f ∈ C[a, b] satisfies ∫ b

a
f(x)v(x) dx = 0

for all C∞[a, b] with v(a) = v(b) = 0, then f ≡ 0.
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Proof. If f(x0) 6= 0 for some x0 ∈ (a, b) (say f(x0) = C > 0), then there is small neighborhood
(x0 − ε, x0 + ε) such that f(x) > C/2. We can choose v to be a hump such that v(x) = 1 for
|x − x0| ≤ ε/2 and v(x) ≥ 0 and v(x) = 0 for |x − x0| ≥ ε. The test function still satisfies the
boundary constraint if ε is small enough. Using this v, we get∫ b

a
f(x)v(x) dx ≥ Cε

2
> 0.

This contradicts to our assumption. We conclude f(x0) = 0 for all x0 ∈ (a, b). Since f is continu-
ous on [a, b], we also have f(a) = f(b) = 0 by continuity of f .

Thus, we obtain the following stronger necessary condition.

Theorem 1.3. A necessary condition for a local minimum y of J in A ∩ C2 is

δJ
δy

:= Fy(x, y(x), y′(x))− d

dx
Fy′(x, y(x), y′(x)) = 0. (1.2)

Equation 1.2 is called the Euler-Lagrange equation for the minimization problem minJ [y].

Example For the problem of minimizing arc length, the functional is

J (y) =

∫ b

a

√
1 + y′2 dx,

where y(a) = y0, y(b) = y1. The corresponding Euler-Lagrange equation is

− d

dx
Ly′ =

d

dx

(
y′√

1 + y′2

)
= 0.

This yields
y′√

1 + y′2
= Const.

Solving y′, we further get
y′ = C (a constant).

Hence y = Cx+D. Applying boundary condition, we get

C =
y1 − y0

b− a
,D =

by0 − ay1

b− a
.

Thus, the minimal arc length curve is a straight line.
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1.5 Problems from Mechanics

Least action principle In classical mechanics, the motion of particles in R3 is described by

mẍ = −∇V (x) = F.

Here, V (x) is a potential and F is the (conservative) force. This is called Newton’s mechanics.
Typical examples of potentials are the harmonic potential V (x) = k2

2 |x|
2 for a mass-spring system,

and Newtonian potential V (x) = − G
|x| for solar-planet system. Here, k is the spring constant, G,

the gravitation constant.
The Newton mechanics was reformulated by Lagrange (1788) in variational form and was orig-

inally motivated by describing particle motions under constraints. Let us explain this variational
formulation without constraint. First, let us introduce the concept of virtual velocity or variation of
position. Given a path x(t), t0 ≤ t ≤ t1, consider a family of paths

xε(t) := x(t, ε) := x(t) + εv(t), t0 ≤ t ≤ t1,−ε0 < ε < ε0.

Here, v(t) is called a virtual velocity and xε(·) is called a small variation of the path x(·). Some-
times, we denote v(·), the variation of xε(·) by δx. That is, δx := ∂ε|ε=0xε.

Now, the Newton’s law of motion can be viewed as

δW = (F −mẍ) · v = 0 for any virtual velocity v.

The term δW is called the total virtual work in the direction v. The term F · v is the virtual work
done by the external force F , while mẍ · v is the work done by the inertia force. The d’Alembert
principle of virtual work states that the virtual work is always zero along physical particle path
under small perturbation δx.

If we integrate it in time from t0 to t1 with fixed v(t0) = v(t1) = 0, then we get

0 =

∫ t1

t0

−mẍ · v −∇V (x) · v dτ

=

∫ t1

t0

mẋ · v̇ − ∂εV (xε) dτ

=

∫ t1

t0

∂ε
1

2
m|ẋε|2 − ∂εV (xε) dτ

= ∂ε

∫ t1

t0

L(xε, ẋε) dτ = δS.

Here,

L(τ, x, ẋ) :=
1

2
m|ẋ|2 − V (x),

is called the Lagrangian, and the integral

S =

∫ t

t0

L(τ, x(τ), ẋ(τ)) dτ
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is called the action. Thus, δS = 0 along a physical path. This is called the Hamilton principle or
the least action principle. You can show that the corresponding Euler-Language equation is exact
the Newton’s law of motion. Thus the following formulations are equivalent:

• Newton’s equation of motion mẍ = −V ′(x);

• d’Alembert principle of virtual work:
∫ t1
t0
mẋ · v̇ − V ′(x)v dt = 0 for all virtual velocity v;

• Hamilton’s least action principle: δ
∫ t1
t0

m
2 |ẋ|

2 − V (x) dt = 0.

One advantage of variational formulation – first integral One advantage of this variational
formulation is that it is easy to find some invariants (or so-called integrals) of the system. One
exmple is the existence of first integral.

Theorem 1.4. When the Lagrangian L(x, ẋ) is independent of t, then the quantity (called the first
integral)

I(x, ẋ) := ẋ · ∂L
∂ẋ
− L

is independent of t along physical trajectories.

Proof. We differentiate I along a physical trajectory:

d

dt
[ẋLẋ − L] = ẍLẋ + ẋ

d

dt
Lẋ − Lxẋ− Lẋẍ

= ẋ

(
d

dt
Lẋ − Lx

)
= 0.

For the Newton mechanics where L(x, ẋ) = 1
2m|ẋ|

2 − V (x), this first integral is indeed the
total energy. Indeed, we obtain

I(x, ẋ) =
1

2
m|ẋ|2 + V (x).

1.6 Method of Lagrange Multiplier

In variational problems, there are usually accompanied with some constraints. As we have seen that
the iso-perimetric problem. Lagrange introduced auxiliary variable, called the Lagrange multiplier,
to solve these kinds of problems. Below, we use the hanging rope problem to explain the method of
Lagrange multiplier.
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Hanging rope problem A rope given by y(x), a ≤ x ≤ b hangs two end points (a, ya) and
(b, yb). Suppose the rope has length ` and density ρ(x). Suppose the rope is in equilibrium, then it
minimizes its potential energy, which is

J [y] =

∫ `

0
ρgy ds =

∫ b

a
ρgy

√
1 + y′2 dx.

The rope is subject to the length constraint

W[y] =

∫ b

a

√
1 + y′2 dx = `.

Method of Lagrange multiplier In dealing with such problems, it is very much like the opti-
mization problems in finite dimensions with constraints. Let us start with two dimensional ex-
amples. Suppose we want to minimize f(x, y) with constraint g(x, y) = 0. The method of La-
grange multiplier states that a necessary condition for (x0, y0) being such a solution is that, if
∇g(x0, y0) 6= 0, then ∇f(x0, y0) ‖ ∇g(x0, y0). This means that there exists a constant λ0 such
that∇f(x0, y0)+λ0∇g(x0, y0) = 0. In other words, (x0, y0, λ0) is an extremum of the unconstraint
function F (x, y, λ) := f(x, y) + λg(x, y). That is, (x0, y0, λ0) solves

∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂λ
= 0.

The first two is equivalent to ∇f(x0, y0) ‖ ∇g(x0, y0). The last one is equivalent to the constraint
g(x0, y0) = 0. The advantage is that the new formulation is an unconstrained minimization problem.

For constrained minimization problem in n dimensions, we have same result. Let y = (y1, ..., yn).
f : Rn → R and g : Rn → R. Consider

min f(y) subject to g(y) = 0.

A necessary condition for y0 being such a solution is that, if ∇g(y0) 6= 0, then there exists λ0

such that (y0, λ0) is an extremum of the unconstraint function F (y, λ) := f(y) + λg(y). That is,
(y0, λ0) solves

∂F

∂y
(y0, λ0) = 0,

∂F

∂λ
(y0, λ0) = 0.

For variational problem, we have much the same. Let us consider a variational problem in an
abstract form:

minJ [y] subject to W[y] = 0

in some admissible class A = {y : [a, b] → R|y(a) = ya, y(b) = yb} in some function space. We
approximate this variational problem to a finite dimensional problem. For any large n, we partition
[a, b] into n even subintervals:

xi = a+ i
b− a
n

, i = 0, ..., n.
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We approximate y(·) ∈ A by piecewise linear continuous function ỹ with

ỹ(xi) = y(xi), i = 0, ..., n.

The function ỹ ∈ A has an one-to-one correspondence to y := (y1, ..., yn−1) ∈ Rn−1. We approxi-
mate J [y] by J(y) := J [ỹ], andW[y] by W (y) =W[ỹ]. Then the original constrained variational
problem is approximated by a constrained optimization problem in finite dimension. Suppose y0 is
such a solution. According to the method of Lagrange multiplier, if∇W (y0) 6= 0, then there exists
a λ0 such that (y0, λ0) solves the variational problem: J(y) + λW (y).

Notice that the infinite dimensional gradient δW/δy can be approximated by the finite dimen-
sional gradient∇W (y). That is

δW
δy

[y] ≈ δW
δy

[ỹ] =
∂W

∂y
= ∇W (y).

We summarize the above intuitive argument as the following theorem.

Theorem 1.5. If y0 is an extremum of J [·] subject to the constraintW[y] = 0, and if δW/δy 6= 0,
then there exists a constant λ0 such that (y0, λ0) is an extremum of the functional J [y] + λW[y]
with respect to (y, λ).

*Remark. A more serious proof is the follows.

1. We consider two-parameter variations

z(x) = y(x) + ε1h1(x) + ε2h2(x).

The variation hi should satisfy the boundary conditions: hi(a) = hi(b) = 0 in order to have
z satisfy the boundary conditions: z(a) = ya and z(b) = yb. For arbitrarily chosen such
variations hi, we should also require εi satisfying

W (ε1, ε2) =W[y + ε1h1 + ε2h2] = 0.

On the variational subspaces spanned by hi, i = 1, 2, the functional J becomes

J(ε1, ε2) := J [y + ε1h1 + ε2h2].

Thus the original problem is reduced to

min J(ε1, ε2) subject to W (ε1, ε2) = 0

on this variational subspace. By the method of Lagrange multiplier, there exists a λ such that
an extremum of the original problem solves the unconstraint optimization problem min J +
λW . This leads to three equations

0 =
∂

∂ε1
(J + λW ) =

(
δJ
δy

+ λ
δW
δy

)
· h1

0 =
∂

∂ε2
(J + λW ) =

(
δJ
δy

+ λ
δW
δy

)
· h2

0 =
∂

∂λ
(J + λW ) =W[y]
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2. Notice that the Lagrange multiplier λ so chosen, depends on h1 and h2. We want o show that
it is indeed a constant. This is proved below.

3. Since δW/δy(x) 6= 0, we choose x1 where δW/δy(x1) 6= 0. For any x2 ∈ (a, b), we
consider hi = δ(x− xi), i = 1, 2. Here, δ is the Dirac delta function. It has the property: for
any continuous function f , ∫

f(x)δ(x− x0) dx = f(x0).

By choosing such hi, we obtain that there exists a λ12 such that

δJ
δy

(x1) + λ12
δW
δy

(x1) = 0

δJ
δy

(x2) + λ12
δW
δy

(x2) = 0

In other words, the constant

λ12 = −
δJ
δy (x1)

δW
δy (x1)

.

For any arbitrarily chosen x2, we get the same constant. Thus, λ12 is independent of x2. In
fact, the above formula shows

δJ
δy (x1)

δW
δy (x1)

=

δJ
δy (x2)

δW
δy (x2)

,

for any x2 6= x1. This means that there exists a constant λ such that

δJ
δy

(x) + λ
δW
δy

(x) = 0 for all x ∈ (a, b).

Apply the Lagrange method to the hanging rope problem Let us go back to investigate the
hanging rope problem. By the method of Lagrangian multiplier, we consider the extremum problem
of new Lagrangian

L(y, y′, λ) = ρgy

√
1 + y′2 + λ

√
1 + y′2.

The Lagrangian is independent of x, thus it admits the first integral L− y′Ly′ = C, or

(ρgy + λ)

(√
1 + y′2 − y′2√

1 + y′2

)
= C.

Solving for y′ gives

y′ = ± 1

C

√
(ρgy + λ)2 − C2.
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Using method of separation of variable, we get

dy√
(ρgy + λ)2 − C2

= ±dx
C
.

Change variable u = ρgy + λ, we get

1

ρg
cosh−1

( u
C

)
= ± x

C
+ C1.

Hence

y = − λ

ρg
+
C

ρg
cosh

(ρgx
C

+ C2

)
.

The constraints C, C2 and the Lagrange multiplier λ are then determined by the two boundary
conditions and the constraint. The shape of this hanging rope is called a catenary.

1.7 A problem from spring-mass system
3

Consider a spring-mass system which consists of n masses placed vertically between two walls.
The n masses and the two end walls are connected by n + 1 springs. If all masses are zeros, the
springs are “at rest” states. When the masses are greater than zeros, the springs are elongated due
to the gravitation force. The mass mi moves down ui distance, called the displacement. The goal is
to find the displacements ui of the masses mi, i = 1, ..., n.

In this model, the nodes are the masses mi. We may treat the end walls are the fixed masses,
and call them m0 and mn+1, respectively. The edges (or the bonds) are the springs. Let us call the
spring connecting mi and mi+1 by edge (or spring) i, i = 1, ..., n + 1. Suppose the spring i has
spring constant ci. Let us call the downward direction the positive direction.

Let me start from the simplest case: n = 1 and no bottom wall. The mass m1 elongates the
spring 1 by a displacement u1. The elongated spring has a restoration force −c1u1 acting on m1.4

This force must be balanced with the gravitational force on m1.5 Thus, we have

−c1u1 + f1 = 0,

where f1 = m1g, the gravitation force on m1, and g is the gravitation constant. From this, we get

u1 =
f1

c1
.

Next, let us consider the case where there is a bottom wall. In this case, both springs 1 and 2 exert
forces upward to m1. The balance law becomes

−c1u1 − c2u1 + f1 = 0.
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This results u1 = f1/(c1 + c2).
Let us jump to a slightly more complicated case, say n = 3. The displacements

u0 = 0, u4 = 0,

due to the walls are fixed. The displacements u1, u2, u3 cause elongations of the springs:

ei = ui − ui−1, i = 1, 2, 3, 4.

The restoration force of spring i is
wi = ciei.

The force exerted to mi by spring i is −wi = −ciei. In fact, when ei < 0, the spring is shortened
and it pushes downward to mass mi (the sign is positive), hence the force is −ciei > 0. On the
other hand, when ei > 0, the spring is elongated and it pull mi upward. We still get the force
−wi = −ciei < 0. Similarly, the force exerted to mi by spring i + 1 is wi+1 = ci+1ei+1. When
ei+1 > 0, the spring i+1 is elongated and it pullsmi downward, the force is wi+1 = ci+1ei+1 > 0.
When ei+1 < 0, it pushes mi upward, and the force wi+1 = ci+1ei+1 < 0. In both cases, the force
exterted to mi by spring i+ 1 is wi+1.

Thus, the force balance law on mi is

wi+1 − wi + fi = 0, i = 1, 2, 3.

There are three algebraic equations for three unknowns u1, u2, u3. In principle, we can solve it.
Let us express the above equations in matrix form. First, the elongation:

e = Au, or


e1

e2

e3

e4

 =


1
−1 1

−1 1
−1


 u1

u2

u3


the restoration force:

w = Ce, or


w1

w2

w3

w4

 =


c1

c2

c3

c4




e1

e2

e3

e4


the force balance laws:

Atw = f, or

 1 −1
1 −1

1 −1




w1

w2

w3

w4

 =

 f1

f2

f3


3This section is mainly from Gilbert Strang’s book, Computational and Applied Mathematics.
4The minus sign is due to the direction of force is upward.
5The mass m1 is in equilibrium.
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where At is the transpose of A.
We can write the above equations in block matrix form as(

C−1 A
At 0

)(
−w
u

)
=

(
0
−f

)
.

This kind of block matrix appears commonly in many other physical systems, for instance, network
flows, fluid flows. In fact, any optimization system with constraint can be written in this form. Here,
the constraint part is the second equation. We shall come back to this point in the next section.

One way to solve the above block matrix system is to eliminate the variable w and get

Ku := AtCAu = f.

The matrix K := AtCA is a symmetric positive definite matrix. It is called the stiffness matrix. For
n = 4, we get

K := AtCA =

 c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3 + c4


Mimimum principle Consider the functional

P (u) :=
1

2
(Ku, u)− (f, u),

where K is a symmetric positive definite matrix in Rn. The directional derivative of P at u in the
direction v is defined as

P ′(u)v =
d

dt

∣∣∣∣
t=0

P (u+ tv)

P ′(u) is called the gradient (or the first variation) of P at u. We can compute this gradient: 6

P ′(u)v =
d

dt

∣∣∣∣
t=0

1

2
(K(u+ tv), u+ tv)− (f, u+ tv)

=
1

2

(
(Kv, u) + (Ku, v)

)
− (f, v)

= (Ku− f, v).

Here, we have used K being symmetric. Thus,

P ′(u) = Ku− f.

The second derivative is the Hessian. It is

P ′′(u) = K.

6 Here, I use the following properties: (f, g)′ = (f ′, g) + (f, g′). This is because (f, g) =
∑
i figi and (f, g)′ =∑

i

(
f ′igi + fi, g

′
i

)
= (f ′, g) + (f, g′).
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If u∗ is a minimum of P (v), then P ′(u∗) = 0. This is called the Euler-Lagrange equation of P .
Conversely, If u∗ satisfies the Euler-Lagrange equation Ku∗ = f , then u∗ is the minimum of

P (v). In fact, for any v, we compute P (v)− P (u∗). We claim

P (v)− P (u∗) =
1

2
(K(v − u∗), v − u∗).

To see this, since P (v) is a quadratic function of v, we can complete the squares:

P (v)− P (u∗) =
1

2
(Kv, v)− (f, v)− 1

2
(Ku∗, u∗) + (f, u∗)

=
1

2
(Kv, v)− 1

2
(Ku∗, u∗)− (f, v − u∗)

=
1

2
(Kv, v)− 1

2
(Ku∗, u∗)− (Ku∗, v − u∗)

=
1

2
(Kv, v) +

1

2
(Ku∗, u∗)− (Ku∗, v)

=
1

2
(K(v − u∗), v − u∗) ≥ 0.

Hence we get that u∗ is a minimum. In fact, u∗ is the only minimum because P (v) = P (u∗) if and
only if (K(v − u∗), v − u∗) = 0. Since K is positive definite, we get v − u∗ = 0.

We conclude the above discussion as the follows.

Theorem 1.6. Let P (u) := 1
2(Ku, u) − (f, u) and K is symmetric positive definite. The vector

u∗ which minimizes P (v) must satisfy the Euler-Lagrange equation P ′(u∗) = Ku∗ − f = 0. The
converse is also true.

The physical meaning of P is the total potential energy of the spring-mass system. Indeed,

1

2
(CAu,Au) =

n∑
i=1

1

2
ci(ui − ui−1)2

is the sum of the potential energy stored in the spring, whereas the term

(f, u) =
n∑
i=1

fiui

is the sum of the works done by the massmi with displacement ui for i = 1, ..., n. The term−(f, u)
is the gravitational potential due to the masses mi with displacements ui.

1.8 A Problem from Elasticity

Consider a continuous elastic bar7 of length 1, which is hanged vertically. (it is displaced up and
down due to gravity). Set up an x-axis along the bar, so that its positive direction pointing down-
wards and its origin is located at the top of the elastic bar. Consider any point at x along the bar (the

7You may pull back and forth an elastic bar and its length is much bigger than its size of cross-section.
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position is at x if no external force present), it is displaced down to x+ u(x) because of the action
of the external force of gravity8. Function u(x) is called the displacement. The stretching at any
point is measured by the derivative e = du/dx, called the strain. If u is a constant, the elastic bar
is un-stretched. Otherwise the stretching of the bar produces an internal force called stress (one can
experience this force easily by pulling the two ends of an elastic bar). By experiments, people find
this internal force is proportional to the strain of the bar, i.e.

(internal force) σ(x) = c(x)
du

dx
,

where c(x) is a constant determined by the elastic material, or a function if the material is inhomo-
geneous.

To set up the model, we take a small piece of the bar [x, x +4x], its equilibrium requires all
forces acted on it to be balanced. We have(

ac(x)
du

dx

)
x+4x

−
(
ac(x)

du

dx

)
x

+ (ρ4xa)g = 0, (1.3)

where g is the gravitational constant, a the cross-sectional area, and ρ(x) the density at position x.
Dividing both sides of equation (1.3) by a4x, then taking ∆x→ 0, we get

− d

dx
(c(x)

du

dx
) = f(x) (1.4)

where f(x) = g ρ(x), the external force per unit length.
The equation (1.4) must come with some appropriate physical boundary conditions to ensure it

is well-posed.

Boundary conditions

(a) Both ends of the elastic bar are fixed, so no displacements:

u(0) = 0, u(1) = 0.

This is called Dirichlet boundary conditions.

(b) Top end of the elastic bar is fixed (no displacement), the other end is free (no internal force
since it is in the air):

u(0) = 0, w
∣∣
x=1

= c(x)
du

dx

∣∣
x=1

= 0 .

The first is called a Dirichlet boundary condition, the second is called a Neumann boundary
condition. The boundary conditions

u(0) = 0, or u(1) = 0

8Some other external force may be considered.
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or
c(x)

du

dx

∣∣
x=1

= 0

are all called homogeneous boundary conditions, while the boundary conditions

u(0) = −1, or u(1) = 2,

or
c(x)

du

dx

∣∣
x=1

= 3

are all called non-homogeneous boundary conditions. A physical example of the last bound-
ary condition is that there is a object with weight 3 hanging at the end x = 1.

Variational formulation We shall discuss how to derive the variational formulation for the differ-
ential equation (1.4) with Dirichlet boundary conditions. The same methodology can be applied to
any other second order differential equations such as the Sturm-Liouville systems and more general
boundary conditions.

The derivation is standard and simple. To do so, we multiply both sides of equation (1.4) by
an arbitrary test function v (called virtual strain), satisfying v(0) = v(1) = 0 then integrating over
(0, 1) gives ∫ 1

0

(
− d

dx

(
c(x)

du

dx

)
v(x)

)
dx =

∫ 1

0
f(x)v(x) dx .

Now by integration by parts and use the boundary conditions v(0) = v(1) = 0, we have∫ 1

0

(
c(x)

du

dx

dv

dx

)
dx =

∫ 1

0
f(x)v dx.

This leads to the variational formulation for the equations (1.4) with Dirichlet boundary condition.
Namely,
Find the solution u such that u(0) = 0, u(1) = 0 and

a(u, v) = g(v) for any v satisfying v(0) = 0 and v(1) = 0 (1.5)

where a(·, ·) and g(·) are given by

a(u, v) =

∫ 1

0

(
c(x)

du

dx

dv

dx

)
dx, g(v) =

∫ 1

0
f(x)v dx.

Definition 1.1. • A C2-solution of (1.4) is called a classical solution.

• A solution of (1.5) is called a weak solution of (1.4).

The advantage of this variational formulation (or called weak formulation) is that it involves only
first order derivatives of u, not second derivatives in the original differential equation formulation.
Thus, it has less regularity constraint on the solution u. Physically, we do encounter discontinuous
coefficients. the stiffness function c(x) is discontinuous if it is made of two different materials with
different stiffness and connected at a point. We have the following proposition
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Proposition 1.1. Suppose c(x) is discontinuous at x̄ and smooth elsewhere. Suppose uis continuous
and is a C2 solution of (1.4) on both sides of x̄. Then u is a solution of (1.5) if and only if it satisfies
the following jump condition across x̄:

[cux] = 0 across x̄.

Here, [f ] := f(x̄+)− f(x̄−) denotes the jump across x̄.

Minimal energy formulation Similar to the argument in classical mechanics, for Dirichlet bound-
ary condition, one can define the energy by

E[u] :=
1

2
a(u, u)− g(u),

and the admissible class
A = {u ∈ C1[0, 1]|u(0) = u(1) = 0}.

Then the Euler-Lagrange corresponding to

min
u∈A

E[u]

is

− d

dx

(
c(x)

du

dx

)
= f(x)

with u(0) = u(1) = 0.

In conclusion, The following three formulations are equivalent for u with u(0) = u(1) = 0:

• Minimizing energy

min
u

∫ 1

0

1

2
c(x)u2

x − f(x)u(x) dx

• Variational formulation∫ 1

0
(c(x)uxvx − f(x)v(x)) dx = 0 for all v with v(0) = v(1) = 0

• The Euler-Lagrange equation

− d

dx
(c(x)

du

dx
) = f(x)

What is the energy functional corresponding to the boundary condition u(0) = 0 and the free-end
boundary condition c(1)ux(1) = 3?
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Elastic bar model is a continuous limit of the spring-mass system. In the continuous model
(1.4), we divide the domain [0, 1] into n+1 subintervals uniformly, each has length ∆x = 1/(n+1).
We label grid points i∆x by xi. We imagine there are massesmi at xi with springs connecting them
consecutively. Each spring has length ∆x while it is at rest. According to the spring-mass model,
we have

ci(ui − ui−1)− ci+1(ui+1 − ui) = mig.

where ci is the spring constant of the spring connecting xi to xi+1. As ∆x ≈ 0 with xi ≈ x, we
have

mi ≈ ρ(xi)∆x, ci ≈ c(xi−1/2)/∆x.

Here, ρ is the density. Why the spring constant is proportional to 1/∆x? Think about the problem:
Let us connect n springs with the same spring constant, what is the resulting spring constant?

Now, we this approximation, we get that for small ∆x, the spring-mass system becomes

1

∆x

(
c(xi−1/2)(ui − ui−1)− c(xi+1/2)(ui+1 − ui)

)
= ρ(xi)∆x.

As we take ∆x→ 0, we get the equation for the elastic bar:

− d

dx

(
c(x)

d

dx
u(x)

)
= f(x),

where f = gρ.
Notice that the end displacements u0 and un+1 satisfy the fix-end boundary conditions

u0 = 0, un+1 = 0.

which correspond to the boundary condition of u(·) in the elastic bar model:

u(0) = 0, u(1) = 0.

1.9 A Problem from Fluid Mechanics

Let us consider two-dimensional incompressible and irrotational flows. The incompressibility reads

∇ · u = 0.

The irrotationality gives
∇× u = 0.

From the second, there exists a function φ such that u = ∇φ. This together with∇ · u = 0, we get

∇2φ = 0.

Suppose the fluid is outside some domain Ω. Then on the boundary ∂Ω, u · n = 0. Here, n is the
outer normal of ∂Ω. This is equivalent to the Neumann boundary condition for φ:

∇φ · n = 0.
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At far field, we assume that the flow is at constant velocity (−U, 0). This is equivalent to φ(x) =
−Ux as |x| → ∞. We can subtract φ0 = −Ux from φ. Let Φ := φ− φ0. Then Φ satisfies

∇2Φ = 0,

∇Φ · n = −Unx, Φ(x)→ 0 as |x| → ∞.

Here, n = (nx, ny) is the outer normal of ∂Ω. To derive the formulation, we multiply a test potential
ψ on both sides of∇2Φ = 0, then integrate over the outer domain Ωc. We require ψ(∞) = 0.

0 =

∫
Ωc
∇2Φψ dx

= −
∫

Ωc
∇Φ · ∇ψ dx+

∫
Ωc
∇ · ((∇Φ)ψ) dx

= −
∫

Ωc
∇Φ · ∇ψ dx−

∫
∂Ω
ψ∇Φ · ndx

= −
∫

Ωc
∇Φ · ∇ψ dx+

∫
∂Ω
ψUnx dx

Thus, the variation formulation is to find Φ such that∫
Ωc
∇Φ · ∇ψ dx−

∫
∂Ω
ψUnx dx = 0

for all test function ψ ∈ C1(Ωc) with ψ(∞) = 0.
The optimization formulation is to find

min
Φ∈A

{
1

2

∫
Ωc
|∇Φ|2 dx+

∫
∂Ω

ΦUnx dx = 0

}
A = {Φ ∈ C1(Ωc)||Φ(x)| → 0 as |x| → ∞}.

I leave you to prove that the above three formulations are equivalent when Φ ∈ C2(Ωc) and Φ(∞) =
0.

1.10 A problem from image science – Compressed Sensing

In image science, sometimes the data (image) is very sparse under some representation. For in-
stance, the cartoon image is piecewise smooth. Hence it is sparse if it is represented in wavelets.
If the image is expressed as a vector x in Rn space. The dimension n = 5122 for a 512 × 512
image. As x is represented in wavelets: x = Ψd =

∑
i diψi, most coefficients {di} are zeros, or

very closed to zeros. In this case, we say x is sparse as represented in terms of Ψ.
The data is usually detected by so-called sensing matrix A, which is an m × n matrix. Each

individual sensing is
bi =

∑
j

aijxj + ni,



22 CHAPTER 1. SOME MOTIVATION FROM CALCULUS OF VARIATIONS

where bi is the data collected, ni is a noise.
The idea of compressed sensing is that to detect a sparse data x (or d) by an m × n sensing

matrix A with m << n. If the noise is Gaussian white with mean 0 and variance ε, then we have

‖Ax− b‖2 ≤ ε.

There are infinite many x ∈ Rn satisfying the above constraint. Among them, we want to find the
one which is most sparse as represented in Ψ. That is,

min
d
|d|0 subject to ‖AΨd− b‖2 ≤ ε.

Here, the L0 ”norm” is defined to be

|d|0 = #{di 6= 0}.

Indeed, | · |0 is not a norm. This optimization problem is a non-convex optimization problem. It
algorithm is an N-P hard problem. In the theory of compressed sensing, if AΨ satisfies certain
in-coherence condition, then the problem is equivalent to the following L1 minimization problem:

min
d
|d|1 subject to ‖AΨd− b‖2 ≤ ε,

where
|d|1 :=

∑
i

|di|.

This is a convex optimization problem which enjoys polynomial computational complexity and
many numerical algorithms are available.

Homeworks 1.1. 1. Prove Proposition 1.1. Also state and prove this proposition for two dimen-
sional case.

2. In the one-dimensional elastic bar model, what is the energy functional corresponding to the
boundary condition u(0) = 0 and the free-end boundary condition c(1)ux(1) = 3?

3. Search some pictures of minimal surfaces and make an album of minimal surfaces. Don’t
forget to quote where they are from.

4. Derivate the Euler-Lagrange equation for the minimal surface problem in 3D.
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Figure 1.1: Classical minimal surfaces: Helicoid. http://mathworld.wolfram.com/Catenoid.html
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u1 

m1 
m1 

-c1u1 

m1g 

-c1u1 

m1g 

-c2u1 

Figure 1.2: The left one is a spring without any mass. The middle one is a spring hanging a mass
m1 freely. The right one is a mass m1 with two springs fixed on the ceiling and floor.



Chapter 2

Metric Spaces, Banach Spaces

2.1 Metric spaces

2.1.1 History and examples

The French mathematician Maurice Fréchet (1878-1973) introduced metric spaces in 1906 in his
dissertation, in which he opened the field of functionals on metric spaces and introduced the notion
of compactness [Wiki]. These are important concepts of point set topology.

Definition 2.1. Given a set X . A metric d is a mapping d : X ×X → R satisfying

(a) d(x, y) ≥ 0 for all x, y ∈ X , and d(x, y) = 0 if and only if x = y;

(b) d(x, y) = d(y, x) for all x, y ∈ X;

(c) (triangle inequality) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X .

A metric space (X, d) is a set X equipped with a metric d.

Examples

1. The sphere S2 equipped with the Euclidean distance in R3 is a metric space. The sphere
S2 can also have another metric, the geodesic distance (or the great circle). The geodesic
distance d(x, y) is the shortest distance among any path on the sphere connecting x and y .

2. The continuous function space C[a, b] is defined by

C[a, b] = {u : [a, b] 7→ R is continuous}

with the metric
d(u, v) := sup

x∈[a,b]
|u(x)− v(x)|.

You can check d is a metric.

25
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3. A (undirected) graph G = (V,E) consists of vertex set V = {x, y, ...} and edge set E =
{e = (x, y), ...}. Two vertices x, y are called adjacent to each other if there is an edge
e ∈ E connecting them, and their distance is defined to be 1. A path consists of connecting
edges. The distance between any two vertices x and y is defined to be the shortest distance
along all paths connecting them, if any; otherwise it is defined to be infinity. Let N = |V |
be the number of vertices and A be an N × N matrix whose (i, j) entry is 1 if there is
an edge connecting vertices i and j; and is zero otherwise. Then the distance d(i, j) =
min{n|(An)(i, j) 6= 0}. Here, (An)(i, j) means the (i, j) entry of the matrix An. The graph
G with this metric is a typical example of discrete metric space. However, this part is not
what we concern in this lecture.

2.1.2 Limits and Continuous Functions

Definition 2.2. A sequence {xn} in a metric space X is said to converge to x ∈ X if d(xn, x)→ 0
as n → ∞. That is, all but finite of them cluster at x. In other word, for any ε > 0 there exists N
such that d(xn, x) < ε for all n ≥ N .

Some basic notions.

• A point x is called a limit point of a set A in a metric space X if it is the limit of a sequence
{xn} ⊂ A and xn 6= x.

• The closure of a set A in a metric space X is the union of A with all its limit points. We
denote it by Ā.

• A set A is called closed if A = Ā.

• The set B(x, ε) := {y ∈ X|d(x, y) < ε} denote the ε-ball centered at x.

• A point x is called an interior point of a setA if there exists a neighborB(x, ε) ⊂ A for some
ε > 0. The set of all interior points of A is called the interior of A and is denoted by Ao.

• A set A is called open if A = Ao.

• The complement of a set A is Ac := {x ∈ X|x 6∈ A}
One can show the following basic properties

• (Ao)o = Ao

• ¯̄A = Ā

• (Ā)c = (Ac)o

• Arbitrary union of open sets is open.

• Arbitrary intersection of closed sets is closed.

• Finite union of closed sets is closed.

• Finite intersection of open sets is open.
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Examples

1. The sequence {(−1)n + 1
n} has no limit.

2. The closure of Q in R is R.

3. R is both open and closed.

Some limit properties in R

1. Infimum and limit infimum for a set Let A be a set in R. We have the following definitions.

(a) b is a low bound of A: if b ≤ x for any x ∈ A.

(b) m is the infimum of A, or the greatest low bound (g.l.b.) of A: if (a) m is a low bound
of A, (b) b ≤ m for any low bound b of A. We denote it by inf A.

(c) m is the limit inferior (or limit infimum): if m is the infimum of the set of the limit
points of A; we denote it by lim inf A. If the limit point set of A is empty, then we
define lim inf A =∞.

(d) We have the following property: if A has a lower bound, then the following statements
are equivalent: m = lim inf A⇔ for any ε > 0, (a) all x ∈ A but finite many satisfies
m− ε < x and (b) there exists at least one x ∈ A such that x < m+ ε.

2. Supremum and limit superior for a set Let A be a set in R. We have the following defini-
tions.

(a) u is a low bound of A: if u ≥ x for any x ∈ A.

(b) M is the supremum of A, or the least upper bound (l.u.b.) of A: if (a) M is a upper
bound of A, (b) u ≥M for any upper bound u of A. We denote it by supA.

(c) M is the limit superior (or limit supremum): if M is the supremum of the set of the
limit points of A. We denote it by lim supA. If the limiting set is empty, we define
lim supA = −∞.

(d) We have the following property: if A has an upper bound, then the following statements
are equivalent: M = lim supA⇔ for any ε > 0, (a) all x ∈ A but finite many satisfies
M + ε > x and (b) there exists at least one x ∈ A such that x > M − ε.

3. Infimum and limit infimum for a sequence Let (xn) be a sequence. Then the definition of
infimum and liminf of (xn) is just to treat them as a set. The definition of liminf is equivalent
to

m = lim inf xn ⇔ m = limn→∞ inf
m≥n

xm ⇔ m = sup
n≥0

inf
m≥n

xm.

Examples

1. Let xn = (−1)n − 1/n, n ≥ 1. Then inf{xn} = −2 and lim infn→∞ xn = −1.

2. Let A = {sinx|x ∈ (−π/2, π/2)}. Then inf A = lim inf A = −1.
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Continuous functions

Definition 2.3. Let f be a function which maps (X, dX) into (Y, dY ). We say f is continuous at a
point x0 ∈ X if for any ε > 0 thee exists a δ > 0 such that

dY (f(x), f(x0)) < ε whenever dX(x, x0) < δ.

Roughly speaking, f is continuous at x0 means that whenever x is close to x0, the corresponding
f(x) has to be close to f(x0). This definition is indeed equivalent to the following two definitions.
Their proofs are left to you to get familiar with the ε-δ language for limit theory.

Definition 2.4. We say that f is sequentially continuous at a point x0 ∈ X if for any sequence
(xn)∞n=1 with xn → x0, we have f(xn)→ f(x0) as n→∞.

Definition 2.5. We say f is continuous at x0 ∈ X if f−1(V ) is open for every open neighborhood
V in Y containing f(x0).

The ε-δ definition for continuity is the most general formulation of continuity in metric space.
A more restricted but more quantitative definition is the following order of continuity. The relative
closeness of f(x) to f(x0) with respect to dX(x, x0) can be measured by

dY (f(x), f(x0)) ≤ ω(dX(x, x0)),

where ω(t) is a non-negative increasing function, and ω(t) → 0 as t → 0. For instance, the
function |x|α sin(1/x) (α > 0) is continuous at x = 0. The order of continuity can be measured
by ω(t) = |t|α. Thus, the continuity can be measured by some majorant function ω(·). But the
continuity is independent of its oscillation. The oscillation can be measured from the derivative of
the function, or local variation of the function. Among the majorant functions, ω(t) = |t|α → 0
for α > 0. It converges fast if α is large, and slow if α is close to 0. The majorant function
ω(t) = 1/ ln |t| converges to 0 very slowly as |t| → 0, as compared with |t|α.

Exercise. Use ε-δ argument to show that x2, 1/x, sin(1/x) are continuous on (0, 1).

Infimum and limit infimum of a function

1. Let f : (X, d)→ R. Then

m = inf
x∈X

f(x) := inf{f(x)|x ∈ X};

and
lim inf
x→x̄

f(x) := lim
δ→0+

inf
d(x,x̄)<δ

f(x).

2. The above definition is equivalent to: (a) for any ε > 0, there exists a δ > 0 such that
m−ε < f(x) for all d(x, x̄) < δ; (b) for any ε, there exists a δ > 0 and an x with d(x, x̄) < δ
such that f(x) < m+ ε.
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3. Let

f(x) =

{
|x| x 6= 0
−1 x = 0.

Then lim infx→0 f(x) = 0.

Definition 2.6. A function f : (X, d) → R is called lower semi-continuous (l.s.c.) if for every
x ∈ X ,

lim inf
y→x

f(y) ≥ f(x)

There is an equivalent way to check the lower semi-continuity by epigraph. It is defined to be

epif := {(x, t) ∈ X × R|f(x) ≤ t}

Then a function is l.s.c. if and only if its epigraph is closed in X × R.

2.1.3 Completions of metric spaces

Definition 2.7. A sequence {xn} in a metric space X is called a Cauchy sequence if all but finite
of them cluster. This means that: for any ε > 0, there exists an N such that d(xn, xm) < ε for any
n,m ≥ N .

Definition 2.8. A metric space is called complete if all Cauchy sequences in X converge.

Examples

1. Rn, Cn are complete metric spaces.

2. Qn equipped with the metric d(x, y) := ‖x− y‖2 is not complete. But the completion of Qn

in Rn is Rn.

Given a metric space (X, d), there is a natural way to extend it to a complete and smallest metric
space (X̃, d̃), which means that

1. There is an imbedding ı : X → X̃ . This means that ı is one-to-one.

2. The restriction of d̃ on ı(X) is identical to d. That is, d̃(ıx, ıy) = d(x, y).

3. (X̃, d̃) is complete.

4. ı(X) is dense in X̃ , that is, ı(X) = X̃ .

In applications, we would like to work on complete spaces, which allow us to take limit. If a metric
space is not complete, we can take its completion. The completion of an incomplete space is mimic
to the completion of Q in R. You imagine that any real number can be approximated by rational
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sequences. This approximation sequence can be constructed in many ways. For instance, let x ∈ R
be represented by

x =
∞∑

i=−m
aip
−i,

where p > 1 is a positive integer, m an integer, and 0 ≤ ai < p are integers. We choose

xn =

n∑
i=−m

aip
−i.

Then (xn) is a Cauchy sequence and approaches x. Certainly there are infinite many Cauchy se-
quences approaching the same x. We say that they are equivalent. In other words, (xn) ∼ (yn) if
xn − yn → 0 as n → ∞. The collection of all those Cauchy sequences which approach the same
real number x is called an equivalence class. Any particular Cauchy in this equivalence is called a
representation of the real number. Thus, we may identify a real number x to the equivalent class of
Cauchy sequence associated with it. This correspondence is one-to-one and onto. Thus, R can be
viewed as the set of all these equivalent classes.

The completion of an abstract metric space (X, d) mimic to the above process. Its construction
goes as below.

1. Define
X̃ := {(xn)n∈N is a Cauchy sequence in X}/ ∼,

where the equivalence relation is defined by 1

(xn) ∼ (yn) if and only if d(xn, yn)→ 0 as n→∞.

Thus, the element x̃ ∈ X̃ is the set of all Cauchy sequences {(xn)} in which all of them are
equivalent.

2. Given x̃ and ỹ, choose any two representation (xn) and (yn) from x̃ and ỹ respectively, define

d̃(x̃, ỹ) := lim
n→∞

d(xn, yn).

3. Given x ∈ X , define the Cauchy sequence (xn) with xn = x for all n. The equivalent class
that containing this Cauchy sequence (xn) is denoted by ı(x). This is a natural imbedding
from X to X̃ .

One can show that in the above construction: (i) The relation ∼ is an equivalent relation, (ii) d̃ is
well-defined, (iii) X̃ is complete, and (iv) ı(X) is dense in X̃ .

1 A relation∼ is called an equivalent relation in a setX if (i)x ∼ x, (ii) if x ∼ y then y ∼ x, (iii) if x ∼ y and y ∼ z,
then x ∼ z. An equivalent class x̃ := {y ∈ X|y ∼ x}.
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The function spaceC[a, b] In applications, especially ODEs, we often encounter that the solution
is at least continuous in time. This motives us to study the function space

C[a, b] := {u : [a, b]→ R is continuous.}

Given u, v ∈ C[a, b], we define

d(u, v) := sup
x∈[a,b]

|u(x)− v(x)|.

Theorem 2.1. C[a, b] is complete.

Proof. Suppose {un} is a Cauchy sequence in C[a, b]. For any ε > 0, there exists an N(ε) > 0
such that

sup
x∈[a,b]

|un(x)− um(x)| < ε

for every n,m > N . For each fixed x ∈ [a, b], {un(x)} is a Cauchy sequence in R. Thus, un(x)
converges to a limit, called u(x). This convergence is indeed uniform in x. In fact, we can take
m→∞ in the above formula to get

sup
x∈[a,b]

|un(x)− u(x)| ≤ ε.

for every n > N . Next, we show that u is continuous at every point x0 ∈ [a, b]. For any ε > 0,
we have seen that there is N such that supx∈[a,b] |uN (x) − u(x)| < ε. On the other hand, uN is
continuous at x0. Thus, there exists a δ > 0, which depends on uN , ε and x0, such that

|uN (x)− uN (x0)| < ε for |x− x0| < δ.

Thus,

|u(x)− u(x0)| ≤ |u(x)− uN (x)|+ |uN (x)− uN (x0)|+ |uN (x0)− u(x0)| < 3ε.

This shows u is continuous at an arbitrary point x0 ∈ [a, b].

Exercise.

• Can you replace C[a, b] by C(a, b) in the above theorem? Here, C(a, b) includes all contin-
uous functions from (a, b) to R with finite sup norm. In this definition, 1/x is not in C(0, 1)
but sin(1/x) does.

• Consider the subset A in C(a, b) to be the set of those functions which have finite limits at
the boundary points a and b. What is the relation between A and C[a, b]?

• Is C(0,∞) with the above metric a complete metric space?
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2.2 Banach spaces

2.2.1 Normed linear space – A space where we can do calculus

The metric space has no algebraic structure. A natural extension of Euclidean space structure is
the normed linear space, in which calculus can be introduced. A set X with addition and scalar
multiplication is called a linear space (or vector space).

Definition 2.9. A linear space X over a field R (or C) has addition and scalar multiplication
operations which satisfy

(a) for all x, y, z ∈ X , x + y = y + x; (x + y) + z = x + (y + z); there exists a zero vector 0
such that x+ 0 = x; for all x ∈ X , there exists a unique (−x) such that x+ (−x) = 0;

(b) for any x, y ∈ X , any λ, µ ∈ R, 1x = x, (λ + µ)x = λx + µx, λ(x + y) = λx + λy,
λ(µx) = (λµ)x;

Definition 2.10. A norm ‖ · ‖ on a linear space X is a mapping X → R satisfying

(a) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

(b) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and x ∈ X;

(c) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X .

A normed linear space (X, ‖ · ‖) is a linear space X equipped with a norm ‖ · ‖.

Definition 2.11. A complete normed linear space is called a Banach space.

Properties

• A normed linear space is a metric space equipped with the metric d(x, y) = ‖x− y‖.

• A metric in a linear space defines a norm if it satisfies the translational invariant property
(d(x− z, y − z) = d(x, y)) and the homogeneity property (d(λx, 0) = λd(x, 0)).

• The unit ball in a normed linear space is convex (triangle inequality).

• In a finite dimensional normed space, all norms are equivalent. Here, two norms ‖ · ‖1 and
‖·‖2 in a normed linear spaceX are said to be equivalent if there exists two positive constants
C1, C2 such that

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖1

for all x ∈ X .
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Examples

1. The Rn space equipped with the Euclidean norm

‖x‖2 = (|x1|2 + · · ·+ |xn|2)1/2

is a Banach space.

2. The Rn space equipped with the p-norm:

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p, 1 ≤ p <∞

are Banach spaces. Furthermore, one can show that

‖x‖∞ := max
i
|xi|

is a norm, and
‖x‖p → ‖x‖∞, as p→∞.

Notice that ‖x‖p with 0 ≤ p < 1 is not a norm, but it can measure the sparsity of x. Indeed,

‖x‖0 := #{xi 6= 0},

which measure the sparsity of x, and ‖x‖p → ‖x‖0 as p→ 0.

3. The set of matrices
Mm×n := {A : Rn 7→ Rm is linear}

equipped with the Frobenious norm defined by

‖A‖F :=

∑
ij

|Aij |2
1/2

is a Banach space.

4. The `p(N) (1 ≤ p <∞) space is the set

`p(N) := {x : N→ R|
∞∑
i=1

|xi|p <∞}

equipped with the norm
‖x‖p := (|x1|p + |x2|p + · · · )1/p.

Similar to the finite dimensional case, we define

‖x‖∞ := sup
i
|xi|

is a norm and ‖x‖p → ‖x‖∞ (as p → ∞) if they exist. Indeed, one can prove that `p,
1 ≤ p ≤ ∞ are Banach spaces.
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5. The set of continuous functions

C[a, b] := {u : [a, b]→ R is continuous}

is a linear space. We define the sup norm by

‖u‖∞ := max
x∈[a,b]

|u(x)|.

Then (C[a, b], ‖ · ‖∞) is a Banach space.

6. (C[a, b], ‖ · ‖p), 1 ≤ p < ∞ is not complete. A simple example is that the sequence of
continuous functions

un(x) := tanh(nx), x ∈ [−1, 1]

tends (in all ‖ · ‖p, 1 ≤ p <∞) to

u(x) =


−1 for x < 0
0 for x = 0
1 for x > 0

which is not in C[−1, 1].

The Completion of normed linear spaces

1. The completion of Q in R under absolute value norm | · | is R.

2. Let
C1[a, b] := {u : [a, b] 7→ R, u, u′ are continuous}

Then C1[a, b] is complete under the norm

|u|1,∞ := sup
x
|u(x)|+ sup

x
|u′(x)|.

But C1[a, b] is not complete under the sup norm |u|∞ := sup |u(x)|. Its completion under
sup norm is C[a, b]. .

3. The completion of C[a, b] under the norm

‖u‖1 :=

∫ b

a
|u(x)| dx

is called the L1-space, and is denoted by L1(a, b). It is the set of all Lebesgue integrable
functions on (a, b).

4. The completion of (C[a, b], ‖ · ‖p), 1 ≤ p <∞ is the Lp space

Lp(a, b) := {u : [a, b]→ R|
∫ b

a
|u(x)|p dx <∞}

where the above integration is in the Lebesgue sense.
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5. The function 1/|x|α is in Lp(−1, 1) for 0 < αp < 1.

6. Is the function sin(1/x) in Lp(−1, 1) for 1 ≤ p ≤ ∞?

7. For which α the corresponding |x|−α sin(1/|x|) ∈ Lp(−1, 1)?

2.2.2 Approximation and Basis

In function spaces, we want to approximate general functions in terms of linear combination of some
simple known functions. This linear combination is usually in terms of infinite series, but countable.
A set I is called countable if it is either finite many or there is an one-to-one correspondence between
I and N. One can check that Z × Z is countable and thus Q is also countable because a rational
number r can be represented by p/q with (p, q) ∈ Z × Z. In R, we want to approximate a real
number by an (countable) infinite series. For instance, we may approximate r ∈ [0, 1] by

r =

∞∑
n=1

an2−n.

where an ∈ {0, 1}. Each finite sub series is an element in Q. This motivates the following definition.

Definition 2.12. A metric space X is said to be separable if there is a countable set A ⊂ X such
that Ā = X .

C[0, 1] is separable

1. The Bernstein polynomials are

bν,n(x) :=

(
n
ν

)
xν(1− x)n−ν , ν = 0, ..., n.

They are in the space

Pn := {p(x)|p is a polynomial and deg(p) ≤ n}

The space Pn has dimension n + 1. Since bν,n, ν = 0, ..., n are independent, They form a
basis of Pn.

2. The set of Bernstein polynomials with rational coefficients

A = {
n∑
ν=0

aνbν,n|aν ∈ Q, n ≥ 0}

is countable and is dense in C[0, 1]. Indeed, let f ∈ C[0, 1], then

Bn(f) :=
n∑
ν=0

f
(ν
n

)
bν,n(x)

converges to f in ‖ · ‖∞. The key parts of the proof are
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(a) bν,n > 0 and
∑n

ν=0 bν,n(x) = 1.

(b) The difference f(x)−Bn(f) has the following estimates:

|f(x)−Bn(f)| =

∣∣∣∣∣
n∑
ν=0

(f(x)− f(ν/n)) bν,n(x)

∣∣∣∣∣
≤

n∑
ν=0

|f(x)− f(ν/n)| bν,n(x)

=

 ∑
|ν/n−x|≤δ

+
∑

|ν/n−x|>δ

 |f(x)− f(ν/n)| bν,n(x)

(c) The Bernstein polynomial bν,n(x) concentrates at ν/n ∼ x as n→∞. More precisely,
for any fixed small δ, ∑

|ν/n−x|≥δ

bν,n(x)→ 0

as n→∞.

(d) f is uniformly continuous on [0, 1]. That is, for any ε > 0, there exists a δ > 0 such that
|f(x)− f(y)| < ε whenever |x− y| < δ.

I leave you to fill in the gaps. 2

2 The Berstein polynomial has the following probability interpretation.

(a) Let X be the random variable of one binormial trial with probability x of success. That is, P (X = 1) = x and
P (X = 0) = (1 − x). If we perform two independent Bernoulli trials, denote Xi the outcome of the ith trial.
The sample space Ω2 = {(1, 1), (1, 0), (0, 1), (0, 0)}. Here, (a1, a2) denotes that X1 = a1 and X2 = a2.The
probability of S2 = X1 +X2 is

P (S2 = 2) = x2, P (S2 = 1) = 2x(1− x), P (S2 = 0) = (1− x)2.

For n independent Bernoulli trials, the number of elements that have ν times success is n!/(ν!(n− ν)!). Thus, the
probability of ν times successes is

P (Sn = ν) =
n!

ν!(n− ν)!
xν(1− x)n−ν = bν,n(x).

(b) The expectation of a random X is defined to be E(X) :=
∑
ν νP (X = ν).

(c) The weak form of law of large number states that: Let X be the random variable of the Bernoulli trial and
E(X) = x. Let Sn = X1 + · · ·+Xn where Xi are all independent and with identical distribution as X , then

lim
n→∞

E

(
Sn
n

)
= x.

(d) The key is the Chybeshev inequality: P (|Sn/n− x| > δ) ≤ σ2

δ2n
→ 0 as n→∞. Here, σ2 = E(|X − x|2) the

variance. I shall show a special case: If E(X) = 0, then P (|X| ≥ δ) ≤ σ2/δ. Let F (x) = P (X ≤ x) be the
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Definition 2.13. Let (X, ‖ · ‖) be a separable Banach space. A set {en}∞n=1 is called a Schauder
basis of X if for every x ∈ X , there is a unique representation of x in terms of {en} by

x =
∞∑
n=1

anen.

Examples

1. In `p, 1 ≤ p <∞, let e1 = (1, 0, 0, · · · ), e2 := (0, 1, 0, · · · ), e2 := (0, 0, 1, 0, · · · ),etc. Then
Given a point x ∈ `p, x = (x1, x2, · · · ). Let

xn := (x1, ..., xn, 0, 0, · · · ).

Then
‖xn − x‖p → 0.

In other words, {en}∞n=1 is a Schauder basis in `p.

2. In the next section, we will see that the Fourier functions

{en := e2πinx}∞n=−∞

form a basis in C(T) := {u : [0, 1]→ C periodic}.

3. In finite element method, the solution is approximated by piecewise linear function. We shall
construct the corresponding basis.

Let us consider the domain [0, 1]. For any n ∈ N, we partition [0, 1] into 2n subintervals
evenly. The points xnk = 2−nk, k = 0, ..., 2n are called the nodal points of the partition.
Given u ∈ C[0, 1], let un be the continuous function with un(xnk) = u(xnk) and linear on
each subinterval (xn,k, xn,k+1), k = 0, ..., 2n − 1. The function un can approximate u in sup
norm. Indeed, since u is uniformly continuous on [0, 1], we have for any ε > 0, there exists a

probability distribution function of X .

P (|X| ≥ δ) =

∫
|x|/δ≥1

dF (x)

=

∫
|x|/δ≥1

|x|2

δ2
dF (x)

≤
∫
|x|2

δ2
dF (x)

=
σ2

δ

We apply this Chybeshev inequality to Sn/n. We may assume E(X) = x = 0, using independence of Xi, we get
the variance of Sn/n is σ2/n.

(e) E(f(Sn/n)) =
∑n
ν=0 f(ν/n)P (Sn = ν).
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δ > 0 such that |u(x)− u(y)| < ε whenever |x− y| < δ. We choose N such that 2−N < δ.
Now, for any n ≥ N , there exists an k such that xn,k ≤ x ≤ xn,k+1. Hence we have

|u(x)− un(x)| ≤ |u(x)− u(xn,k)|+ |un(xn,k)− un(xn,k+1)| ≤ 2ε.

Thus, ‖un − u‖∞ → 0 as n→∞.

We shall write un in terms of a basis. Consider the hat function

φ(x) =


x+ 1 for − 1 ≤ x < 0
1− x for 0 ≤ x ≤ 1
0 otherwise.

We can perform scaling and translation and produce

φn,k := φ(2nx− k).

This function is centered at xnk with support (xn,k−1, xn,k+1). The φn,0 and φn,2n are the
boundary nodal functions, whereas φn,k, k = 1, ..., 2n − 1 the interior nodal functions. The
piecewise linear function un defined above can be represented in terms of φn,k:

un(x) :=
2n∑
k=0

u(xnk)φnk(x), where xnk := 2−nk.

Furthermore, the hat function φ has the following scaling property

φ(x) =
1

2
φ(2x+ 1) + φ(2x) +

1

2
φ(2x− 1).

For interior nodal functions, we then have

φn−1,k =
1

2
φn,2k−1 + φn,2k +

1

2
φn,2k+1

for k = 1, ..., 2n−1 − 1. For boundary nodal functions, we have

φn−1,0 = φn,0 +
1

2
φn,1,

and
φn−1,2n−1 = φn,2n +

1

2
φn,2n−1,

Let us consider the space

V n := span{φnk, k = 0, ..., 2n}.

The dimension of V n is 2n + 1. From the scaling property of φ, the space V n are nested:

V 0 ⊂ V 1 ⊂ · · · ⊂ V n ⊂ · · ·
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Let us define
ψn−1,k = φn,2k−1, k = 1, ..., 2n−1,

and the space
Wn−1 = span{ψn−1,k|k = 1, ..., 2n−1}.

Then V n = V n−1 +Wn−1. Indeed, the inversion: {φn−1,k, ψn−1,k} → {φn,k} is given by

φn,2k−1 = ψn−1,k, k = 1, ..., 2n−1

φn,2k = φn−1,k −
1

2
(ψn−1,k + ψn−1,k+1) , k = 1, ..., 2n−1 − 1

φn,0 = φn−1,0 −
1

2
ψn−1,1, φn,2n = φn−1,2n−1 −

1

2
ψn−1,2n−1 ,

The dimensions of V n−1 and Wn−1 are 2n−1 + 1 and 2n−1. Their sum is 2n + 1, which is
the dimension of V n. Since V n → C[0, 1], we then expect

C[0, 1] = V 0 +W 0 +W 1 + · · · .

We thus expect
{φ0,0, φ0,1, ψn,k, k = 1, ..., 2n, n ≥ 0}

forms a Schauder basis in C[0, 1].

2.3 Linear Operators in Banach Spaces, Basic

Definition 2.14. Let (X, ‖·}X) and (Y, ‖·‖Y ) be two normed linear spaces. A linear mapA : X →
Y is called bounded if there exists a constant C such that

‖Ax‖Y ≤ C‖x‖X
for all x ∈ X .

Lemma 2.1. A linear map A is bounded if and only if it is continuous.

Proof. 1. If A is bounded, then

‖Ax−Ay‖Y = ‖A(x− y)‖Y ≤ C‖x− y‖X .

This shows A is continuous.

2. IfA is continuous, then in particular, it is continuous at 0. This means that for any ε > 0, there
exists a δ > 0 such that ‖Az‖Y ≤ ε whenever ‖z‖X ≤ δ. Now for any x ∈ X , we rescale it
by letting z = (δ/‖x‖x)x. Then ‖z‖ = δ. Hence we have ‖Az‖Y ≤ ε. Or equivalently,∥∥∥∥A( δ

‖x‖X
x

)∥∥∥∥
Y

≤ ε, or ‖Ax‖Y ≤
ε

δ
‖x‖X .

The operator norm of a bounded linear operator is define to be

‖A‖ := sup
‖Ax‖Y
‖x‖X

= sup
‖x‖X=1

‖Ax‖Y .
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Examples

1. In Rn, let l(x) := a ·x, where a an n-vector. If we use the ‖ ·‖2 norm, then the corresponding
operator norm of l is exactly ‖a‖2.

2. What is the corresponding operator norm of the operator l(x) = a · x in `p for 1 ≤ p ≤ ∞?

3. Let a ∈ [0, 1]. The mapping u 7→ u(a) is a bounded mapping from C[0, 1] → R. Find its
operator norm. Let us denote this operator by δa. What is the operator norm corresponding
to αδa + βδb, where a, b ∈ [0, 1] and α, β ∈ R.

4. Let A be an m × n matrix mapping fromRn to itself. Find the corresponding operator norm
of A when Rn is equipped with `1-norm. Do the same thing if Rn is equipped with `∞. Find
the operator norm of the mapping Ku(x) =

∫ 1
0 g(x, y)u(y) dy in L1, L2 and C0[0, 1].

5. The mapping

Ku(x) :=

∫ x

0
u(y) dy

is a bounded mapping from C[0, 1] to itself. It is also a bounded mapping from Lp(0, 1) to
itself.

6. Let g(x, y) : [0, 1]× [0, 1]→ R be continuous. The operator

Ku(x) :=

∫ 1

0
g(x, y)u(y) dy

is a bounded operator from C[0, 1] to itself. We may also think K is a mapping from L1(0, 1)
to itself. Find the corresponding operator norm. Do the same thing for L∞(0, 1).

7. A concrete example is

g(x, y) =

{
x(1− y) for 0 ≤ x ≤ y ≤ 1
y(1− x) for 0 ≤ y ≤ x ≤ 1.

(2.1)

8. The differentiable operator D maps einx to ineinx. Then {einx} is a bounded sequence in
C(T), but {Deinx} is not. Thus D is not bounded in C(T). Same proof for all Lp(T) as we
treat D in Lp(T).

Kernel and Range Let X and Y be normed linear spaces and let A : X → Y be a linear map.
The kernel N(A) := {x ∈ X|Ax = 0}, and the range R(A) := {Ax|x ∈ X}.

1. A is 1-1 if and only if N(A) = {0}.

2. If A is bounded, then N(A) is closed.

3. Let the matrix A = (a1, · · · , an), where a1, .., an be column vectors in Rm. Let the operator
Ax :=

∑n
j=1 xjaj is a linear map from Rn to Rm. Then R(A) = Span{a1, ..., an}.
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4. Let

g(x, y) =
n∑
i=1

ψi(y)φi(x)

The operator

Ku(x) =

∫ 1

0
g(x, y)u(y) dy =

n∑
i=1

∫ 1

0
ψi(y)u(y) dyφi(x)

is a projection of u onto the space spanned by {φ1, ..., φn}. It is a bounded operator. Further-
more, both the kernel and range are closed in C[0, 1].

5. The shift operator from `∞(Z) to itself defined by

(Tx)n = xn+1.

The shift operator is a bounded operator. Further, N(T ) = {0} and R(T ) = `∞(Z). How-
ever, in `∞(N), we define

(Tx)n = xn+1 for n ≥ 1.

In this case,
N(T ) = {(x1, 0, 0, ...)|x1 ∈ R}.

and R(T ) = `∞(N).

6. Consider Ku =
∫ x

0 u(y) dy in C[0, 1]. Then N(K) = {0}. For
∫ x

0 u(y) dy = 0 implies
u ≡ 0. But

R(A) = {u ∈ C1[0, 1]|u(0) = 0}

which is not closed in C[0, 1].

7. In the spaceC[0, 1], considerKu =
∫ x

0 u(y) dy andA = I+K. ThenAu = 0 implies u(x)+∫ x
0 u(y) dy = 0. Differentiate it in x, we obtain u′+u = 0. This leads to u(x) = Ce−x. Thus,
N(A) = {Ce−x|C ∈ R}. Notice that if we restrict to the space {u ∈ C[0, 1]|u(0) = 0},
then N(A) = {0}.
Next, for any f ∈ C[0, 1], we look for a solution u ∈ C[0, 1] such that Au = f . Formally,
we differentiate Au = f and get

u′ + u = f ′.

By using integration factor, we get

(eyu)′ = eyf ′.

Integrate this equation, we get

exu(x)− u(0) =

∫ x

0
eyf ′(y) dy = exf(x)− f(0)−

∫ x

0
eyf(y) dy.
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Thus,

u(x) = e−x(u(0)− f(0)) + f(x)−
∫ x

0
e−x+yf(y) dy.

In this expression, we don’t need to require f ′ exists. Thus, R(A) = C[0, 1].

8. Similar to the above. Consider Ku =
∫ 1

0 g(x, y)u(y) dy where g is given by (2.1) and A =
I +K. Then N(A) = {0} and R(A) = C[0, 1].

Open mapping theorem The following theorem due to Banach is not so obvious in infinite di-
mensions. See Lax’s Functional Analysis for proof.

Theorem 2.2 (Open mapping theorem). Let X and Y are two Banach spaces. If A : X → Y is
bounded and onto, then A is an open map, which means that it maps open sets to open sets.

Example

1. The shift operator (after quotion the kernel) is a 1-1 onto bounded linear map.

2. The Fredholm operator I +K (K is an integral operator) is also such kind of operators.

The open mapping theorem is equivalent to the following bounded inverse theorem.

Theorem 2.3 (Bounded inverse theorem). Let X and Y be two Banach spaces. If A : X → Y is a
bounded linear and bijective, then A−1 is also bounded.

In fact, we can write it in a little more general form, and the bounded inverse theorem is a
corollary of it.

Theorem 2.4. Let X and Y be Banach spaces. Let A : X → Y be bounded and linear. Then the
following two statements are equivalent:

(a) A is 1-1 and closed range;

(b) there exists a constant C such that ‖Ax‖ ≥ C‖x‖ for all x ∈ X .

Proof. 1. Let Y1 = R(A). If (a) holds, then by the open mapping theorem, A−1 : Y1 → X is
a bounded linear map. Thus, there exists a constant C such that for and y ∈ R(A), we have
‖A−1y‖ ≤ C‖y‖. Thus, for any x ∈ X , Ax ∈ R(A), we have ‖x‖ ≤ C‖Ax‖.

2. Conversely, Suppose {yn} is a sequence in R(A) and yn → y. Then there exist xn ∈ X such
that yn = Axn. From ‖x‖ ≤ C‖Ax‖, we get that {Axn} is a Cauchy sequence implies that
{xn} is also a Cauchy sequence. Hence xn → x for some x ∈ X . By the continuity of A, we
get Ax = limAxn = lim yn = y. Thus, R(A) is closed.

This is maily used for Fredholm opertors.
The open mapping theorem, the bounded inverse theorem and the following closed graph theo-

rem are equivalent.
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Definition 2.15. A mapping T : X → Y is called closed graph if its graph {(x, Tx)|x ∈ X} is
closed in X × Y .

Theorem 2.5 (Closed graph theorem). Let X and Y be Banach spaces. A linear map T : X → Y
which is closed graph is also a bounded map.

Homeworks 2.1. 1. Suppose a set A ⊂ R has a lower bound. Show that m = lim inf A⇔ if
and only if for any ε > 0, (a) all x ∈ A but finite many satisfies m − ε < x and (b) there
exists at least one x ∈ A such that x < m+ ε.

2. Show that a function f : (X, d) → R is lower semi-continuous if and only if its epigraph is
closed in X × R.

3. Is (C(a, b), ‖ · ‖∞) complete?

4. Show that ‖x‖p → ‖x‖∞ as p→∞ for x ∈ Rn and `p(N) ∩ `∞(N).

5. Find the operator norm of a matrix A : (Rn, ‖ · ‖1) → (Rn, ‖ · ‖1). Do the same thing by
replacing ‖ · ‖1 by ‖ · ‖∞.

6. Let g(x, y) : [0, 1]× [0, 1]→ R be continuous. Show that the operator

Ku(x) :=

∫ 1

0
g(x, y)u(y) dy

is a bounded operator from C[0, 1] to itself. Find the corresponding operator norm.
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Chapter 3

Method of contraction mapping

3.1 Motivation

An important technique to solve systems of equations, ODEs, PDEs is to construct an iterative
procedure to generate approximate solutions and find their limit. If the iterative procedure is given
by

xn+1 = Txn

for some map T , then we look for a fixed point of T . The simplest case is when T is a contraction
map, which means |Tx − Ty| ≤ ρ|x − y| for some 0 < ρ < 1. In this case, the iterators {xn}
converges linearly.

Example Let us solve x2 = a, a > 0 by Newton’s method, which is an iterative method. Suppose
we have found the nth iterator xn, which is an approximation of the root, we approximate the
equation f(x) = x2 − a = 0 by a linear equation

g(x) := f(xn) + f ′(xn)(x− xn) = 0

It is easy to solve the linear equation. Its root is our next iterator xn+1. That is

xn+1 = xn − f ′(xn)−1f(xn).

With this, we get

xn+1 =
1

2

(
xn +

a

xn

)
.

We define
Tx =

1

2

(
x+

a

x

)
.

Then the solution of x2 = a is a fixed point of T .
In order to show that T has a fixed point, we check

• T : [
√
a,∞)→ [

√
a,∞)

45
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• |Tx − Ty| = 1
2

∣∣∣x+ a
x − y −

a
y

∣∣∣ = 1
2

∣∣∣1− a
xy

∣∣∣ |x − y|. We see that if both x, y ≥
√
a, then

|1− a
xy | < 1.

Hence, T is a contraction map from [
√
a,∞) → [

√
a,∞). Then one can show that the sequence

generated by the iteration
xn+1 = Txn

converges. Such a method is called method of contraction maps. In this chapter, we will give a
general theory and provide many applications.

Remark If the initial point 0 < x0 <
√
a, then one can show that x1 >

√
a. Then the following

iterations fall into the region of convergence [
√
a,∞). Thus we conclude that for any x0 > 0, the

Newton’s method converges for this case.

Exercise What is the value of the following continued fraction?

x =
1

a+ 1
a+ 1

a+···

.

Applications

• Intermediate value theorem

• Inverse function theorem

• Jacobi method for solving systems

• Local existence of ODEs

• global existence of ODEs

• Existence of stable manifold

• Integral equations

3.2 Method of contraction mapping

The method of contraction mapping in metric space was proposed by Banach in 1921 in his Ph.D
thesis. It is an abstract setting of the method of iteration which was developed long ago by Jacobi,
Gauss, Picard, etc.

Definition 3.1. Let (X, d) be a complete metric space. A mapping T : X → X is called a contrac-
tion mapping if there exists a constant 0 ≤ ρ < 1 such that

d(Tx, Ty) ≤ ρ d(x, y).
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It is easy to see that T is continuous in X .

Theorem 3.1 (Banach fixed-point theorem). If T : (X, d) → (X, d) is a contraction map, then it
has a unique fixed point x̄ ∈ X

Proof. We start from any point x0 and generate the iterates xn+1 = Txn for n ≥ 0. We show that
{xn} is a Cauchy sequence in X . We have for n > m,

d(xn, xm) = d(Tm+(n−m)x0, T
mx0)

≤ ρmd(Tn−mx0, x0)

≤ ρm
[
d(Tn−mx0, T

n−m−1x0) + d(Tn−m−1x0, T
n−m−2x0) + · · ·+ d(Tx0, x0)

]
≤ ρm

[
n−m−1∑
k=0

ρk

]
d(x1, x0)

≤
(

ρm

1− ρ

)
d(x1, x0).

This shows that {xn} is a Cauchy sequence. From the completeness of X , we get that {xn} has a
limit x̄ ∈ X . By taking the limit n→∞ in the equation xn+1 = Txn, we get T x̄ = x̄.

If x̄ and ȳ are two fixed points of T in X , then

d(x̄, ȳ) = d(T x̄, T ȳ) ≤ ρd(x̄, ȳ)

Since 0 ≤ ρ < 1, we get d(x̄, ȳ) = 0 and thus x̄ = ȳ.

One can estimate the convergence rate of these iterates.

d(xn, x̄) = d(Txn−1, T x̄)

≤ ρ d(xn−1, x̄)

...

≤ ρnd(x0, x̄)

This shows that the geometric convergence like a power sequence because ρ < 1.
In many applications, the equations we want to solve depend on a parameter. For example,

solving F (x, λ) = 0, where λ is a parameter. In this case, we want to know how the corresponding
solution depends on the parameter. For instance, we want to know how the solution of x2 = a
depends on a. Let us call the parameter λ and denote the parameter space by Λ, which is assumed
to be a metric space.

Theorem 3.2. Consider a parameter-dependent contraction mapping T : Λ×X → X such that

(1) T is continuous in both λ and x

(2) For each λ ∈ Λ, T (λ, ·) is a contraction with contraction ratio ρ and 0 ≤ ρ < 1 independent
of λ.
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Then the fixed point x(λ) of the contraction mapping T (λ, ·) is also continuous in λ ∈ Λ.

Proof. Let xn(λ) be the iterators generated by T (λ, ·) starting from an arbitrarily chosen initial
x0(λ), which is required to be continuous. From the continuity of T , we get each xn(·) is also
continuous. Since the contraction ratio ρ is independent of λ, we have that the convergence of
xn(λ) in n is uniform with respect to λ. The limits of n → ∞ and λ → λ0 can be interchanged.
Thus, the limit function limn→∞ xn(λ) is a continuous function.

Exercise Consider the discrete logistic map

xn+1 = λxn(1− xn) := Fλ(xn).

What is the value of λ in which x = 0 is the fixed point? What are the fixed points of F 2
λ := Fλ◦Fλ?

3.3 Solving large linear systems

It is impractical to solve large linear system

Ax = b

by so-called direct methods such as Gaussian elimination or LU decomposition because the number
of operations required is of O(N3), where N is the size of x. Instead, iterative methods are usually
favored. The main idea is to sacrifice a little bit accuracy, but gain the speed of convergence. This
is harmless because many such systems are obtained from PDEs, in which a discretization error has
already been introduced. One important class of iterative methods is to decompose A into

A = M −N,

and to solve it by the following iterative procedure

Mxn+1 −Nxn = b.

The matrix M is the major part and N the minor part of A, respectively. It also requires that M is
easily to invert.

One class of matrix which is easy to find such a decomposition is the diagonally dominant
matrices:

|aii| >
∑
j 6=i
|aij |, for all i.

In this class, we choose M = diag(a11, · · · , ann) and N = A−M . We can solve Ax = b by

Mxn+1 = Nxn + b

or,
xn+1 = M−1Nxn +M−1b.



3.4. SOLVING SYSTEM OF ALGEBRAIC EQUATIONS 49

The sequence {xn} converges if the operator norm of the mapping T := M−1N (called the iteration
operator) is less than 1 by the fixed point theorem. We estimate ‖T‖ as the follows.

Tij = −


0 a12

a11
a13
a11

· · · a1n
a11

a21
a22

0 a23
a22

· · · a2n
a22

...
...

...
. . .

...
an1
ann

an2
ann

an3
ann

· · · 0

 .

The operator T : (Rn, | · |∞)→ (Rn, | · |∞) has the following estimate

|Tx|∞ = max
i

∑
j

|Tijxj |

≤ max
i

∑
j

|Tij |(max
k
|xk|)

= max
i

∑
j

|Tij ||x|∞.

By our assumption,
max
i

∑
j

|Tij | = ρ < 1.

Thus, ‖T‖ = ρ < 1.

3.4 Solving system of algebraic equations

Suppose we want to solve the equation f(x) = 0 in Rn, where f : Rn → Rn is a C1 function. We
want to design an iterative procedure to solve this equation. The iteration is to design c 6= 0 such
that the iterators

xn+1 = xn − c(xn)f(xn)

converge. Or in other words, we want the map

Tx = x− c(x)f(x)

to be a contraction map. You may think that c(xn) is a step size of a discretized ODE: ẋ = −f(x).
We see that a root of f(x) = 0 corresponds to a fixed point of T . For example, suppose f ′(x̄) is
non-singular, where x̄ is the root. Then we can choose

c(x) = f ′(x̄)−1

In this case,
T ′(x̄) = 0.

By the continuity of T ′, we can have a small domain in the neighborhood of x̄ such that T is
contraction. In practice, we don’t known x̄, nor f ′(x̄). But we may know a rough estimate of f ′(x̄).
If so, we use this one for c(x). We can also choose c(x) = f ′(x)−1. This leads to the Newton’s
method.
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Theorem 3.3 (Inverse function theorem). If f(x0) = y0 and f is C1 in a neighborhood of x0 with
f ′(x0) being nonsingular. Then there exist a small neighborhood V of y0 and a small neighborhood
U of x0 such that f : U → V is invertible.

Proof. To find the inverse map of f for any y ∼ y0, we need to solve

f(x) = y

in a neighborhood of x0. We may express y = y0 + r and x = x0 + e. Using f(x0) = y0, we get
the perturbed equation

f(x0 + e)− f(x0) = r

for e ∼ 0. Suppose f ′(x0) = A. Using Taylor expansion, we get

Ae+ g(e) = r

where g(e) = f(x0 + e)− f(x0)−Ae = o(e). We design the iteration procedure

Aen+1 + g(en) = r,

or
en+1 = −A−1g(en) +A−1r := Ten

to solve the perturbed equation.
In order to apply the method of contraction, we want to find η > 0 and δ > 0 such that for any

|r| < η, we have T is a contraction from |e| ≤ δ into itself. If |r| < η and |e| ≤ δ, then

|Te| ≤ ‖A−1‖(|g(e)|+ |r|) ≤ ‖A−1‖(o(δ) + η).

We require |Te| ≤ δ. This gives
‖A−1‖(o(δ) + η) ≤ δ.

On the other hand,

Te1 − Te2 = A−1(g(e1)− g(e2))

= A−1(f(x0 + e1)− f(x0 + e2)−A(e1 − e2))

= A−1((f ′(x̃)−A)(e1 − e2))

Here, we have used f ∈ C1 in a neighborhood of x0 and applied the mean value theorem, and x̃ is
a point between x0 + e1 and x0 + e2. From the continuity of f ′(x) at x0, we can choose δ > 0 such
that whenever |e1|, |e2| ≤ δ, we can get

‖A−1‖‖f ′(x̃)− f ′(x0)‖ ≤ 1/2.

This gives another constraint on δ. With these two constraints, we choose δ and η such that T is a
contraction from |e| ≤ δ to itself for every |r| < η.
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Remarks.

1. The inverse function f−1 of the above theorem is also in C1 and (f−1)′ = (f ′)−1.

2. The assumption of the existence of the inverse function can be relaxed to f ′(x) is continuous
at x0 instead of f ∈ C1 in a neighborhood of x0.

3. A corollary of the inverse function theorem is the implicit function theorem. It states: Let F :
Rn+m → Rm be in C1 in a neighborhood of (x0, y0), and at which F (x0, y0) = 0. Suppose
Fy(x0, y0) is invertible. Then there exists a unique function y = g(x) in a neighborhood
of x0 such that F (x, g(x)) = 0 in this neighborhood. Moreover, g ∈ C1 and g′(x) =
F−1
y Fx(x, g(x)).

3.5 Solving ODEs

Consider the ODE
y′(t) = f(t, y)

with initial condition
y(t0) = y0.

Let I = {|t − t0| ≤ T} with some T > 0. We assume f : I × B̄R(y0) → Rn is continuous in
(t, y) and is Lipschitz continuous in y uniformly with respect to t ∈ I . This means that there exists
a constant L ≥ 0 such that for any y1, y2 ∈ B̄R and t ∈ I .

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|.

Theorem 3.4. Suppose f is as above. Then there exist a δ > 0 and a unique solution of the above
ODE for |t− t0| ≤ δ.

Proof. Let J := [t0 − δ, t0 + δ], where δ > 0 is to be determined. Consider the space C(J) = {y :
J → Rn is continuous.} equipped with the sup norm

‖y‖∞ := sup
t∈J
|y(t)|.

Then C(J) is a Banach space. For any y(·) ∈ C(J), we consider the mapping

Ty = y0 +

∫ t

t0

f(s, y(s)) ds.

Notice that Ty is still a continuous function. Consider the closed ball,

X := {y ∈ C(J)|‖y − y0‖∞ ≤ R}

We shall choose a δ properly such that T is a contraction mapping from X to X . Firstly, let

M := sup{|f(t, y)||t ∈ I, |y − y0| ≤ R}.
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We have

|Ty(t)− y0| = |
∫ t

t0

f(s, y(s)) ds| ≤Mδ.

If we choose Mδ ≤ R, then T maps X into X . Secondly,

‖Ty1 − Ty2‖∞ = sup
t∈J
|
∫ t

t0

f(s, y1(s))− f(s, y2(s)) ds|

≤ sup
t∈J

∫ t

t0

L|y1(s)− y2(s)| ds|

≤ Lδ‖y1 − y2‖∞

This gives another condition on δ. Combining the two conditions, we can choose

δ = min

{
R

M
,

1

2L

}
,

then T is a contraction from X to X with contraction ratio 1/2.
From the contraction mapping theorem, we get a unique solution. Such a solution satisfies the

integral equation

y(s) = y0 +

∫ t

t0

f(s, y(s)) ds.

We see that y(·) ∈ C(J) implies f(·, y(·)) is continuous. Hence
∫ t
t0
f(s, y(s)) ds is continuously

differentiable. Thus, y is continuously differentiable in Jo. We differentiate this integral equation
in t and get y′(t) = f(t, y(t)).

Remarks.

1. The iteration yn+1 = Tyn in the proof of the existence of ODE is called Picard iteration. A
rationael behind this iteration is the follows. For “short time”, the term y′ is the major term,
while f(t, y) is a minor term. Indeed, if we perform a rescaling: t = εt̂, then the rescaled
equation becomes

1

ε

dy

dt̂
= f(εt̂, y).

Comparing the two terms above, the left-hand side is “more important” than the right-hand
side for short period of time. More precisely, we can rewrite the differential equation in
integral form

y(t)− y0 =

∫ t

t0

f(s, y(s)) ds

Among these terms, the right-hand side is relatively less important. Thus, the iteration proce-
dure becomes

yn+1(t) = y0 +

∫ t

t0

f(s, yn(s)) ds.
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2. In the above local existence, the existence time period δ depends only on R, M and L. If f
is local Lipschitz in y1, then as long as the solution can exist at (t1, y(t1)) it can always be
extended. This leads to that either the trajectory y(t)→∞ in finite time, or it stays bounded
as t→∞. Thus, a global existence relies on so called a priori estimate. If we can show that
for any T > 0, there exists R > 0 (which can depend on T ) such that

‖y(t)‖ ≤ R, for 0 ≤ t ≤ T.

This together with the local existence gives global solution for 0 ≤ t <∞. Such an estimate
is called a priori estimate. We shall study a priori estimate later.

3. The uniqueness of the integral equation

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds

follows from the uniqueness of the fixed point. One can also use the Gronwall inequality to
prove the uniqueness of the ODE directly, as shown below. Suppose y1 and y2 are two C1

solutions with the same initial data at t0. Then

y′1 = f(t, y1), y′2 = f(t, y2).

Subtracting these two, we get

|y′1 − y′2| ≤ |f(t, y1)− f(t, y2)| ≤ L|y1 − y2|.

Notice that for a C1-function η, we have |η|′ ≤ |η|′, by triangle inequality. Choose η(t) :=
|y1(t)− y2(t)|. Then

η′ ≤ Lη.

Use method of integration factor, we get(
e−Ltη

)′ ≤ 0.

This leads to
η(t) ≤ η(t0)eL(t−t0).

Since η(t0) := y1(t0)− y2(t0) = 0, we obtain η(t) ≡ 0. This proves the uniqueness.

4. Many local existence theorems in PDE theory are based on the method of contraction map-
ping. For example, local existence of systems of hyperbolic equations in one dimension, see
F. John, PDE, systems of first order hyperbolic equations, method of characteristics.

1This means that for any y0 there exists R > 0 such that f is Lipschitz in BR(y0).
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Examples

1. The ODE y′ =
√
y with y(0) = 0 is not unique.

2. How about the ODE: y′ = 1/ ln y with limt→0+ y(t) = 0?

3. The solution y′ = y2 blows up for any y(0) = y0 > 0.

3.6 Continuous dependence on parameter of solutions of ODE

Let us denote the solution of the ODE with initial data (τ, ξ) by y(·, τ, ξ). That is, y(τ, τ, ξ) = ξ.

Theorem 3.5. Under the same assumption of f in the local existence theorem above, the solu-
tion y(t, τ, ξ) of the ODE y′ = f(t, y) is a continuous function in (t, τ, ξ) in a neighborhood of
(t0, t0, y0). That is, the solution y(·, τ, ξ) continuously depends on its initial data (τ, ξ).

Proof. 1. Following the proof of the local existence theorem, let y∗(·) := y(·, t0, y0). There
exists ε1 such that the set

{(τ, y)||τ − t0| ≤ δ, |y − y∗(τ)| ≤ ε1} ⊂ J × B̄R(y0).

We choose ε = ε1e
−2Lδ and let

Ū := {(τ, ξ)||ξ − y∗(τ)| ≤ ε, τ ∈ J}.

We define the space

X = {y : J × Ū → Rn in C and d(y, y∗) ≤ ε}.

where the metric d is defined by

d(y1, y2) := sup
t∈J,(τ,ξ)∈Ū

e−2L|t−τ ||y1(t, τ, ξ)− y2(t, τ, ξ)|.

2. For y ∈ X , define

(Ty)(t, τ, ξ) := ξ +

∫ t

τ
f(s, y(s, τ, ξ)) ds.
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3. We show that Ty ∈ X if y ∈ X . Given y ∈ X , we have

|Ty(t, τ, ξ)− y∗(t)| =
∣∣∣∣ξ − y∗(τ) +

∫ t

τ
f(s, y(s, τ, ξ))− f(s, y∗(s)) ds

∣∣∣∣
≤ |ξ − y∗(τ)|+ |

∫ t

τ
|f(s, y(s, τ, ξ))− f(s, y∗(s))| ds|

≤ ε+ |
∫ t

τ
L|y(s, τ, ξ)− y∗(s)| ds|

≤ ε+ |
∫ t

τ
Le2L|s−τ ||ε ds

=
ε

2
+
ε

2
e2L|t−τ |

≤ εe2L|t−τ |.

This proves d(Ty, y∗) ≤ ε.

4. We show

d(Ty1, T y2) ≤ 1

2
d(y1, y2).

where y1, y2 ∈ X . Let us abbreviate yi(t, τ, ξ) by yi(t).

|Ty1(t)− Ty2(t)| = |
∫ t

τ
(f(s, y1(s, τ, ξ))− f(s, y2(s, τ, ξ))) ds|

≤ |
∫ t

τ
L|y1(s)− y2(s)| ds|

≤ |
∫ t

τ
Le2L|s−τ |d(y1, y2) ds

=
1

2
e2L|t−τ |d(y1, y2)

Thus, we have

d(Ty1, T y2) ≤ 1

2
d(y1, y2).

5. We apply the parameter-dependent fixed point theorem to get that the fixed point y(t, τ, ξ) is
continuous in the parameter (τ, ξ) ∈ Ū .

Remark. In the above proof, the rationael behind the definition of the weighted distance is the
follows. In the estimate of y, we control f by a linear function (Using Lipschitz continuity), we
then expect that the growth of y is controlled by a factor eL|t−τ | at time t. Second, the factor 2 in
e2L|t−τ | gives us a room to control the contraction ratio to be 1/2.
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3.7 *Local structure of ODE near a hyperbolic point

Consider the ODE
ẋ = f(x)

where x ∈ R2. Suppose f(0) = 0, i.e. 0 is an equilibrium point. An equilibrium point is called
hyperbolic if no eigenvalue of f ′(0) is pure imaginary. Let us consider the following simple example{

ẋ1 = x1 + g1(x1, x2),
ẋ2 = −x2 + g2(x1, x2).

Here gi(x) = O(|x|2). The point (0, 0) is a hyperbolic equilibrium. Let us consider the linearized
equation of this example: {

ẋ1 = x1

ẋ2 = −x2.

Its solutions are {
x1(t) = x0

1e
t,

x2(t) = x0
2e
−t.

The orbit starting from x0
2 = 0 stays on x2 = 0 and converge to 0 as t→ −∞, while those starting

from any point with x0
1 = 0 go to 0 as t→∞. The line x2 = 0 is called a unstable manifold, while

the line x1 = 0 is called a stable manifold. All other orbits forms part of a hyperbola: x1x2 = x0
1x

0
2

and leave the unstable manifold and move toward the stable manifold as t → ∞. This is the orbit
structure of the linearized equation near the equilibrium.

In the theory of ODE, it can be shown that the structure of orbits of the nonlinear equations is
closed to that of the linearized equation (i.e. gi = 0, i = 1, 2). This persistence of the structure is
called structure stability of a hyperbolic equilibrium. I shall not give a complete theory here. I will
just show the existence of unstable manifold here, which is a key step of the stability theory.

Let φt(x) denote the solution of ẋ = f(x) with x(0) = x. Given ε > 0, a manifoldM s
ε is called

a stable manifold at 0 if
W s
ε (0) = {x| |φt(x)| ≤ ε for all t ≥ 0}.

Similarly, a manifold Mu
ε is called an unstable manifold at 0 if

W u
ε (0) = {x| |φt(x)| ≤ ε for all t ≤ 0}.

Such stable and unstable manifolds exist locally. Let us show the existence of unstable manifold
below. This unstable manifold will be represented as η = h(ξ). It has the properties: h(0) = 0 and
h′(0) = 0. That is, it is tangent to the unstable manifold of the linearized equation T (0, 0).

We start from an initial data (x1(0), x2(0)) = (ξ, η) for the ODE:{
ẋ1 = x1 + g1(x1, x2)
ẋ2 = −x2 + g2(x1, x2),

Using method of integration factor, the first equation becomes

(e−tx1)′ = e−tg1(x1, x2).
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Integrate it, we get

x1(t) = etξ +

∫ t

0
et−sg1(x1(s), x2(s)) ds.

For the second equation, we use the integration factor et and integrate it from −∞ to t. This is
because we expect x2(t)→ 0 as t→ −∞. Hence we have

x2(t) =

∫ t

−∞
e−t+sg2(x1(s), x2(s)) ds.

Now we consider the space

Xε = {x : (−∞, 0]→ R2, ‖x‖∞ ≤ ε}

equipped with the ‖ · ‖∞ and the mapping

(Tξx) (t) =

(
etξ +

∫ t
0 e

t−sg1(x1(s), x2(s)) ds∫ t
−∞ e

−t+sg2(x1(s), x2(s)) ds

)
.

Assume |ξ| ≤ ε/2. Using gi(x) = O(|x|2) (say |gi| ≤ C|x|2), we get

|Tξx(t)| ≤ ε/2 + C‖x‖2∞, for t ≤ 0.

Thus, we choose ε such that
ε

2
+ Cε2 ≤ ε,

then Tξ maps Xε into Xε.
Next, it is easy to check Tξ is a contraction mapping in Xε with contraction ratio 1/2 if we

choose ε with Cε ≤ 1/2. Hence Tξ has a fixed point (x∗1, x
∗
2) in Xε. This solution satisfies the

condition:
x∗1(0) = ξ, x∗2(t)→ 0 as t→ −∞.

Let

η := x∗2(0) =

∫ 0

−∞
g2(x∗1(s), x∗2(s)) ds. (3.1)

This defines η as a function of ξ, say η = h(ξ). Then h(·) is defined on (−ε/2, ε/2). Its graph is the
unstable manifold Mu

ε . Namely, for (ξ, η) ∈ Mu
ε , the solution of the above ODE with x∗1(0) = ξ

and x∗2(0) = η tends to (0, 0) as t→ −∞.

Remark. In fact, h(·) is an analytic function. Further, h′(0) = 0. I leave the proof of h′(0) = 0
to the reader because it is not a direct application of the contraction mapping.
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Example Consider the following example

ẋ = −x+ x2 − 2xy + y3

ẏ = y + x3.

The stable manifold can be expressed as η = h(ξ) near (0, 0). On this manifold,

η̇ = h′(ξ)ξ̇.

This implies
η + ξ3 = h′(ξ)(−ξ + ξ2 − 2ξη + η3)

Since h(ξ) is analytic and h′(0) = 0, we can expand

h(ξ) = a2ξ
2 + a3ξ

3 + · · · .

By plugging this expression into the above equation, we obtain

a2ξ
2 + a3ξ

3 + ξ3 = (2a2ξ + 3a3ξ
2) · (−ξ + ξ2 − 2ξ(a2ξ

2) + (a2ξ
2)3) +O(ξ4).

Equate the coefficients of the same powers, we get

a2 = −2a2, a3 + 1 = 2a2 − 3a3.

Thus, a2 = 0 and a3 = −1/4.

Remark. Consider the ODE: ẋ = f(x) in Rn and suppose 0 is an equilibrium point. That is,
f(0) = 0. The spectra σ(f ′(0)) is the set of all eigenvalues of f ′(0). They are classified into σs, σu
and σc depending the real part of the eigenvalue λ is less tha, greater than or equals 0, respectively.
Suppose the invariant spaces corresponding to σs, σu and σc are Πu, Πs and Πc, respectively. Just
similar to the stable manifold and unstable manifold, we can also define the centered manifold as
the follows

M c
ε := {x||φt(x)| ≤ ε,∀t ∈ R}

where φt is the solution of the above ODE with φ0(x) = x. The centered manifold theorem states
that M c

ε exists locally, has the representation:

η = h(ξ)

for ξ ∈ Πc and η ∈ Πs + Πu. Moreover, the tangent space of M c
ε at 0 is Πc.

3.8 A priori estimate for solutions of ODE

Global Lipschitz condition
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Theorem 3.6. Consider the ODE in Rn:

ẏ = f(t, y).

Assume f satisfies
|f(t, y)| ≤ a(t) + b(t)|y|,

where a(·) and b(·) are integrable on [0, T ] for some T > 0. Then the solution exists up to T and
has the following estimate

|y(t)| ≤ eB(t)|y(0)|+
∫ t

0
eB(t)−B(s)a(s) ds

where B(t) =
∫ t

0 b(s) ds.

Proof. We have
|y|′ ≤ |y′| ≤ |f(t, y)| ≤ a(t) + b(t)|y|.

Let B(t) :=
∫ t

0 b(s) ds. Consider the integration factor e−B(t). We have(
e−B(t)|y|

)′
≤ e−B(t)a(t).

Integrate this inequality from 0 to t, we get

e−B(t)|y(t)| − |y(0)| ≤
∫ t

0
e−B(s)a(s) ds.

This leads to

|y(t)| ≤ eB(t)|y(0)|+
∫ t

0
eB(t)−B(s)a(s) ds

Thus, as long as a(·) and b(·) are integrable on [0, T ], then |y(t)| remains bounded on [0, T ]. Then
from local existence theorem, it can be extended beyond T . Thus, the solution exists on [0,∞).

Lyapunov functional

Theorem 3.7. Consider the ODE in Rn:

y′ = f(y), y(0) = y0.

Suppose there exists a function Φ such that

∇Φ(y) · f(y) ≤ 0,

and Φ(y)→∞ as y →∞. Then the solution exists on [0,∞).
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Proof. Consider Φ(y(t)). It is a non-increasing function because

d

dt
Φ(y(t)) = ∇Φ(y(t)) · f(y(t)) ≤ 0

Thus,
Φ(y(t)) ≤ Φ(y(0))

Since Φ(y)→∞ as y →∞, the set

{y|Φ(y) ≤ Φ(y0)}

is a bounded set. If the maximal existence of interval is [0, T ) with T < ∞, then y(·) is bounded
in [0, T ) and can be extended to T . By the local existence of ODE, we can always extend y(·) to
T + ε. This is a condiction. Hence T =∞.

As an example, let us consider a damping system

ẍ+ γẋ = −V ′(x)

where V is a trap potential, which means that V (x) → ∞ as |x| → ∞. By multiplying ẋ both
sides, we obtain

dE

dt
= −γ|ẋ|2 ≤ 0

Here,

E(t) :=
1

2
|ẋ|2 + V (x)

is the energy. The term γ|ẋ|2 is called the energy dissipation rate. We integrate the above equation
from 0 to t, drop the dissipation term to get

E(t) ≤ E(0), for all t > 0.

This gives a priori estimate of solution

1

2
|ẋ(t)|2 + V (x(t)) ≤ E(0).

This implies both ẋ and x are bounded, because of the property of V .

3.9 Solving a simple boundary-value problem

We consider

−u′′ + q(x)u = f, x ∈ (0, 1)

u(0) = 0, u(1) = 0.
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Such a problem occur commonly in quantum mechanics, wave propagation, etc. The function u is
called a wave function and q a potential. We can solve this equation for q ≡ 0 first. Then solve this
equation for small q. Such a method is called a perturbation method.

To solve −u′′ = f with u(0) = u(1) = 0, we integrate it once to get

u′(y) = −
∫ y

1
f(s) ds+ C1.

Next, we integrate it from 0 to x and use u(0) = 0 to get

u(x) = −
∫ x

0

∫ y

1
f(s) ds dy + C1x.

By integration-by-part,

−
∫ x

0

∫ y

1
f(s) ds dy = −

∫ x

0
F (y) dy

= − [yF (y)]x0 +

∫ x

0
yF ′(y) dy

= x

∫ 1

x
f(y) dy +

∫ x

0
yf(y) dy

From u(1) = 0, we obtain

C1 = −
∫ 1

0
yf(y) dy.

Hence

u(x) =

∫ x

0
y(1− x)f(y) dy +

∫ 1

x
x(1− y)f(y) dy

Let us define

g(x, y) :=

{
x(1− y) if 0 ≤ x ≤ y ≤ 1
y(1− x) if 0 ≤ y ≤ x ≤ 1.

Then the solution above can be represented as

u(x) =

∫ 1

0
g(x, y)f(y) dy.

Such a g is called the Green’s function associated with the operator−d2/dx2 in (0, 1) with Dirichlet
boundary condition. It satisfies

− d2

dx2
g(x, y) = δ(x, y), g(0, y) = g(1, y) = 0.

Next, we consider the perturbed problem:

−u′′ + q(x)u = f, x ∈ (0, 1)

u(0) = 0, u(1) = 0.
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We can rewrite it as an integral equation

u(x) +

∫ 1

0
g(x, y)q(y)u(y) dy =

∫ 1

0
g(x, y)f(y) dy.

This equation has the form
(I −K)u = h

where

Ku(x) :=

∫ 1

0
g(x, y)q(y)u(y) dy

h(x) :=

∫ 1

0
g(x, y)f(y) dy.

Now we can apply method of contraction to show the existence of the solution. We choose the
metric space to be X = {u ∈ C[0, 1]|u(0) = u(1) = 0}. This is a complete metric space. We
define Tu = Ku+ h for u ∈ X . It is easy to see that Tu ∈ X . To see T is a contraction, we have

‖Ku‖∞ := sup
0≤x≤1

∣∣∣∣∫ 1

0
g(x, y)q(y)u(y) dy

∣∣∣∣
≤ sup

0≤x≤1

∫ 1

0
|g(x, y)q(y)| dy‖u‖∞

≤ sup
0≤x≤1

∫ 1

0
|g(x, y)| dy‖q‖∞‖u‖∞

=
1

8
‖q‖∞‖u‖∞.

Hence, if ‖q‖∞ < 8, then T is a contraction in X . Consequently, it has a unique fixed point in X .

3.10 Remarks

More general fixed point theorems based only on topological arguments.

Theorem 3.8 (Intermediate value theorem). If T : [a, b] → [a, b] is continuous, then T has a fixed
point in [a, b].

Theorem 3.9 (Brouwer fixed point theorem). If T : K → K is continuous and K is a convex and
compact in Rn, then T has a fixed point in K.

Theorem 3.10 (Schauder fixed point theorem). If T : K → K is continuous and K is a convex and
compact in a Banach space, then T has a fixed point in K.

I leave you to find applications for these general theorems.

Homeworks 3.1.
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1. The Gauss-Seidel method decomposes a matrixA = M−N , then solve the equationAx = b
by the iteration Mxn+1 = Nxn + b. Here, M is the lower triangular part of A and −N the
strict upper triangular part of A. Show the convergence result for diagonally dominant matrix
A.

2. Consider the equation

f(x) := x− A

x

(a) Show how best to choose a polynomial

c(x) = a+ bx2

so that the iteration scheme for
√
A

xn+1 = xn + c(xn)f(xn)

converges most rapidly in the neighborhood of the solution.

(b) Estimate the rapidity of convergence.

3. Find an iterative procedure to solve

2x+ 3y + sinx2 + tan(xy) = 0

for (x, y) near (0, 0).

4. Consider the equation
−(p(x)u′)′ = f, x ∈ (0, 1)

with u(0) = u(1) = 0. The function p is a piecewise constant function. That is

p(x) =

{
a1 for x < x̄
a2 for x > x̄

where 0 < x̄ < 1 is a discontinuity of p. At this point, we require

[u]x̄ := u(x̄+)− u(x̄−) = 0, [pu′]x̄ := p(x̄+)u′(x̄+)− p(x̄−)u′(x̄−) = 0.

Find the Green’s function of this system.

5. Hunter’s book: pp. 78: Ex 3.1.

6. Hunter’s book: pp. 79: Ex 3.6.
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Chapter 4

Hilbert Spaces

4.1 Hilbert Spaces, Basic

Hilbert spaces were studied in the first decade of the 20th century by David Hilbert, Erhard Schmidt,
and Frigyes Riesz, later by von Neumann on operator theory.

4.1.1 Inner product structure

Definition 4.1. Let X be a complex linear space. An inner product (·, ·) is a bilinear form: X ×
X → C which satisfies

(a) (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0,

(b) (x, y) = (y, x),

(c) (x, αy + βz) = α(x, y) + β(x, z).

The linear space X equipped with the inner product (·, ·) is called an inner product space.

Examples.

1. The space Cn with
(x, y) :=

∑
i

xiyi

is an inner product space.

2. Let A be a symmetric positive definite matrix in Rn. Define

〈x, y〉A := (x,Ay)

Then 〈·, ·〉A is an inner product in Rn.

65
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3. The space C[0, 1] with the inner product

(f, g) :=

∫ 1

0
f(t)g(t) dt

is an inner product space.

4. The space L2(0, 1) is the completion of C[0, 1] with the above inner product. It is the space
of all square (Lebesgue) integrable functions.

5. Let T be the unit circle and

L2(T) := {f : T→ C |
∫
T
|f(t)|2 dt <∞}

It is the space of all square summable and periodic functions.

6. The `2(N) is defined to be

`2(N) := {x | x = (x1, x2, · · · ),
∞∑
i=1

|xi|2 <∞}

The `2(N) is an inner product space with the inner product

(x, y) :=
∞∑
i=1

xiyi.

Similarly, we define

`2(Z) := {x | x : Z→ C,
∞∑

i=−∞
|xi|2 <∞}.

It is also an inner product space.

7. Let wn > 0 be a positive sequence. Define

`2w := {x| x : N→ C,
∞∑
i=1

wi|xi|2 <∞}

The inner product is defined to be

(x, y) :=

∞∑
i=1

wixiyi.
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8. Let w : (a, b)→ R+ be a positive continuous function. Define the space

L2
w(a, b) := {f : (a, b)→ C |

∫ b

a
|f(x)|2w(x) dx <∞}

and equip it with the inner product

(f, g) :=

∫ b

a
f(x)g(x)w(x) dx.

L2
w(a, b) is an inner product space.

In an inner product space X , We define ‖x‖ =
√

(x, x). Then (X, ‖ · ‖) is a normed space. The
key is the Cauchy-Schwarz inequality

Theorem 4.1. Let X be an inner product space. For any x, y ∈ X , we have

|(x, y)| ≤ ‖x‖‖y‖

Proof. From non-negativity of (·, ·), we get

0 ≤ (x+ ty, x+ ty) = ‖x‖2 + 2Re(x, y)t+ ‖y‖2t2 for all t ∈ R.

From this, we obtain
|Re(x, y)|2 ≤ ‖x‖2‖y‖2.

This is one form of Cauchy-Schwarz. We claim that

|Re(x, y)| ≤ ‖x‖ ‖y‖ for any x, y ∈ X

if and only if
|(x, y)| ≤ ‖x‖ ‖y‖ for any x, y ∈ X.

Suppose (x, y) is not real, we choose a phase φ such that eiφ(x, y) is real. Now we replace x by
eiφx. Then

|Re(eiφx, y)| ≤ ‖x‖ ‖y‖
But the left-hand side is |(x, y)|. This proves one direction. The other direction is trivial.

The triangle inequality is equivalent to the Cauchy-Schwarz inequality. In fact, we have

‖x+ y‖2 = ‖x‖2 + 2Re(x, y) + ‖y‖2

while
(‖x‖+ ‖y‖)2 = ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2.

By comparing the two equations, we get that the triangle inequality is equivalent to the Cauchy-
Schwarz inequality. In fact, the following statements are equivalent:

(a) For any x, y ∈ H, Re(x, y) ≤ ‖x‖ ‖y‖;

(b) For any x, y ∈ H, |(x, y)| ≤ ‖x‖ ‖y‖;

(c) For any x, y ∈ H, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
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Remark. If we are care about the cosine law, that is

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ ‖y‖ cos θ,

then we should define the angle between two vectors x and y by

cos θ :=
Re(x, y)

‖x‖ ‖y‖
.

However, this creates a problem, the orthogonality in this sense may not have (x, y) = 0. This is
not what we want. . So, we define the acuate angle between two vectors x and y by

cos θ :=
|(x, y)|
‖x‖ ‖y‖

,

and we give up the traditional cosine law.

Definition 4.2. A complete inner product space is called a Hilbert space.

In the aforementioned inner product space, the `2, L2(a, b), L2
w(R) are Hilbert spaces.

Proposition 4.1 (Parallelogram law). A normed linear space is an inner product space if and only
if

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, for all x, y ∈ X.

Proof. Suppose a norm satisfies the parallelogram law, we define

(x, y) :=
1

4

(
‖x+ y‖2 − ‖x− y‖2 − i‖x+ iy‖2 + i‖x− iy‖2

)
.

We leave the reader to check the parallelogram law implies the bilinearity of the inner product.

4.1.2 Sobolev spaces

The H1 space. Let (a, b) be a finite interval on R. We recall that

L2(a, b) = {u : (a, b)→ C|
∫ b

a
|u(x)|2 dx <∞}.

Here, the integrability is in the Lebesgue sense. One may think L2(a, b) to be the completion of
C[a, b] under L2-norm. Thus, L2(a, b) is a Hilbert space. Similarly, we define

H1(a, b) = {u : (a, b)→ C|
∫ b

a

(
|u(x)|2 + |u′(x)|2

)
dx <∞}

with the inner product

(u, v) =

∫ b

a

(
ūv + u′v′

)
dx.

Think why H1(a, b) is complete?1 Indeed, it is the completion of C1[a, b], or C∞[a, b] under the
above inner product.

1If un → u in L2(a, b) and u′n → v in L2(a, b), then we have u′ = v.
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The H1
0 spaces. Let

H1
0 (a, b) = {u ∈ H1(a, b)|u(a) = u(b) = 0}.

You may wonder why can we define u(a) and u(b) for those function u ∈ H1(a, b)? In fact, for
any two points x1 and x2 near a, we can express

|u(x2)−u(x1)| = |
∫ x2

x1

u′(x) dx| ≤
(∫ x2

x1

12dx

)1/2(∫ x2

x1

|u′(x)|2dx
)1/2

≤ (x2−x1)1/2‖u′‖,

which tends to zero as x1, x2 → a. Thus, it is meaningful to take limx→a u(x). Alternatively,
H1

0 (a, b) is the completion of C∞0 [a, b] under the above inner product. Here, C∞0 [a, b] are those
C∞ function on [a, b] satisfying zero boundary condition. I shall take this as a fact.

In H1
0 (a, b), we can define another inner product

〈u, v〉 :=

∫ b

a
u′(x)v′(x) dx.

To see this, we need to check that 〈u, u〉 = 0 implies u ≡ 0. From
∫ b
a |u

′(x)|2 dx = 0, we get that
u′(x) ≡ 0 on (a, b). Hence, u is a linear function on (a, b). With u(a) = u(b) = 0, we conclude
that u ≡ 0.

Now, in H1
0 , we have two norms, one is

‖u‖21 ≡ ‖u‖2 + ‖u′‖2;

the other is
‖u‖22 ≡ ‖u′‖2.

Here, ‖ · ‖ is the L2-norm. We claim that these two norms are equivalent in H1
0 . 2 For the afore-

mentioned two norms in H1
0 , we have

‖u′‖2 ≤ ‖u‖2 + ‖u′‖2.

Thus, ‖u‖2 ≤ ‖u‖1. On the other hand, the other inequality ‖u‖1 ≤ C2‖u‖2 is followed from the
theorem below.

Theorem 4.2 (Poincaré inequality). There exists a constant C > 0 such that for any u ∈ H1
0 (a, b),

we have
‖u‖2 ≤ C‖u′‖2. (4.1)

2 Two norms ‖ · ‖1, ‖ · ‖2 are equivalent in a normed space X if there exist two positive constants C1, C2 such that
for any u ∈ X , we have

C1‖u‖2 ≤ ‖u‖1 ≤ C2‖u‖2.
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Proof. From the fundamental theorem of calculus,

u(x) = u(a) +

∫ x

a
u′(y) dy =

∫ x

a
u′(y) dy.

Thus,

|u(x)|2 =

∣∣∣∣∫ x

a
u′(y) dy

∣∣∣∣2
≤

(∫ x

a
12 dy

)(∫ x

a
|u′(y)|2 dy

)
≤ (x− a)

(∫ b

a
|u′(y)|2 dy

)
Here, we have used Cauchy-Schwarz inequality. We integrate x over (a, b) to get

∫ b

a
|u(x)|2 dx ≤ (b− a)2

2

∫ b

a
|u′(y)|2 dy.

This proves the Poincaré inequality in one dimension.

Remark

1. You can see from the proof that we don’t need both boundary conditions u(a) = u(b) = 0.
In fact, u(x) is determined by u(a) and u′(x), a < x < b. Thus, the Poincaré inequality is
also valid by just assuming u(a) = 0. Indeed, it is also valid by assuming

∫ b

a
u(x) dx = 0.

2. Dimension analysis for the Poincaré inequality: Let us denote the dimension of length by
L, the variable u by U . We denote these by [x] = L and [u] = U . The L2 norm of u has
dimension

[‖u‖] = (U2L)1/2 = UL1/2.

The dimension of L2 norm of u′ is[
‖u′‖

]
= (UL−1)L1/2 = UL−1/2

By comparing the dimensions on both sides of the Poincaré inequality, we get that the constant
has the dimension L.
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Best constant in Poincaré inequality To find the best constant C in the Poincaré inequality, we
look for the following minimum

min
u(a)=u(b)=0

∫ b
a u
′(x)2 dx∫ b

a u(x)2 dx

This problem is equivalent to

min
u(a)=u(b)=0

∫ b

a
u′(x)2 dx subject to

∫ b

a
u(x)2 dx = 1.

By the method of Lagrange multiplier, there exists a λ such that

δ

(∫ b

a
u′(x)2 dx− λ

∫ b

a
u(x)2 dx

)
= 0.

The corresponding Euler-Lagrange equation is

−u′′ − λu = 0

with the two boundary condition u(a) = u(b) = 0. This is a standard eigenvalue problem. The
minimal value of λ is the first eigenvalue of −D2 with the Dirichlet boundary condition. The
corresponding eigenvector and eigenvalue are

u(x) = sin

(
x− a
b− a

π

)
, λ =

(
π

b− a

)2

.

Thus, the best constant is

C =
1√
λ

=
b− a
π

.

Exercise: The weighted Sobolev space. Let w(x) > 0 on [a, b]. Define the inner product

〈u, v〉w :=

∫ b

a
u′(x)v′(x)w(x) dx

and the corresponding norm ‖u′‖2w := 〈u, u〉w. Let

H1
w,0(a, b) := {u : (a, b)→ C|‖u′‖w <∞, u(a) = u(b) = 0}

Then the space H1
0,w(a, b) = H1

0 and the norm ‖u′‖w is equivalent to ‖u′‖.

Homeworks 4.1. pp. 144-145: 6.1, 6.3, 6.4, 6.5
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4.2 Projection

Projections in Banach spaces

Definition 4.3. (a) A projection P in a Banach space X is a linear mapping from X to X satis-
fying P 2 = P .

(b) The direct sum of two subspacesM and N in a Banach space X is defined to be

M⊕N := {x+ y | x ∈M, y ∈ N}.

Theorem 4.3. If P is a projection on linear space X , then X = RanP ⊕ Ker P , and RanP ∩
KerP = {0}.
Conversely, if X = M⊕N andM∩N = {0}, then any x ∈ X can be uniquely represented as
x = y + z with y ∈M and z ∈ N . Furthermore, the mapping P : x 7→ y is a projection.

Proof. (⇒)

1. We first show that x ∈ RanP ⇔ x = Px. (⇐) If x = Px clearly x ∈ RanP . (⇒)If
x ∈ RanP , then x = Py for some y ∈ H. From P 2 = P , we get Px = P 2y = Py = x.

2. Next, if x ∈ RanP ∩KerP , then x = Px = 0. Hence, RanP ∩KerP = {0}.

3. Finally, we can decompose x ∈ X into

x = Px+ (x− Px).

The part Px ∈ RanP . The other part x−Px ∈ Ker P because P (x−Px) = Px−P 2x = 0.

(⇐)

1. If x = y1 + z1 = y2 + z2 with yi ∈ M and zi ∈ N , then y1 − y2 = z2 − z1 and it is in
M∩N . Thus, y1 = y2 and z1 = z2.

2. For y ∈M, Py = y. For any x, Px ∈M, hence P (Px) = Px.

Remarks.

1. If P is a projection, so is I − P .

2. We have RanP = Ker(I − P ) and KerP = Ran(I − P ).

3. A projection in a Banach space needs not be continuous in general.

Theorem 4.4. Let X be a Banach space and P is a projection in X .

(a) If P is continuous, then both KerP and RanP are closed.
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(b) On the other hand, if Y is closed subspace and there exists a closed subspace Z such that
X = Y ⊕ Z. Then the projection P : x 7→ y is continuous, where x = y + z is the
decomposition of x with y ∈ Y and z ∈ Z.

Proof. 1. We show the graph of P is closed. That is, if xn → x and yn := Pxn → y, then
y ∈ Y and x − y ∈ Z. From the decomposition, we have yn ∈ Y and zn := xn − yn ∈ Z.
From the closeness of Y , we get y ∈ Y . From xn → x and yn → y, we get xn−yn converges
to x− y. From the closeness of Z, we get x− y ∈ Z. Thus, x = y+ (x− y) with y ∈ Y and
x− y ∈ Z.

2. The theorem follows from the closed graph theorem: A closed graph linear map A from
Banach space X to Banach space Y is also continuous.

Orthogonal projections in Hilbert spaces

Theorem 4.5 (Orthogonal Projection Theorem). Let H be a Hilbert space and let M ⊂ H be a
closed linear subspace ofH. Then

(a) for any x ∈ H, there exists a unique y ∈M such that

‖x− y‖ = min
z∈M
‖x− z‖;

(b) (x− y) ⊥M;

(c) the mapping P : x 7→ y is a projection.

Proof. (a) Let us denote
` = inf

z∈M
‖x− z‖2.

Let {yn} be a minimal sequence of ‖ · ‖2 inM. That is yn ∈M and limn→∞ ‖yn−x‖2 = `.
Then from the parallelogram law

‖ym − yn‖2 = 2‖ym − x‖2 + 2‖yn − x‖2 − 4‖ym + yn
2

− x‖2.

The first two terms tend to 4` as n,m → ∞, while the last term is greater than 4` by the
definition of `. This implies {yn} is a Cauchy sequence inM hence it has a limit y inM.

The uniqueness follows from the parallelogram law as follows. Suppose y1 and y2 are two
such solutions, that is ‖yi − x‖2 = `. Then by the parallelogram law,

‖y1 − y2‖2 = 2‖y1 − x‖2 + 2‖y2 − x‖2 − 4‖y1 + y2

2
− x‖2 ≤ 4`− 4` = 0.
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(b) From
‖x− y‖2 ≤ ‖x− y − tz‖2 = ‖x− y‖2 − 2Re(x− y, tz) + |t|2‖z‖2

for all t ∈ C and z ∈M, we choose t = εeiφ so that

Re(x− y, tz) = |t||(x− y, z)|.

Then we get
ε|(x− y, z)| ≤ ε2|z|2.

Taking ε→ 0+, we get (x− y, z) = 0.

(c) Let N = {z ∈ H|z ⊥ M}. From (b), we get that H =M⊕N andM∩N = {0}. Thus,
the mapping P : x 7→ y is a projection ontoM.

LetH be a Hilbert space.M⊂ H be a subset. Define the orthogonal complement ofM by

M⊥ := {x ∈ H|x ⊥ y for all y ∈M}.

The orthogonal complement of a subsetM in H is a closed linear subspace. From the orthogonal
projection theorem, we have

H =M⊕M⊥.
Any x ∈ H can be decomposed into x = y + z with y ∈ M and x − y ∈ M⊥. The projection
P : x 7→ y is called an orthogonal projection.

Corollary 4.1. IfM is a closed subspace of a Hilbert spaceH, then
(
M⊥

)⊥
=M.

Proof. We only prove
(
M⊥

)⊥ ⊂M. Suppose x ∈
(
M⊥

)⊥. That is, (x,w) = 0 for all w ∈M⊥.
By the orthogonal projection theorem, we can decompose x = y + z with y ∈ M and z ∈ M⊥.
Then 0 = (x,w) = (y + z, w) = (z, w) for all w ∈ M⊥. Since z ∈ M⊥, we can take w = z and
get (z, z) = 0. Hence, x = y ∈M. This proves

(
M⊥

)⊥ ⊂M.

Theorem 4.6. Let P : H → H be a projection. The following two statements are equivalent:

(a) (Px1, x2) = (x1, Px2) for all x1, x2 ∈ H;

(b) H = RanP ⊕Ker P and RanP ⊥ Ker P .

Proof. (a)⇒ (b): For any x ∈ RanP , then x = Py for some y ∈ H. Then for any z ∈ Ker P ,

(x, z) = (Py, z) = (y, Pz) = 0.

Hence, RanP ⊥ Ker P .
(b)⇒ (a): For any x1, x2 ∈ H, they can be uniquely decomposed into

x1 = y1 + z1, x2 = y2 + z2, with yi ∈M, ziM⊥.

Thus,
(Px1, x2) = (y1, y2) = (x1, Px2).



4.2. PROJECTION 75
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Figure 4.1: Orthogonal projection of x onto a closed subspaceM. {yn} are minimal sequence.

Example 1. Given a vector y ∈ H. Define P : x 7→ (y, x) y
‖y‖2 . Then RanP = 〈{y}〉, the space

spanned by y, and KerP = y⊥.

Example 2. Given n independent vectors {v1, · · · , vn} in H. LetM = 〈{v1, · · · , vn}〉. Given
any x ∈ H, the orthogonal projection y of x onM satisfies:

y = arg min {1

2
‖x− z‖2 | z ∈M}.

The corresponding Euler-Lagrange equation is (x − y) ⊥ M. Since y ∈ M, we can express y as
y =

∑n
i=1 αivi. The condition (x − y) ⊥ M is equivalent to (x − y, vi) = 0, i = 1, · · · , n. This
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leads to the following n× n system of linear equations

n∑
j=1

(vi, vj)αj = (x, vi), i = 1, · · · , n.

From the independence of {v1, · · · , vn}, we can get a unique solution of this equation.

4.3 Riesz Representation Theorem

Dual space The set

H∗ := {` : H → C bounded linear functional}

forms a linear space and is called the dual space ofH. For an element ` ∈ H, we define its norm by

‖`‖ := sup
‖`(x)‖
‖x‖

= sup
‖x‖=1

|`(x)|.

ThenH∗ is a normed linear space. I left you to prove thatH∗ is complete.
A typical example of bounded linear functional is the follows. Given a y ∈ H, the mapping

`y(x) := (y, x)

is a bounded linear functional, by Cauchy-Schwarz inequality. Its norm ‖`y‖ ≤ ‖y‖. On the other
hand, by choosing x = y/‖y‖, we obtain

‖`y‖ ≥ |`y(y/‖y‖)| = ‖y‖.

We thus conclude ‖`y‖ = ‖y‖.
An important theorem is the Riesz representation theorem which states that every bounded linear

functional onH must be in this form. In other word,H∗ is isometric toH.

Theorem 4.7 (Riesz representation theorem). Let ` be a bounded linear functional on a Hilbert
spaceH. Then there exists a unique y ∈ H such that

`(x) = (y, x).

Proof. We suppose ` 6= 0. Our goal is to find y such that `(x) = (y, x). We first notice that such y
must be in (Ker `)⊥ and P : x 7→ (y, x)y/‖y‖2 is an orthogonal projection.

Let N = Ker `. Then N is closed and N 6= H. Hence there exists a z1 6∈ N . By the
orthogonal projection theorem, there exists a y1 ∈ N and z := (z1 − y1) ⊥ N . From z1 6∈ N , we
get z 6= 0. Let

Px :=
`(x)

`(z)
z.
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Then P is an orthogonal projection, i.e. P 2 = P and RanP ⊥ Ker P , because RanP = {αz|α ∈
C} and Ker P = Ker ` = N . The latter is due to Px = 0 if and only if `(x) = 0. With these, we
get that

H = {αz|α ∈ C} ⊕Ker `.
Hence, any x ∈ H can be represented uniquely by

x = αz +m, with m ∈ Ker`, α = (z, x)/‖z‖2.

We have

`(x) = `(αz) =
(z, x)

‖z‖2
`(z) = (y, x).

where, y := `(z)
‖z‖2 z. We have shown the existence of y such that `(x) = (y, x).

For the uniqueness, suppose there are y1 and y2 such that `y1 = `y2 . That is,

(y1, x) = (y2, x), for all x ∈ H.

Choose x = y1 − y2, we obtain ‖y1 − y2‖ = 0.

Application of Riesz representation theorem. Now, we consider the Poisson equation on a
bounded domain Ω ⊂ Rn:

(P ) : 4u = f in Ω, u = 0 on ∂Ω.

This problem can be reformulated as the following weak form:

(WP ) : Find u ∈ H1
0 (Ω) such that (∇u,∇v) = −(f, v), for all v ∈ C1

0 .

Lemma 4.1 (Poincaré inequality). Let Ω ⊂ Rn be a smooth bounded domain. Then there exists a
constant C such that for u ∈ H1

0 (Ω), we have

‖u‖2 ≤ C‖∇u‖2.

Existence of Dirichlet problem.

Theorem 4.8. Let Ω ⊂ Rn be a smooth bounded domain. Let f ∈ L2(Ω). Then (WP) has a unique
solution in H1

0 (Ω).

Proof. From the Poincaré’s inequality, we see that

〈u, v〉1 := (∇u,∇v) :=

∫
Ω
∇u(x) · ∇v(x) dx

defines an inner product in H1
0 (Ω). On the other hand, for f ∈ L(Ω),

`v := (f, v) is a bounded linear map in both L2 and H1
0 :

|(f, v)| ≤ ‖f‖‖v‖ ≤ C‖f‖ ‖∇v‖

Thus, by the Riesz representation theorem, there exists a unique u ∈ H1
0 (Ω) such that

〈u, v〉1 = (∇u,∇v) = (−f, v)

for all v ∈ H1
0 (Ω).
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Homeworks 4.2. 1. pp. 212, Ex. 8.3,

2. pp. 212, Ex. 8.5

3. Assuming u ∈ C2(Ω). Then u satisfies (P) if and only if it satisfies (WP).

4. Prove the Poincaré’s inequality for the case when u ∈ C1
0 (Ω), Ω ⊂ Rd a bounded domain.

4.4 Error estimates for finite element method

Let us consider the Poisson equation in one dimension:

− u′′ = f on (a, b), u(a) = u(b) = 0. (4.2)

We shall find an approximate solution by finite element method. First, we discretize the space [a, b]
and define the finite element functions. We chosse an n > 0. Let h := (b − a)/n the mesh size,
xi = a+ih, i = 0, · · · , n the grid point. Define the finite element function φi(x) to be φi(xj) = δij
and φ(x) is continuous and piecewise linear. Let

Vh = 〈φ1, · · · , φn−1〉.

It is called the finite element space. An element v ∈ Vh is a continuous and piecewise linear function
and is uniquely expressed by

v(x) =
n−1∑
i=1

v(xi)φi(x).

Next, we find an approximate solution uh ∈ Vh. We express uh by

uh(x) =
n−1∑
i=1

Uiφi(x)

We project the equation (4.2) onto Vh:

(−u′′ − f, v) = 0, for all v ∈ Vh

This leads to the following equations for U = (U1, · · · , Un−1)T :

〈uh, φi〉1 = (f, φi), i = 1, · · · , n− 1.

Or
n−1∑
j=1

(φ′i, φ
′
j)Uj = (f, φi), i = 1, · · · , n− 1.

We can compute (φi, φj) directly and obtain the matrix A = (φ′i, φ
′
j)(n−1)×(n−1) as

A =
1

h
diag(−1, 2,−1)
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This matrix is invertible. So, we can invert it and find U .
Finally, we study the error of the approximate solution uh. Let u be the exact solution and

eh := u− uh be the true error. Since both u and uh satisfy

(u′, v′) = (f, v), (u′h, v
′) = (f, v) for all v ∈ Vh,

we obtain
(e′h, v

′) = 0 for all v ∈ Vh.

That is, (u − uh) ⊥1 Vh. This is equivalent to say that uh is the 〈·, ·〉1-orthogonal projection of u
on Vh. Thus,

‖u′ − u′h‖2 ≤ ‖u′ − v′‖2 for all v ∈ Vh.

In particular, we can choose v ∈ Vh that equals u at x1, · · · , xn−1. That is,

v = πhu :=
n−1∑
i=1

u(xi)φi,

then
‖u′ − u′h‖2 ≤ ‖u′ − (πhu)′‖2. (4.3)

Thus, the true error is controlled by the approximation error.

Approximation error in terms of ‖u′′‖∞ It is easy to see that πh is a projection. If u ∈ C2, then
in each cell (xi, xi+1), the projection error w(x) = u(x)− πhu(x) satisfies w(xi) = w(xi+1) = 0.
By applying Rolle’s theorem twice, we get that for any x ∈ (xi, xi+1), there exists an ξi ∈ (xi, xi+1)
such that

w(x) =
w′′(ξi)

2
(x− xi)(x− xi+1).

This leads to

|w(x)| ≤ h2

8
max

ξ∈(xi,xi+1)
|w′′(ξ)|.

Hence ∫ b

a
|w(x)|2 dx =

n−1∑
i=0

∫ xi+1

xi

|w(x)|2 dx

≤
n−1∑
i=0

h

(
h2

8

)2

max
x∈(xi,xi+1)

|w′′(x)|2

≤ (b− a)

(
h2

8

)2

max
x∈[a,b]

|u′′(x)|2.

Here, we have used that w′′(x) = u′′(x) on each subinterval (xi, xi+1). Hence,

‖u− πhu‖2 ≤
√
b− ah

2

8
‖u′′‖∞
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We can also estimate u′ − (πhu)′ by mean value theorem. First, there exists a ζ1 ∈ (xi, xi+1) such
that u′(ζ1) = (u(xi+1 − u(xi))/h. For any x ∈ (xi, xi+1), there exists ζ2 ∈ (xi, xi+1) such that
u′(x)− u′(ζ1) = u′′(ζ2)(x− ζ1). Therefore, we get

u′(x)− (πhu)′(x) = u′(x)− u(xi+1)− u(xi)

h
= u′′(ζ2)(x− ζ1).

Notice that (πhu)′(x) = u(xi+1)−u(xi)
h for x ∈ (xi, xi+1). Hence, we obtain∫ b

a
|u′ − (πhu)′|2 dx =

n−1∑
i=0

∫ xi+1

xi

|u′ − (πhu)′|2 dx

≤
n−1∑
i=0

hh2 max
x∈[a,b]

|u′′(x)|2

= (b− a)h2‖u′′‖2∞

Approximation error in terms of ‖u′′‖2 The estimate above is in terms of ‖u′′‖∞. It is desirable
to estimate in terms of ‖u′′‖2. That is, we want to estimate ‖u − πhu‖2 in terms of ‖u′′‖2. To do
so, we should use the integral representation of error of the Lagrange interpolation. We recall that
for w(xi) = w(xi+1) = 0, w has the representation:

w(x) = h2

∫ xi+1

xi

g

(
x− xi
h

,
y − xi
h

)
w′′(y) dy

w′(x) = h

∫ xi+1

xi

gx

(
x− xi
h

,
y − xi
h

)
w′′(y) dy

where g is the Green’s function of d2/dx2 on (xi, xi+1). Thus, we can estimate ‖w‖2 in terms of
‖w′′‖2 on (xi, xi+1). Namely,

|w(x)|2 ≤ h4

(∫ xi+1

xi

|g
(
x− xi
h

,
y − xi
h

)
|2 dy

) (∫ xi+1

xi

|w′′(y)|2 dy
)
.

∫ xi+1

xi

|w(x)|2 dx ≤
∫ xi+1

xi

∫ xi+1

xi

|g
(
x− xi
h

,
y − xi
h

)
|2 dy dx

∫ xi+1

xi

|w′′(y)|2 dy

≤ 1

90
h4

∫ xi+1

xi

|w′′(y)|2 dy.

As we sum over i = 1, · · · , n− 1, we get

‖w‖2 ≤
1√
90
h2‖w′′‖2.

Similarly, we get

‖w′‖2 ≤
1√
6
h‖w′′‖2.
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Theorem 4.9. For u ∈ H2(a, b) ∩H1
0 [a, b], the interpolation error has the following estimates

‖u− πhu‖2 ≤
1√
90
h2‖u′′‖2,

‖u′ − (πhu)′‖2 ≤
1√
6
h‖u′′‖2.

True error of the finite element method

Theorem 4.10. For the finite element method for problem (4.2), the true error u − uh has the
following estimate

‖u′ − u′h‖2 ≤ ‖u′ − (πhu)′‖2 ≤
1√
6
h‖u′′‖2,

‖u− uh‖2 ≤
1

6
h2‖u′′‖2.

Proof. The first estimate follows from the previous theorem. For the second, the trick is called
duality argument. Let eh = u − uh. We find the function φh such that φ′′h = −eh and φ(a) =
φ(b) = 0. Then

(eh, eh) = −(eh, φ
′′
h) = (e′h, φ

′
h) = (e′h, φ

′
h − (πhφh)′).

Here, I have used
(e′h, v

′) = 0 for all v ∈ Ran(πh).

Applying interpolation estimate to φh, we get

‖eh‖2 ≤ ‖e′h‖‖(φh − πhφh)′‖ ≤ 1√
6
‖e′h‖h ‖φ′′h‖ =

1√
6
h‖e′h‖ ‖eh‖

Hence, we get

‖eh‖2 ≤
1√
6
h‖e′h‖2 ≤

1

6
h2‖u′′‖2.

Homeworks 4.3. 1. The error functionw on each interval (xi, xi+1) satisfiesw(xi) = w(xi+1) =
0. w can be estimated in terms of w′′ in (xi, xi+1). This is indeed a generalized Poincaré
inequality. You can get best estimate via Fourier sin expansion. Find the best constant and
the get the best error estimate.

Given x0 < x1 < x2. Let w be a smooth function satisfying w(xi) = 0 for i = 0, 1, 2. Find
an integral representation of w in terms of w′′′ on (x0, x2).
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Chapter 5

Bases in Hilbert Spaces

5.1 Orthogonal bases, general theory

In this section, we shall discuss how to approximate a point x ∈ H in terms of an expansion in an
orthogonal set U = {uα|α ∈ I}.

Definition 5.1. 1. A set U = {uα|α ∈ I} is called an orthogonal set in a Hilbert space H if
any two of them are orthogonal to each other.

2. It is called an orthonormal set if it is orthogonal and each of them is a unit vector.

For separable Hilbert space (i.e. there exists a countable set A such that A = H), we can
choose U to be countable. But in general, U can be uncountable. The index set I may not be
ordered, or may even not be countable. Nevertheless, we can still discuss the meaning of the limit
of (uncountable) summation. Consider a set {xα|α ∈ I} in a Hilbert space H. For a finite set
J ⊂ I , let us denote

∑
α∈J xα by SJ .

Definition 5.2. 1. We say that
∑

α∈I xα converges to x unconditionally, if for any ε > 0, there
exists a finite set K ⊂ I such that for any finite set J with K ⊂ J ⊂ I , we have

‖x−
∑
α∈J

xα‖ < ε.

2. The summation
∑
{xα|α ∈ I} is called Cauchy if for any ε > 0, there exists a finite set

K ⊂ I such that for any finite set J with K ⊂ J ⊂ I , we have

‖
∑

α∈JrK
xα‖ < ε.

3. It is called absolute Cauchy if for any ε > 0, there exists a finite set K ⊂ I such that for any
finite set J with K ⊂ J ⊂ I , we have ∑

α∈JrK
‖xα‖ < ε.

83



84 CHAPTER 5. BASES IN HILBERT SPACES

Remark

1. It is clear that if
∑

α∈I converges, then it is Cauchy.

2. If
∑

α∈I xα is Cauchy, then for any n ∈ N, there exists a finite Kn such that for any α 6∈ Kn,
‖xα‖ < 1/n. Then for any α 6∈

⋃
n∈NKn, ‖x‖ < 1/n for all n. Thus, xα = 0. Since⋃

n∈NKn is countable, we conclude that there are at most countable nonzero xα. In this case,
we can select Jn =

⋃
j≤nKj , then SJn converges to

∑
α∈I xα.

3. It is clearly that absolute Cauchy implies Cauchy.

Example For non-separable Hilbert space, we consider quasi-periodic functions on R. A function
is called quasi-periodic if

f(t) =

n∑
k=1

ake
iωkt

where n ∈ N, ak ∈ C and ωk ∈ R are arbitrary. For quasi-periodic functions f and g, we define

(f, g) := lim
T→∞

1

2T

∫ T

−T
f(t)g(t) dt.

One can show that this inner product is equivalent to

(f, g) = lim
T→∞

1

T

∫ t0+T

t0

f(t)g(t) dt,

which is independent of t0 for quasi-periodic functions. Let H be the completion of all quasi-
periodic functions with the above inner product. They are called the L2-almost periodic functions.
The set

U = {eiωt|ω ∈ R}
is a uncountable orthonormal set inH.

Lemma 5.1. Let {xα|α ∈ I} be an orthogonal set. Then
∑

α∈I xα converges if and only if∑
α∈I ‖xα‖2 converges. In this case, ∥∥∥∥∥∑

α∈I
xα

∥∥∥∥∥
2

=
∑
α∈I
‖xα‖2 (5.1)

Proof. We check that (a)
∑

α∈I xα is Cauchy if and only if (b)
∑

α∈I ‖xα‖2 is Cauchy. This is
because if (a) is true, which means that for any ε > 0, there exists a finite set K ⊂ I such that for
any J ⊂ I rK, we have ‖

∑
i∈J xα‖2 < ε. But∥∥∥∥∥∑

α∈J
xα

∥∥∥∥∥
2

=
∑
α∈J
‖xα‖2.

This is equivalent to say that
∑

α∈I ‖xα‖2 is Cauchy. In this case, (5.1) follows from the continuity
of the norm.
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Theorem 5.1 (Bessel’s inequality). Let U := {uα|α ∈ I} be an orthonormal set in a Hilbert space
H. Then for any x ∈ H, we have

(a)
∑

α∈I |(uα, x)|2 ≤ ‖x‖2;

(b) x̄ =
∑

α∈I(uα, x)uα converges unconditionally;

(c) (x− x̄) ⊥ U .

(d) Let 〈U〉 denote the finite linear span of the set U and 〈U〉 the closure of 〈U〉. Then x ∈ 〈U〉
if and only if x =

∑
α∈I(uα, x)uα.

(e) The subspace 〈U〉 has the characterization

〈U〉 = {
∑
α∈I

aαuα |
∑
α∈I
|aα|2 <∞}

Proof. (a) Let us denote (uα, x)uα by xα. Then {xα|α ∈ I} is an orthogonal set. From

0 ≤ ‖x−
∑
α∈J

(uα, x)uα‖2 = ‖x‖2 −
∑
α∈J
|(uα, x)|2,

where J is any finite subset of I , we have
∑

α∈J ‖xα‖2 ≤ ‖x‖2 for all finite set J ⊂ I . Let

M = sup{
∑
α∈J
‖xα‖2 |J ⊂ I is a finite set.}.

Then for any ε > 0, there exists a finite set K ⊂ I such that M − ε <
∑

α∈K ‖xα‖2. Now
for any finite set J ⊂ I rK, we have

M − ε <
∑
α∈K
‖xα‖2 ≤

∑
α∈K∪J

‖xα‖2 =

(∑
α∈K

+
∑
α∈J
‖xα‖2 ≤M

)

This gives ∑
α∈J
‖xα‖2 < ε.

Thus,
∑

α∈I ‖xα‖2 is Cauchy. It converges and has an upper bound ‖x‖2.

(b) From (a) and Lemma 5.1, we get the convergence of the un-order sum x̄ :=
∑

α∈I(uα, x)uα.

(c) We use continuity of inner product: for any uβ ∈ U ,〈
x−

∑
α∈I

(uα, x)uα, uβ

〉
= (x, uβ)−

∑
α∈I

(uα, x)(uα, uβ) = (x, uβ)− (uβ, x) = 0.
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(d) From(b), x̄ ∈ 〈U〉. Thus, we have x ∈ 〈U〉 ⇔ (x− x̄) ∈ 〈U〉. From (c), x− x̄ ⊥ 〈U〉. Thus,
x ∈ 〈U〉 ⇔ x− x̄ = 0. Hence any x ∈ 〈U〉 can be expressed as x =

∑
(uα, x)uα.

(e) If
∑

α∈I aαuα with
∑

α∈I |aα|2 < ∞, then using the same argument of (b), we get the un-
order sum

∑
α∈I aαuα converges. And hence it is in 〈U〉. On the other hand, we have seen

from (d) that any element x in 〈U〉 can be expressed as

x =
∑
α∈I

(uα, x)uα,

with
∑

α∈I |(uα, x)|2 <∞.

Theorem 5.2. Let U := {uα|α ∈ I} be an orthonormal set in a Hilbert space H. Then the
following conditions are equivalent:

(a) (x, uα) = 0 for all α ∈ I implies x = 0;

(b) Any x ∈ H can be represented as x =
∑

α∈I(uα, x)uα;

(c) 〈U〉 = H;

(d) The norm of any x ∈ H can be characterized by ‖x‖2 =
∑

α∈I |(uα, x)|2;

(e) U is a maximal orthonormal set.

Proof. We see that (a) ⇔ 〈U〉⊥ = {0} ⇔ 〈U〉⊥ = 0 ⇔ H = 〈U〉. The latter follows from
the decomposition theorem H = M⊕M⊥ for any closed subspace M. This together with the
previous theorem show the equivalent from (a) to (c). The equivalence between (b) and (d) follows
from Lemma 5.1. To prove (e)⇔ (a), let us suppose there is a v 6∈ U and v ⊥ U . That is, U is not
maximal since U ⊂ V := {v} ∪ U . Then from (a), v = 0. Conversely, U is maximal means that
any orthonormal set V with U ⊂ V , then U = V . In other word, if there is a v ∈ V \U , then v = 0.
But this is the statement (a).

An orthonormal set in H satisfying one of the statements of this theorem is called an orthonor-
mal basis of H. By (b), any element x ∈ H can be represented as x =

∑
α∈I cαuα. By (d), this

representation must be unique. And by (b), it is also represented as

x =
∑
α∈I

(uα, x)uα.

Theorem 5.3. Any Hilbert spaceH has an orthonormal basis. IfH is separable, then the orthonor-
mal basis is countable.
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Proof. We consider the set S of all orthonormal sets inH and order them by the inclusion relation.
We find that S has the property: any totally partial order family has an upper bounded. A total
partial order family {U |U ∈ A} means any two of its elements, say U and V , is either U ⊂ V or
V ⊂ U . We see that its union V = ∪U∈AU is an upper bound. With this property, by Zorn’s lemma
in the set theory, the set S has a maximal element. By the previous theorem, it is an orthonormal
basis.

Next, we assume H is separable. That means there is a countable set A = {vi|i ∈ N} such
that A = H. Now, we construct a sequence of nested subspaces Vn and its basis {w1, w2, · · · , wn}
by the following procedure. Let w1 = v1, V1 = 〈{v1}〉. If v2 6∈ V1, then define w2 = v2 and
V2 = 〈{v1, v2}〉. Otherwise, we skip v2 and continue this process. Either we can find the next one,
or we have exhausted all elements in A. For the latter case, H is finite dimension. For the former
case, we continue this process and select an infinite countable subset B := {w1, w2, · · · } from A
such that {v1, · · · , vn} ⊂ 〈{w1, · · · , wn}〉 ⊂ 〈B〉 for all n. Thus, A ⊂ 〈B〉 From A = H, we get
〈B〉 = H.

We can construct an orthonormal set {u1, u2, · · · } from the independent set {w1, w2, · · · } by
the Gram-Schmidt orthonormalization procedure. It is an induction procedure. We choose u1 =
w1/‖w1‖. Let

z2 = w2 − (w2, u1)u1

and u2 = z2/‖z2‖. Suppose {u1, · · · , un} are found. We define

zn+1 = wn+1 −
n∑
i=1

(wn+1, ui)ui

and un+1 = zn+1/‖zn+1‖. Then, by construction, we have

〈{u1, · · · , un}〉 = 〈{w1, · · · , wn}〉

for all n. Consequently
〈{w1, · · · , wn}〉 ⊂ 〈{u1, u2, · · · }〉

By taking n→∞ and taking closure on the left-hand side, we get

H = 〈u1, u2, · · · 〉

For concrete Hilbert space such as L2(Ω) with Ω having certain symmetry, one can find some
natural orthonormal basis. Here are some important examples:

• In `2(N), the Cartesian unit vectors are defined as

e1 := (1, 0, · · · ), e2 := (0, 1, 0, · · · ), · · · .

These Cartesian unit vectors form an orthonormal basis in `2(N).



88 CHAPTER 5. BASES IN HILBERT SPACES

• In L2(T), the trigonometric functions {einθ/
√

2π |n ∈ Z} is an orthonormal basis.

• In the space L2
w(−1, 1) with w(x) = (1− x2)−1/2, the Tchebyshev polynomials

Tn(x) := cos
(
n cos−1(x)

)
is an orthogonal basis. Indeed, the projection : θ → x by x = cos θ from the upper unit circle
T+ to [−1, 1] is 1-1 and onto. The measure dθ on T induces the measure (1− x2)−1/2dx on
(−1, 1). The trigonometric functions cosnθ correspond to the Tchebyshev polynomials on
(−1, 1). You can check by induction that Tn are polynomials.

• InL2(−1, 1) the Legendre polynomials can be constructed from the polynomials {1, x, x2, · · · }
by the Gram-Schmidt orthogonalization procedure.

• Hermite polynomials form orthogonal basis in L2
w(−∞,∞) with w(x) = ex

2/2.

• Haar basis. the Haar function on R is defined to be

ψ(x) =


1 for 0 ≤ x < 1/2
−1 for 1/2 ≤ x < 1
0 otherwise.

We can translate and rescale ψ to get

ψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ Z.

Then you can check (ψj,k, ψ`,m) = δj,`δk,m. Indeed,A := {ψj,k|j, k ∈ Z} is an orthonormal
basis in L2(R). We shall leave the proof of A being an orthonormal set as an exercise. We
shall discuss the completeness of A in later chapter.

Homeworks 5.1. 1. pp. 145-147: 6.12,

2. Ex. 6.13,

3. Ex. 6.14

4. Let ψ be the Haar function on R. Show that the set {ψj,k|j, k ∈ Z} is an orthonormal set in
L2(R).

5.2 The Fourier basis in L2(T)

5.2.1 Definition and examples

Definition We study Fourier expansion for 2π-periodic functions. Suppose f is a 2π-periodic
function. Let us expand f as

f(x) ∼
∞∑

k=−∞
ake

ikx.



5.2. THE FOURIER BASIS IN L2(T) 89

By taking the following inner product, defined by

(f, g) :=
1

2π

∫ π

−π
f(x)g(x) dx,

with eimx, we find that

am =
1

2π

∫ π

−π
f(x)e−imx dx.

am’s are called the Fourier coefficients, or Fourier multiples. m is the wave number. We denote am
by f̂m.

Examples

1.

f(x) =

{
1 for 0 < x < π
−1 for − π < x < 0

2. f(x) = 1
π |x|

5.2.2 Basic properties

A 2π-periodic function can be identified as a function on circle, which is T = R/(2πZ). Some
important properties of Fourier transform are

• The differentiation becomes a multiplication under Fourier transform. It is also equivalent to
say that the differential operator is diagonalized in Fourier basis.

• The convolution becomes a multiplication under Fourier transform.

Differentiation

Lemma 5.2. If f ∈ C1[T], then
f̂ ′k = ikf̂k.

Proof.

f̂ ′k =
1

2π

∫ 2π

0
f ′(x)e−ikx dx

=
1

2π
e−ikxf(x)

∣∣∣x=2π

x=0
− 1

2π

∫ 2π

0
(−ik)e−ikxf(x) dx

= ikf̂k.

Here, we have used the periodicity of f in the last step.
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Convolution If f and g are in L2(T), we define the convolution of f and g by

(f ∗ g)(x) =

∫
T

∫
T
f(x− y)g(y) dy.

Lemma 5.3. If f, g ∈ C(T), then (
f̂ ∗ g

)
k

= 2πf̂kĝk.

Proof. (
f̂ ∗ g

)
k

=
1

2π

∫
T
f ∗ g(x)e−ikx dx

=
1

2π

∫
T

∫
T
f(x− y)g(y) dye−ikx dx

=
1

2π

∫
T

∫
T
f(x− y)e−ik(x−y)g(y) dye−iky dx

=
1

2π

∫
T

(∫
T
f(x− y)e−ik(x−y) dx

)
g(y)e−iky dy

=
1

2π

∫
T

(∫
T
f(x)e−ikx dx

)
g(y)e−iky dy

= 2πf̂kĝk.

Here, we have used Fubini theorem.

Remarks

1. The above two lemmae are also valid for f, g are in L2. Their proofs are based on the L2

convergence of the Fourier series for nice functions and the fact that nice functions are dense
in L2.

2. Many solutions of differential equations are expressed in convolution forms. For instance
−u′′ = f in T, its solution can be expressed as u = g ∗ f , where g is the Green’s function of
−d2/dx2 on T.

3. In image processing, a blurred image is modelled by

z(x) =

∫
k(x− y)f(y) dy

where f(y) is the original image, z the blurred image, and

k(x) =
1

2πσ2
e−|x|

2/2σ2

the blur operator.
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Regularity and decay If f is smooth, then its Fourier coefficients decays very fast. Indeed, by
taking integration by part n times, we have

f̂k =
1

2π

∫ π

−π
f(x)e−ikx dx

=
1

(−ik)n
1

2π

∫ π

−π
f (n)(x)e−ikx dx

Thus, if f ∈ Cn, we see f̂k = O(|k|−n).1 This can also be observed by the following arguments.
We notice that

f̂k = − 1

2π

∫ π

−π
f(x)e−ik(x+π/k) dx

Hence,

f̂k =
1

2π

∫ π

−π
f(x)e−ikx dx

=
1

2π

∫ π

−π

f(x)− f(x− π/k)

2
e−ikx dx

:=
1

2π

∫ π

−π
Dπ/kf(x)e−ikx dx

=
1

2π

∫ π

−π
Dn
π/kf(x)e−ikx dx

Here, Dπ/k is a backward finite difference operator. Thus, f̂k measures the oscillation of f at scale
π/k. If f is smooth, then Dn

π/kf = O(|k|−n)g(x) with g being uniformly bounded in k. Thus,

f̂k = O(|k|−n). Indeed we have better result:

Lemma 5.4. If f ∈ Cn(T), then f̂k = o(|k|−n).

We shall only need to show that f̂k → 0 as |k| → ∞ for continuous function f . The rest for
high derivative cases can be obtained by taking integration by part. We have seen that

f̂k =
1

2π

∫ π

−π
f(x)e−ikx dx

=
1

2π

∫ π

−π

f(x)− f(x− π/k)

2
e−ikx dx

When f is continuous on T, it is uniformly continuous on T. Thus, for any ε > 0, we can find
K > 0 such that for all |k| > K we have∣∣∣∣f(x)− f(x− π/k)

2

∣∣∣∣ < ε.

1If fact, we shall see later from the Riemann-Lebesgue lemma that f̂k = o(|k|−n).
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From this, we obtain

|f̂k| ≤
1

2π

∫ π

−π

∣∣∣∣f(x)− f(x− π/k)

2
e−ikx

∣∣∣∣ dx < ε.

When f is not smooth, say in L1, we still have f̂k → 0 as |k| → ∞. This is the following
Riemann-Lebesgue lemma.

Lemma 5.5 (Riemann-Lebesgue). If f is in L1(a, b), then

f̂k :=

∫ b

a
f(x)e−ikx dx→ 0, as |k| → ∞.

Proof. 1. For f ∈ L1(a, b), we have

|f̂k| ≤ ‖f‖1 for all k.

2. Any function f ∈ L1(a, b) can be approximated by a continuous function g ∈ C[a, b] in the
L1 sense. That is, for any ε > 0, there exists g ∈ C[a, b] such that ‖f − g‖1 < ε.

3. For g ∈ C[a, b], we have: for any ε > 0, there exists a K > 0 such that for |k| > K, we have

|ĝk| < ε.

Combining these two, we get

|f̂k| ≤ |ĝk|+ |f̂k − ĝk| ≤ |ĝk|+ ‖f − g‖1 < 2ε.

Thus, |f̂k| → 0 as |k| → ∞.

Remarks.

1. If f is a Dirac delta function, we can also define its Fourier transform

f̂k =
1

2π

∫ π

−π
δ(x)e−ikx dx =

1

2π
.

In this case, δ 6∈ L1 and δ̂k = 1/2π does not converge to 0 as |k| → ∞.

2. If f is a piecewise smooth function with finite many jumps, then it holds that f̂k = O(1/k).
One may consider f has only one jump first. Then f is a superposition of a step function g
and a smooth function h. We have seen that ĥk decays fast. For the step function g, we have
ĝk = O(1/k).
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5.2.3 Convergence Theory

Let denote the partial sum of the Fourier expansion by fN :

fN (x) :=

N∑
k=−N

f̂ke
ikx.

We shall show that under proper condition, fN will converge to f . The convergence is in the sense
of uniform convergence for smooth functions, in L2 sense for L2 functions, and in pointwise sense
for BV functions.

Convergence theory for Smooth functions

Theorem 5.4. If f is a 2π-periodic, C∞-function, then for any n > 0, there exists a constant Cn
such that

|fN (x)− f(x)| ≤ CnN−n. (5.2)

Proof. We can express fN in convolution form: fN = DN ∗ f :

fN (x) :=
∑
|k|≤N

f̂ke
ikx

=
∑
|k|≤N

1

2π

∫ π

−π
f(y)eik(x−y) dy

=
1

2π

∫ π

−π

sin(N + 1
2)(x− y)

sin(1
2(x− y))

f(y) dy

=
1

2π

∫ π

−π

sin(N + 1
2)t

sin t
2

f(x+ t) dt

=
1

2π

∫ π

−π
DN (t)f(x+ t) dt

Here,

DN (x) :=
∑
|k|≤N

eikx =
sin(N + 1/2)x

sin(x/2)

is called the Dirichlet kernel. Using DN (x)dx = π, we have

fN (x)− f(x) =
1

2π

∫ π

−π

sin(N + 1
2)t

sin t
2

(f(x+ t)− f(x)) dt

:=
1

2π

∫ π

−π
sin((N +

1

2
)t)g(x, t) dt
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The function g(x, t) := (f(x+ t)− f(x))/ sin(t/2) =
∫ 1

0 f
′(x+ st) ds · t/ sin(t/2) is 2π periodic

and in C∞. We can apply integration-by-part n times to arrive

fN (x)− f(x) = (N +
1

2
)−n

(−1)n/2

2π

∫ π

−π
∂nt g(t) sin((N +

1

2
)t) dt

for even n. Similar formula for odd n. Thus, we get

sup
x
|fN (x)− f(x)| ≤ CN−n

∣∣∣∣∫ ∂nt g(x, t) sin((tN +
1

2
)t) dt

∣∣∣∣ = O(N−n).

This completes the proof.

Remark. The constant Cn, which depends on
∫
|g(n)| dt, is in general not big, as compared with

the termN−n. Hence, the approximation (5.2) is highly efficient for smooth functions. For example,
N = 20 is sufficient in many applications. The accuracy property (5.2) is called spectral accuracy.

5.2.4 L2 Convergence Theory

The L2 convergence theory states that:

Theorem 5.5. If f ∈ L2(T), then the Fourier expansion fN (f) → f in L2(T). In other word,
{eikx|k ∈ Z} constitutes an orthonormal basis in L2(T).

Proof. In the proof below, I shall use the fact that C∞(T) is dense in L2(T). I shall not prove this
theorem. We can prove the L2 convergence by the following two equivalent arguments.

1. We have seen thatC∞ can be approximated by trigonometric polynomials. That is,C∞(T) ⊂
〈U〉, where U = {eikx|k ∈ Z}. From C∞(T) = L2(T), we get L2(T) = 〈U〉.

2. Alternatively, we show that if f ∈ L2(T) and f ⊥ eikx for all k ∈ Z, then f = 0. For any
f ∈ C∞(T), if (f, eikx) = 0 for all k ∈ Z, from its finite Fourier expansion fN , which is
zero, converges to f , we get that f ≡ 0. Thus, U⊥∩C∞(T) = {0}. For arbitrary f ∈ L2(T),
suppose f ⊥ eikx for all k. We regularize f by fε := ρε ∗ f → f in L2(T). But the Fourier
coefficients f̂ε are (

ρ̂ε ∗ f
)
k

= (ρ̂ε)k (f̂)k = 0.

Thus, fε ⊥ eikx for all k ∈ Z. This together with fε ∈ C∞(T) give fε ≡ 0. Since fε → f in
L2(T), we get f ≡ 0 also. We conclude that f ⊥ U implies f = 0.



5.2. THE FOURIER BASIS IN L2(T) 95

Remark By the general theorem of orthogonal basis in Hilbert space, we have seen that (a) U⊥ =
{0} ⇔ (b) 〈U〉 = L2(T)⇔ (c) Parvesal equality: ‖f‖2 =

∑
k |f̂k|2. Yet, we shall state and prove

them below.
The Fourier transform maps a 2π-periodic function f into its Fourier coefficients (f̂k)

∞
k=−∞.

We may view the Fourier transform maps L2(T) space into `2 space. The function spaces L2 and
`2 are defined below.

L2(T) := {f | f is 2π periodic and
∫ π

−π
|f(x)|2 dx <∞}

with the inner product

(f, g) :=
1

2π

∫ π

−π
f(x)g(x) dx

and L2-norm: ‖f‖ =
√

(f, f). The space `2(Z) is defined as

`2(Z) := {(ak)∞k=−∞ |
∞∑

k=−∞
|ak|2 <∞}.

with inner product (a, b) :=
∑

k akbk.
From this, we have for any N ,

0 ≤ (f − fN , f − fN ) = ‖f‖2 −
∑
|k|≤N

|f̂k|2.

This gives
∞∑

k=−∞
|f̂k|2 ≤ ‖f‖2. (5.3)

This is the Bessel inequality. It says that the Fourier transform maps continuously from L2(T) to
`2(Z).

Theorem 5.6 (Isometry property). The Fourier transform is an isometry from L2(T) to `2(Z):

(f, g) =
∑
k

f̂kĝk.

Proof. To show this, we first assume that f is a smooth function. We can apply the convergence
theorem for f . This yields

(f, g) =
1

2π

∫ π

−π
f(x)g(x) dx

=
1

2π

∫ π

−π

∑
k

f̂ke
ikxg(x) dx

=
∑
k

f̂kĝk.
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In the last equality, the summation in k converges fast and is independent of x (from smoothness of
f ). This implies that we can interchange the integration in x and the summation in k.

To show this formula is also valid for all f, g ∈ L2, we approximate f by fε := ρε ∗ f , which
are in C∞ and converge to f in L2. The isometry property is valid for fε and g: (fε, g) = (f̂ε, ĝ).
As ε→ 0,

|(fε − f, g)| ≤ ‖fε − f‖‖g‖ → 0,

and
|(f̂ε − f̂ , ĝ)| ≤ ‖f̂ε − f̂‖‖ĝ‖ ≤ ‖fε − f‖‖g‖ → 0.

The last inequality is from the Bessel inequality. Thus, we obtain (f, g) = (f̂ , ĝ).

The isometry property says that the Fourier transformation preserves the inner product. When
g = f in the above isometry property, we obtain the following Parseval identity.

Corollary 5.2 (Parseval identity). For f ∈ L2, we have

‖f‖2 =
∑
k

|f̂k|2.

Theorem 5.7 (L2-convergence theorem). If f ∈ L2, then

fN =
N∑

k=−N
f̂ke

ikx → f in L2.

Proof. First, the sequence {fN} is a Cauchy sequence in L2. This follows from ‖fN − fM‖ =∑
N≤|k|<M |f̂k|2 and the Bessel inequality. Suppose fN converges to g. Then it is easy to check

that the Fourier coefficients of f − g are all zeros. From the Parvesal identity, we have f = g.

5.2.5 BV Convergence Theory

A function is called a BV function (or a function of finite total variation) on an interval (a, b), if for
any partition π = {a = x0 < x1 < · · · < xn = b},

‖f‖BV := sup
π

∑
i

|f(xi)− f(xi−1)| <∞.

An important property of BV function is that its singularity can only be jump discontinuities, i.e., at
a discontinuity, say, x0, f has both left limit f(x0−) and right limit f(x0+).

Further, any BV function f can be decomposed into f = f0 + f1, where f0 is a piecewise
constant function andf1 is absolutely continuous (i.e. f1 is differentiable and f ′1 is integrable). The
jump points of f0 are countable. The BV-norm of f is exactly equal to

‖f‖BV =
∑
i

|[f(xi)]|+
∫
|f ′1(x)| dx.

where xi are the jump points of f (also f0) and [f(xi)] := f(xi+)− f(xi−) is the jump of f at xi.
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Theorem 5.8 (Fourier inversion theorem for BV functions). If f is in BV (function of bounded
variation), then

fN (x) :=
N∑

k=−N
f̂ke

ikx → 1

2
(f(x+) + f(x−)).

Proof. Recall that

fN (x) =
1

2π

∫ π

−π
DN (x− y)f(y) dy

=

(∫ 0

−π
+

∫ π

0

)
DN (t)f(x+ t) dt

= f+
N (x) + f−N (x).

Here, DN (x) =
∑
|k|≤N e

ikx = sin(N+1/2)x
sin(x/2) . Using

∫ π
0

sin(N+1/2)x
sin(x/2) dx = π, we have

f+
N (x)− 1

2
f(x+) =

1

2π

∫ π

0

sin(N + 1
2)t

sin t
2

(f(x+ t)− f(x)) dt

:=
1

2π

∫ π

0
sin((N +

1

2
)t)g(t) dt

From f being in BV, the function g(t) is in L1(0, π). By the Riemann-Lebesgue lemma, f+
N (x) −

1
2f(x+)→ 0 as N →∞. Similarly, we have f−N (x)− f(x−)→ 0 as N →∞.

Gibbs phenomena In applications, we encounter piecewise smooth functions frequently. In this
case, the approximation is not uniform. An overshoot and undershoot always appear across disconti-
nuities. Such a phenomenon is called Gibbs phenomenon. Since a BV function can be decomposed
into a piecewise constant function and a smooth function, we concentrate to the case when there is
only one discontinuity. The typical example is the function

f(x) =

{
1 for 0 < x < π
−1 for − π < x < 0

The corresponding fN is

fN (x) =
1

2π

∫ x

x−π

sin((N + 1
2)t)

sin(t/2)
dt− 1

2π

∫ x+π

x

sin((N + 1
2)t)

sin(t/2)
dt

First, we show that we may replace 1
2 sin(t/2) by 1

t with possible error o(1/N). This is because the
function 1

t −
1

2 sin(t/2) is in C1 on [−π, π] and the Riemann-Lebesgue lemma. Thus, we have

fN (x) =
1

π

∫ x

x−π

sin((N + 1
2)t)

t
dt− 1

π

∫ x+π

x

sin((N + 1
2)t)

t
dt+ o(1/N)

=
1

π

∫ x(N+1/2)

(x−π)(N+1/2)
sinc(t) dt− 1

π

∫ (x+π)(N+1/2)

x(N+1/2)
sinc(t) dt+ o(1/N).
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Here, the function sinc(t) := sin(t)/t. It has the following properties:∫ ∞
0

sinc(t) dt = π/2.

For any z > 0, ∫ ∞
z

sinc(t) dt = O

(
1

z

)
To see the latter inequality, we rewrite∫ ∞

z
sinc(t) dt =

∫ nπ

z
+
∑
k≥n

∫ (n+1)π

nπ

 sinc(t) dt

where n = [z/π] + 1. Notice that the series is an alternating series. Thus, the series is bounded by
its leading term, which is of O(1/z). Let us denote the integral

∫ z
0 sinc(t) dt by Si(z).

To show that the sequence fN does not converge uniformly, we pick up x = z/(N + 1/2) with
z > 0. After changing variable, we arrive

fN (
z

(N + 1/2)
) =

1

π

∫ z

z−(N+1/2)π
sinc(t) dt− 1

π

∫ z+(N+1/2)π

z
sinc(t) dt+ o(1/N)

=
1

π

∫ z

−∞
sinc(t) dt− 1

π

∫ ∞
z

sinc(t) dt+O(1/(z +N)) +O(1/(z −N))

=
2

π

∫ z

0
sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

= 1− 2

π

∫ ∞
z

sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

In general, for function f with arbitrary jump at 0, we have

fN (
z

(N + 1/2)
) = f(0+)− [f ]

π

∫ ∞
z

sinc(t) dt+ (1/(z +N)) +O(1/(z −N))

= f(0+) +O(1/z) +O(1/(z −N)).

where, the jump [f ] := f(0+)− f(0−).
We see that the rate of convergence is slow if z = Nα with 0 < α < 1. This means that if the

distance of x and the nearest discontinuity isN−1+α, then the convergent rate at x is onlyO(N−α).
If the distance is O(1), then the convergent rate is O(N−1). This shows that the convergence is not
uniform.

The maximum of Si(z) indeed occurs at z = π where

1

π
Si(π) ≈ 0.58949

This yields
fN (

π

N + 1/2
) = f(0+) + 0.08949 (f(0+)− f(0−)).

Hence, there is about 9% overshoot. This is called Gibbs phenomenon.
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5.2.6 Fourier Expansion of Real Valued Functions

We have
f̂n =

1

2π

∫
T
f(x)e−inx dx, f̂−n =

1

2π

∫
f(x)einx dx.

Thus, when f is real valued,
f̂n = f̂−n.

If we express f̂n = 1
2(an − ibn), where an, bn ∈ R, then f̂−n = 1

2(an + ibn) and

f(x) =
∑
n∈Z

f̂ne
inx

=
1

2
a0 +

1

2

∞∑
n=1

(an − ibn)einx +
1

2

∞∑
n=1

(an + ibn)e−inx

=
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

Here,

1

2
(an − ibn) =

1

2π

∫
T
f(x)e−inx dx

=
1

2π

∫
T
f(x) (cosnx− i sinnx) dx.

Thus,

an =
1

2π

∫ 2π

0
f(x) cosnx dx, bn =

1

2π

∫ 2π

0
f(x) sinnx dx.

The functions {cosnx, sinnx} are orthogonal to each other. But

1

2π

∫ 2π

0
cos2 nx dx =

1

2π

∫ 2π

0
sin2 nx dx =

1

2
for all n.

The Parseval equality reads

1

2π

∫
T
f(x)2 dx = 2

∑
n

(
a2
n + b2n

)
.

Homeworks 5.2.

1. Derive the Fourier expansion formula for periodic functions with period L.

2. What is the limit of the above Fourier expansion formula as L→∞.

3. Derive the Fourier expansion for the following functions: f(x) = |x| − 1/2 for |x| ≤ 1 and
f is a periodic function with period 2.

4. What is the convergence rate of the above function in L2 and pointwise convergence rate at
x = 0?
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5.3 Applications of Fourier expansion

5.3.1 Characterization of Sobolev spaces

Let Hm(T) be the completion of C∞(T) under the norm

‖u‖2Hm := ‖u‖2 + ‖u′‖2 + · · ·+ ‖u(m)‖2.

From û′k = ikûk, we get
û(m)

k = (ik)mûk.

From Parseval equality, we obtain

‖u‖2 =
∑
k∈Z
|ûk|2, · · · , ‖u(m)‖2 =

∑
k∈Z
|k|2m|ûk|2.

Thus, we have
‖u‖2Hm =

∑
k∈Z

(1 + |k|2 + · · ·+ |k|2m)|ûk|2.

The regularity of u is characterized by u, ..., u(m) ∈ L2. On the other hand, it is also described by∑
k∈Z

(1 + |k|2 + · · ·+ |k|2m)|ûk|2 <∞,

which is an equivalent way to characterize the decay of ûk.

Remark. Notice that for a fixed m ≥ 0, the following quantities are equivalent

(1 + |k|)2m ∼ (1 + |k|2)m ∼ (1 + |k|2m) for all k ∈ Z.

This means that there are positive constants Ci such that

(1 + |k|)2m ≤ C1(1 + |k|2)m ≤ C2(1 + |k|2m) ≤ C3(1 + |k|)2m for all k ∈ Z.

Thus, the Sobolev norm ‖u‖2Hm with m ≥ 0 is equivalent to∑
k∈Z

(1 + |k|2m)|ûk|2.

We can also define Sobolev space with negative exponent m by

‖u‖2Hm =
∑
k∈Z

(1 + |k|)2m|ûk|2.

When m is large enough, the Sobolev space Hm(T) can be embedded into C(T). This is the
following theorem.
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Theorem 5.9. For m > 1/2, we have Hm(T) ⊂ C(T).

Proof. 1. For any smooth function f , we have

|f(x)| =

∣∣∣∣∣∑
k

f̂ke
ikx

∣∣∣∣∣
≤
∑
k

∣∣∣(1 + |k|)−m(1 + |k|)mf̂k
∣∣∣

≤

(∑
k

(1 + |k|)−2m

)1/2(∑
k

(1 + |k|)2m|f̂k|2
)1/2

When m > 1/2, then ∑
k∈Z

(1 + |k|)−2m <∞

Thus, we obtain
‖f‖∞ ≤ C‖f‖Hm

2. For any f ∈ Hm(T), we can approximate f by fN in Hm. (Check by yourself) From

‖fN − fM‖∞ ≤ C‖fN − fM‖Hm

we get that fN is Cauchy in uniform norm. Thus it converges to f in ‖ · ‖∞.

5.3.2 Heat equation on a circle

We can solve the heat flow on circle exactly. This problem indeeds motivated Fourier invent the
Fourier expansion. Let us consider

ut = uxx, x ∈ T

with initial data
u(x, 0) = f(x).

If we expand u(x, t) =
∑

n∈Z un(t)einx, then, formally,∑
n∈Z

u̇ne
inx =

∑
n∈Z
−n2une

inx.

Since {einx|n ∈ Z} are independent, we get

u̇n = −n2un.

Thus,
un(t) = un(0)e−n

2t.
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At t→ 0, we expect un(0) = f̂n. Thus, we define the function

u(x, t) =
∑
n∈Z

f̂ne
−n2teinx.

In the following, we need to check:

1. u, ut and uxx exist and ut = uxx for t > 0 and x ∈ T;

2. u(·, t)→ f in L2(T) as t→ 0+.

• Proof of (1). We show that ux exists here. It is clearly that
∑

n∈Z f̂ne
−n2teinx converges

absolute and uniformly w.r.t. x for t > 0, as long as f̂n grows at most algebraically in n.
Since

∑
n∈Z ine

−n2tf̂ne
inx converges absolute and uniformly w.r.t. x for t > 0. This implies

u is differentiable in x and the differentiation can be interchange with the infinite summation:

∂xu = ∂x
∑
n∈Z

f̂ne
−n2t =

∑
n∈Z

f̂ne
−n2tineinx.

Similar proof for the existence of uxx and ut for t > 0. Since the Fourier coefficients of ut
and uxx are identical on t > 0, we thus get ut = uxx.

• Proof of (2). Let us denote u(·, t) by T (t)f and itself Fourier transform ûk(t) by T̂ f , or
T̂ (t)f̂ . T is a linear operator from L2(T) to itself, while T̂ (t) a linear operator in `2(Z). We
have

T̂ (t)f̂n = e−n
2tf̂n.

Our goal is to prove T (t)f → f in L2(T). By the isometry property of the Fourier transform,
this is equivalent to T̂ (t)f̂ → f̂ in `2(Z). We have

lim
t→0+

‖T̂ (t)f̂ − f̂‖22 = lim
t→0+

∑
n∈Z
|(e−n2t − 1)2|f̂n|2

=
∑
n∈Z

lim
t→0+

|(e−n2t − 1)2|f̂n|2 = 0.

The interchange of
∑

and lim here is due to the dominant convergence theorem and the
convergence of ∑

n∈Z
|(e−n2t − 1)2|f̂n|2 ≤ 22

∑
n∈Z
|f̂n|2 <∞.

is uniform w.r.t. t.

5.3.3 Solving Laplace equation on a disk

We consider the Laplace equation
uxx + uyy = 0
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on the domain
Ω : x2 + y2 < 1,

with the Dirichlet boundary condition:

u = f on ∂Ω.

In the polar coordinate, the equation has the form:

urr +
1

r
ur +

1

r2
uθθ = 0.

The boundary condition is
u(1, θ) = f(θ), θ ∈ T.

The solution is expanded as
u(r, θ) =

∑
n∈Z

un(r)einθ.

Plug this into the Laplace equation, we get∑
n∈Z

(
u′′n +

1

r
u′n −

n2

r2

)
einθ = 0.

This leads to

u′′n +
1

r
u′n −

n2

r2
= 0 for all n ∈ Z.

The two independent solutions are un = rn or un = r−n. However, the one with negative power
will not satisfy the finiteness of u at r = 0. Thus, we obtain

u(r, θ) =
∑
n∈Z

anr
|n|einθ.

At r = 1, we get
f(θ) =

∑
n∈Z

ane
inθ.

Thus,

an =
1

2π

∫
T
f(θ)e−inθ dθ.

For r < 1, the L2 norm of the infinite series
∑

n∈Z anr
|n|einθ is bounded by

∑
n∈Z |an|2, uniformly

in r < 1. Thus, from dominant convergence theorem, we have

lim
r→1−

u(r, ·) = f(·) in L2(T).

If we differentiate the infinite series in r term-by-term, we get∑
n∈Z

an|n|r|n|−1einθ.
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This infinite series converges absolutely and uniformly for r ≤ r0 for any fixed r0 < 1. This
implies that u is differentiable in r and the differentiation can be performed term-by-term in the
infinite series:

∂ru =
∑
n∈Z

an|n|r|n|−1einθ.

By the same argument, we get ∂rru and ∂θθu exist and u satisfies the Laplace equation in polar
coordinate form.

Alternatively, we can write the above summation in convolution form:

u(r, θ) =

∫
T
g(r, θ − φ)f(φ) dφ,

where

g(r, θ) =
1

2π

∑
n∈Z

r|n|einθ

=
1

2π

(
1

1− reiθ
+

e−iθ

1− e−iθ

)
=

1

2π

1− r2

1− 2r cos θ + r2

The function g is called the Poisson kernel. It is infinitely differentiable for r < 1. This implies
g ∗ f ∈ C∞(Ω).

5.3.4 Hurwitz’s proof for isoperimetric inequality (see Hunter’s book)

The isoperimetric inequality involves to find the maximal area enclosed by a simple closed curve
with given perimeter. If the perimeter is L, the area is A, then the isoperimeter inequality is

4πA ≤ L2.

The equality holds when the closed curve is a circle. There are many proofs of this inequality.
In 1902, Hurwitz provided a proof using Fourier expansion. Let us show his proof here as an
application of Fourier expansion. Let the closed curve is given by (x, y) = (f(s), y(s)), where s is
the arc length. We may assume the length of the curve is 2π, otherwise we rescale it by (x, y) by
(2πx/L, 2πy/L). Since s is the arc length, we have

ḟ(s)2 + ġ(s)2 = 1.

The area of the enclosed region is given by

A =
1

2

∫
T
f(s)ġ(s)− g(s)ḟ(s) ds.

Our goal is to maximize A subject to the perimeter constraint∫
T
ḟ(s)2 + ġ(s)2 ds = 2π.
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We expand f and g in Fourier series:

f(s) =
∞∑

n=−∞
f̂ne

ins, g(s) =
∞∑

n=−∞
ĝne

ins

From the Parvesal equality:
1

2π

∫
T
|ḟ(s)|2 ds =

∑
n∈Z

n2|f̂n|2.

Thus, we have

1 =
∑
n∈Z

n2
(
|f̂n|2 + |ĝn|2

)
.

For the area functional, we get

A

π
=

1

2π

∫
T
fġ − gḟ ds =

∑
n∈Z

f̂ninĝn − ĝninf̂n = −2
∑
n∈Z

nIm(ĝnf̂n).

Subtracting these two series, we get

1− A

π
=
∑
n 6=0

(
|nf̂n − iĝn|2 + |nĝn + if̂n|2 + (n2 − 1)(|f̂n|2 + |ĝn|2)

)
.

We then get

1− A

π
≥ 0.

The equality holds only when f̂n = ĝn = 0 for all n ≥ 2 and f̂1 = iĝ1. Plug this into the arc length
constraint, we get

f̂1 =
1√
2
eiδ, ĝ1 =

i√
2
eiδ.

Thus,
f(s) = x0 + cos(s+ δ), g(s) = y0 + sin(s+ δ).

Homework Derive the Euler-Lagrange for the constrained maximization problem:

max
1

2

∫
T
f(s)ġ(s)− g(s)ḟ(s) ds

subject to ∫
T

√
ḟ(s)2 + ġ(s)2 ds = 2π.

Show the isoperimetric inequality.
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5.3.5 Von Neumann stability analysis for finite difference methods

In numerical PDEs, the stability analysis is a crucial step to the convergence theory of a numerical
scheme. Below, I shall demonstrate the von Neumann stability analysis for heat equation in one
dimension. It is a L2 stability analysis suitable for for (the interior part of) numerical PDEs with
constant coefficients.

Let us consider the heat equation:
ut = uxx

in one dimension with initial data u(x, 0) = f(x). Let h = ∆x, k = ∆t be the spatial and temporal
mesh sizes. Define xj = jh, j ∈ Z and tn = nk, n ≥ 0. Let us abbreviate u(xj , t

n) by unj . We
shall approximate unj by Unj , where Unj satisfies some finite difference equations.

• Spatial discretization: The simplest one is to use the centered finite difference approximation
for uxx:

uxx =
uj+1 − 2uj + uj−1

h2
+O(h2) := Dx,+Dx,−u+O(h2).

Here, the notation (Dx,+u)j := (u(xj+1)−u(xj))/h is the forward finite difference, (Dx,−u)j =
(u(xj)− u(xj−1))/h the backward finite difference. You can check that

Dx,+Dx,−uj = a ((uj+1 − uj)− (uj − uj−1)) /h2.

The spatial discretization results in the following systems of ODEs

U̇j(t) =
Uj+1(t)− 2Uj(t) + Uj−1(t)

h2

or in vector form
U̇ =

1

h2
AU

where U = (U0, U1, ...)
t, A = diag (1,−2, 1).

• Temporal discretization: We can apply numerical ODE solvers

– Forward Euler method:
Un+1 = Un +

k

h2
AUn (5.4)

– Backward Euler method:
Un+1 = Un +

k

h2
AUn+1 (5.5)

– 2nd order Runge-Kutta (RK2):

Un+1 − Un =
k

h2
AUn+1/2, Un+1/2 = Un +

k

2h2
AUn (5.6)

– Crank-Nicolson:
Un+1 − Un =

k

2h2
(AUn+1 +AUn). (5.7)
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These linear finite difference equations can be solved formally as

Un+1 = GUn

where

• Forward Euler: G = 1 + k
h2
A,

• Backward Euler: G = (1− k
h2
A)−1,

• RK2: G = 1 + k
h2
A+ 1

2

(
k
h2

)2
A2

• Crank-Nicolson: G =
1+ k

2h2
A

1− k
2h2

A

For the Forward Euler, We may abbreviate it as

Un+1
j = G(Unj−1, U

n
j , U

n
j+1), (5.8)

where
G(Uj−1, Uj , Uj+1) = Uj +

k

h2
(Uj−1 − 2Uj + Uj+1)

Stability and Convergence for the Forward Euler method Our goal is to show under what
condition can Unj converges to u(xj , t

n) as the mesh sizes h, k → 0. To see this, we first see the
error produced by a true solution by the finite difference equation. Plug a true solution u(x, t) into
(5.4). We get

un+1
j − unj =

k

h2

(
unj+1 − 2unj + unj−1

)
+ kτnj (5.9)

where
τnj = Dt,+u

n
j − (ut)

n
j − (D+D−u

n
j − (uxx)nj ) = O(k) +O(h2).

Let enj denote for unj − Unj . Then subtract (5.4) from (5.9), we get

en+1
j − enj =

k

h2

(
enj+1 − 2enj + enj−1

)
+ kτnj . (5.10)

This can be expressed in operator form:

en+1 = Gen + kτn. (5.11)

‖en‖ ≤ ‖Gen−1‖+ k‖τn−1‖
≤ ‖G2en−2‖+ k(‖Gτn−2‖+ ‖τn−1‖)
≤ ‖Gne0‖+ k(‖Gn−1τ0‖+ · · ·+ ‖Gτn−2‖+ ‖τn−1‖)

Suppose G satisfies the stability condition

‖GnU‖ ≤ C‖U‖
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for some C independent of n. Then

‖en‖ ≤ C‖e0‖+ C max
m
|τm|.

If the local truncation error has the estimate

max
m
‖τm‖ = O(h2) +O(k)

and the initial error e0 satisfies
‖e0‖ = O(h2),

then so does the global true error satisfies

‖en‖ = O(h2) +O(k) for all n.

The above analysis leads to the following definitions.

Definition 5.3. A finite difference method is called consistent if its local truncation error τ satisfies

‖τh,k‖ → 0 as h, k → 0.

Definition 5.4. A finite difference scheme Un+1 = Gh,k(U
n) is called stable under the norm ‖ · ‖

in a region (h, k) ∈ R if
‖Gn

h,kU‖ ≤ C‖U‖

for all n with nk fixed. Here, C is a constant independent of n.

Definition 5.5. A finite difference method is called convergence if the true error

‖eh,k‖ → 0 as h, k → 0.

In the above analysis, we have seen that for forward Euler method for the heat equation,

stability + consistency ⇒ convergence.

L2 Stability – von Neumann Analysis Since we only deal with smooth solutions in this section,
the L2-norm or the Sobolev norm is a proper norm to our stability analysis. For constant coefficient
and scalar case, the von Neumann analysis (via Fourier method) provides a necessary and sufficient
condition for stability. For system with constant coefficients, the von Neumann analysis gives a
necessary condition for statbility. For systems with variable coefficients, the Kreiss’ matrix theorem
provides characterizations of stability condition.

Below, we give L2 stability analysis. We use two methods, one is the energy method, the other
is the Fourier method, that is the von Neumann analysis. We describe the von Neumann analysis
below.

Given {Uj}j∈Z, we define
‖U‖2 =

∑
j

|Uj |2
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and its Fourier transform
Û(ξ) =

1

2π

∑
Uje
−ijξ.

The advantages of Fourier method for analyzing finite difference scheme are

• the shift operator is transformed to a multiplier:

T̂U(ξ) = eiξÛ(ξ),

where (TU)j := Uj+1;

• the Parseval equility

‖U‖2 = ‖Û‖2

≡
∫ π

−π
|Û(ξ)|2 dξ.

If a finite difference scheme is expressed as

Un+1
j = (GUn)j =

m∑
i=−l

ai(T
iUn)j ,

then
Ûn+1(ξ) = Ĝ(ξ)Ûn(ξ).

From the Parseval equality,

‖Un+1‖2 = ‖Ûn+1‖2

=

∫ π

−π
|Ĝ(ξ)|2 |Ûn(ξ)|2 dξ

≤ max
ξ
|Ĝ(ξ)|2

∫ π

−π
|Ûn(ξ)|2 dξ

= |Ĝ|2∞‖U‖2

Thus a sufficient condition for stability is

|Ĝ|∞ ≤ 1. (5.12)

Conversely, suppose |Ĝ(ξ0)| > 1, fromĜ being a smooth function in ξ, we can find ε and δ such
that

|Ĝ(ξ)| ≥ 1 + ε for all |ξ − ξ0| < δ.

Let us choose an initial data U0 in `2 such that Û0(ξ) = 1 for |ξ − ξ0| ≤ δ. Then

‖Ûn‖2 =

∫
|Ĝ|2n(ξ)|Û0|2

≥
∫
|ξ−ξ0|≤δ

|Ĝ|2n(ξ)|Û0|2

≥ (1 + ε)2nδ →∞ as n→∞

Thus, the scheme can not be stable. We conclude the above discussion by the following theorem.
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Theorem 5.10. A finite difference scheme

Un+1
j =

m∑
k=−l

akU
n
j+k

with constant coefficients is stable if and only if

Ĝ(ξ) :=

m∑
k=−l

ake
−ikξ

satisfies
max
−π≤ξ≤π

|Ĝ(ξ)| ≤ 1. (5.13)

Homeworks.

1. Compute the Ĝ for the schemes: Forward Euler, Backward Euler, RK2 and Crank-Nicolson.

5.3.6 Weyl’s ergodic theorem

In discrete dynamical systems, the dynamics of xn is characterized by an iterative map xn+1 =
F (xn). The simplest example is xn ∈ T and F (xn) = xn + 2πγ. This is arisen from integrable
system. It is the Poincare section map of the continuous integrable system:

(x, y) 7→ (x(t), y(t)) := (x+ 2πωxt, y + 2πωyt), (x, y) ∈ T2, ωx, ωy ∈ R.

The cross section is taken to be y ≡ 0( mod 2π). Then the trajectory with y0 = 0 will revisit y = 0
at time with 2πωyt = 2πn, that is, tn = n/ωy. The corresponding x(tn) = x + 2πnωx/ωy. If we
call γ := ωx/ωy, then the map: x(tn) 7→ x(tn+1) is the above linear discrete map.

For a continuous function f : T→ C, we are interested in two kinds of averages:

• phase space average: 〈f〉s := 1
2π

∫
Tf(x) dx,

• time average: 〈f〉t := limN→∞
1

N+1

∑N
n=0 f(xn).

Theorem 5.11 (Weyl ergodic 1916). If γ is irrational, then

〈f〉t(x0) = 〈f〉s (5.14)

for all f ∈ C(T) and for all x0 ∈ T.

Proof. 1. It is easy to check that (5.14) holds for all f = eimx:

1

N + 1
f(xn) =

1

N + 1

N∑
n=0

eim(x0+2πnγ)

=
eimx

0

N + 1

N∑
n=0

e2πimγn

=
eimx

0

N + 1

(
1− e2πimγ(N+1)

1− e2πimγ

)
.
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Thus,

〈eimx〉t = lim
N→∞

1

N + 1

(
1− e2πimγ(N+1)

1− e2πimγ

)
= 0.

Here, we have used e2πimγ 6= 1 for irrational γ. On the other hand,

〈eimx〉s =
1

2π

∫
T
eimx dx = 0.

Thus, 〈eimx〉t = 〈eimx〉s. With this, (5.14) also holds for all trigonometric polynomials.

2. The trigonometric polynomials are dense in C(T).

3. Given any f ∈ C(T), for any ε > 0, there exists a trigonometric polynomial p such that
‖f − p‖∞ < ε. We have∣∣∣∣∣ 1

N + 1

N∑
n=0

f(xn)− 〈f〉s

∣∣∣∣∣ ≤ 2ε+

∣∣∣∣∣ 1

N + 1

N∑
n=0

p(xn)− 〈p〉s

∣∣∣∣∣
Taking limit sup, we get

lim sup
N→∞

∣∣∣∣∣ 1

N + 1

N∑
n=0

f(xn)− 〈f〉s

∣∣∣∣∣ ≤ 2ε.

Thus, (5.14) also holds for any f ∈ C(T).
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Chapter 6

Compactness

6.1 Compactness in metric space

6.1.1 Motivation and brief history

1 The concept of compactness plays an important role in analysis. There are many notions for
compactness. Here, I will mention the most fundamental two. The first one states that: a set
is called compact if any its open cover has finite subcover. It is motivated from a fundamental
question in analysis: on which domain a local property can also be a global property. For instance,
on which domain a continuous function is indeed uniform continuous. This concept (open cover)
was introduced by Dirichlet in his 1862 lectures, which were published in 1904. This concept was
repeatedly introduced by Heine (1872), Borel (1895) and continuously developed by Cousin (1895),
Lebesgue (1898), Alexandroff and Uryson (1929). The main theorem is the Heine-Borel theorem
which states that a set in Rn is compact if and only if it is closed and bounded.

The concept of the second notion is called sequential compactness, which was started from
the Bolzano(1817)-Weistrass(1857) theorem. It states that a bounded sequence in Rn always has a
convergence subsequence. It can be proven by bi-section method. The original Bolzano theorem
was indeed a lemma to prove the extremal value theorem: a continuous function on a closed bounded
interval always attains its extremal value. It was generalized to the function space (C[a, b], | · |∞)
by Arzelà(1882-1883)-Ascoli(1883-1884) which states that a bounded and equi-continuous family
of functions has convergence subsequence. Its generalization to C(K) was done by Fréchet (1906)
who also introduced the name of compactness.

Most theorems will not be proven here because it is hard to learn these abstract theorems without
knowing their motivations. Thus, I will emphasize on the motivations and applications.

1Reference: You may find the history in [Compact Space, Wiki] and in the paper: [Manya Raman Sundström, A
pedagogical history of compactness, ArXiv: 1006.4131v1 (2010).]

113
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6.1.2 From local to global – Finite cover property

Many properties of functions are local such as the continuity, boundedness, local integrability, etc,
while some are global such as convexity, coerciveness (f(x) → ∞ as |x| → ∞). It is clearly
that the continuity is a local property. The following definition introduces the concept of uniform
continuity, which is a global concept.

Definition 6.1. We say f : K ⊂ X → Y is uniformly continuous on K if for any ε > 0 there exists
a δ > 0 such that for any x, y ∈ K with dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

In this definition, the δ depends on ε and K, but is independent to any particular point in K.
Clearly, the function 1/|x| is not uniformly continuous in (0, 1] but uniformly continuous on [a, 1]
for any fixed a > 0. The key that a local property (such as continuity) can be a global (uniform)
property on a set K depends on a particular property of K. It is called the compactness. To give its
definition, first we give definition of open cover. Given a set K in (X, d), a collection of open sets
{Uα}α∈A is called an open cover of K if all Uα are open and⋃

α∈A
Uα ⊃ K.

Definition 6.2. A set K in a metric space (X, d) is said to be compact if any open cover {Uα}α∈A
of K has a finite sub-cover.

Theorem 6.1 (Heine-Borel). In Rn, a set K is compact if and only if it is closed and bounded.

I shall not prove this theorem here. You can find the proof in many textbooks. For instance,
[Rudin’s Principle of Mathematical Analysis, pp. 40]. Instead, I shall prove the following theorem
which motivates the definition of Heine-Borel property..

Theorem 6.2. Any continuous function on a compact set K is uniformly continuous on K.

Proof. For any ε > 0, for any x ∈ K, there exists δx(ε) > 0 such that d(f(y), f(x)) < ε whenever
d(x, y) < δx. Now, we choose Ux = B(x, δx/2). Then {Ux}x∈K is an open cover of K. By the
Heine-Borel property, there exists a finite sub-cover. This means that there exists x1, ..., xn ∈ K
such that

⋃n
i=1 Uxi ⊃ K. We choose δ = mini=1,...,n δxi/2. Now, for any x, y ∈ K with d(x, y) <

δ, there exists a k ∈ {1, ..., n} such that x ∈ Uxk . This means that d(x, xk) < δxk/2. Since
d(x, y) < δ ≤ δxk/2, we have d(y, xk) ≤ d(y, x) + d(x, xk) ≤ δxk . By the continuity of f at xk,
we then have

d(f(x), f(y)) ≤ d(f(x), f(xk)) + d(f(xk), f(y)) < 2ε.

Remarks

1. The set [0,∞) is not compact. Thus, a continuous function f : [0,∞)→ R is in general not
uniformly continuous.
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2. Is sin(x2) uniformly continuous on [0,∞)?

3. What is a natural condition you should impose on f so that it is uniformly continuous on
[0,∞)?

4. How about the same question for function on (0, 1]?

6.1.3 Sequential compactness

The other notion is the sequential compactness, which is arisen from finding extremal point of
a continuous function. One often faces to check whether a sequence of approximate solutions
converges or not. This give the motivation of the following definition.

Definition 6.3. A set K is sequentially compact if every sequence in K has a convergent subse-
quence with limit in K. It is called pre-compact if its closure is sequentially compact.

Theorem 6.3 (Bolzano-Weistrass). A set in Rn is sequentially compact if and only if it is closed
and bounded.

Proof. I will only show that if an infinite sequence {xn} ⊂ [0, 1] then it has a convergent sub-
sequence. The method below is called the bisection method. It is constructive and applicable for
other problems too. First, (xn) is infinite many in [0, 1]. Let us partition [0, 1] into [0, 1/2], [1/2, 1].
One of them contains infinite many subsequence. Let us call this subinterval [a1, b1] and this subse-
quence (x1n). We continuously to do partition and selection. Eventually, we get a nested intervals
[a1, b1] ⊃ [a2, b2] ⊃ · · · with bk − ak = 2−k and (xkn) ⊂ [ak, bk]. Since the nested intervals
squeeze to zero length, we can just choose a point yk ∈ {xkn} and yk 6∈ {y1, · · · , yk−1}, then
(yk) is a Cauchy sequence and converges to some point in [0, 1] by the completeness of R and the
closedness of [0, 1].

Theorem 6.4. In metric space, a subset K is compact if and only if it is sequentially compact.

For proof, see Hunter’s book, pp. 24-27.

Remarks

1. In the theory of point set topology, the compactness implies the sequential compactness, but
not vice versa. The sequential compactness is equivalent to so-called countable compactness.
Its definition is: any countable open cover has finite cover. The compactness property (any
open cover has finite cover) is a stronger property. It guarantees a local property becomes a
global one. In the case of metric spaces, the compactness, the countable compactness and the
sequential compactness are equivalent.

2. A compact metric space is separable.

3. In general metric spaces, the boundedness is replaced by so-called total boundedness.

4. The equivalence between closed and boundedness and compactness is valid in finite dimen-
sional Euclidean spaces and some special infinite dimensional space such as C∞(K).
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6.1.4 Applications in metric spaces

Compactness is preserved by continuous map

Theorem 6.5. Let f : (X, dX) → (Y, dY ) be continuous. Let K ⊂ X be a compact subset. Then
f(K) is also compact.

Proof. If (f(xn)) is a sequence in f(K), then (xn) is a sequence in K, which has a convergent
subsequence (xnk) and converges to x ∈ K. By the continuity of f , we have f(xnk) → f(x) ∈
f(K).

Theorem 6.6 (Extreme Value Theorem). Let f : (K, d) → R be continuous, where (K, d) is a
compact metric space. Then f attains both maximum and minimum in K.

Proof. Since f(K) is compact in R, it is bounded and closed. Thus, it has both maximum and
minimum.

Homeworks 6.1.

1. A function f : Rn → R is called coercive if

lim
|x|→∞

f(x) =∞.

Show that a function fRn → R which is lower semi-continuous and coercive attains its
infimum.

6.2 Compact sets in Banach spaces and Hilbert spaces

• The characterization of compact set inC(K) is the Arzelà-Ascoli theorem. Here,K is a com-
pact set in a metric space. It basically says that any bounded and equi-continuous sequence in
C(K) has convergent subsequence. One of its application is to prove existence theorem for
ODEs ẋ = f(t, x), where f is only continuous in x and L1 in t.

• Characterization of compact set in L2(Ω) is the Rellich theorem. It states that any bounded
set in H1(Ω) is pre-compact in L2(Ω). The condition on Ω is bounded and ∂Ω is Lipschitz
continuous.

Here, we say a set is pre-compact if its closure is compact.

6.2.1 Compact set in C(K)

We will show in this section that a family of functions F ⊂ C[a, b] is pre-compact if it is bounded
in C1[a, b]. The key part is the boundedness of f ′ for all f ∈ F . This implies that there exists an L
such that |f(x) − f(y)| ≤ L|x − y| for all f ∈ F . This condition can be weaken to the following
equi-continuity.
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Definition 6.4. Let X,Y be metric spaces. A family of function F ⊂ C(X,Y ) is said to be
equicontinuous at x if for any ε > 0 there exists a δ > 0 such that for any f ∈ F , we have
d(f(y), f(x)) < ε whenever d(x, y) < δ. The family F is said to be equi-continuous in X if it is
equicontinuous at every x ∈ X . It is called uniformly equi-continuous if the above δ can be chosen
independent of x.

Theorem 6.7. Let K be a compact metric space. If F ⊂ C(K) is equi-continuous, then it is
uniformly equi-continuous.

The proof is a simple modification of Theorem 6.2.

Theorem 6.8 (Arzelà-Ascoli). Let K be a compact metric space. A subset F ⊂ C(K) is pre
compact if and only if it is bounded and equi-continuous.

Proof. 1. We show that ifF is unbounded, then it cannot be pre compact. SinceF is unbounded,
we can find fn ∈ F such that ‖fn+1‖ ≥ ‖fn‖+ 1. Then ‖fn − fn+1‖ ≥ 1 for all n, they can
not be a Cauchy sequence.

2. We show that if F is precompact, then F is equicontinuous. For any ε > 0,

F ⊂
⋃
f∈F

Bε/3(f).

From compactness of F , there exist {f1, ..., fn} such that

F ⊂
n⋃
i=1

Bε/3(fi).

Each fi is uniformly continuous on K, thus there exist δi > 0 such that

|fi(x)− fi(y)| < ε/3 whenever d(x, y) < δi.

We choose
δ = min

1≤i≤n
δi.

Then for every f ∈ F , there exists fi such that ‖f − fi‖∞ < ε/3. For any d(x, y) < δ,

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)| < ε.

Thus, F is equicontinuous.

3. We show that if F is bounded and equicontinuous, then it is pre-compact, i.e. any sequence
{fn} in F has convergent subsequence.

(a) First, from K being compact, then it is separable. Thus, there exist countable {xi}i∈N
which is dense in K.
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(b) From boundedness of {fn(x1)} in R, there exists a subsequence from {fn}, called
{f1,n}, such that {f1,n(x1)} converges. Repeating this process, we can choose subse-
quence {f2,n} from {f1,n} such that {f2,n(x2)} converges, and so on. Eventually, we
obtain nested subsequence {fk,n} such that {fk,n} ⊂ {fk−1,n} and fk,n(xk) converges.
In fact, fk,n(xi) converges for all xi with i ≤ k.

(c) Let gk = fk,k. {gk} is a subsequence of {fn}. Then for any i ≤ k, {gk} is a subse-
quence of {fi,n}. Thus, {gk(xi)} converges.

(d) Since F is equicontinuous, there exists a δ > 0 such that

|gk(x)− gk(y)| < ε

3
whenever d(x, y) < δ.

(e) Since {xi} is dense in K, we have

K ⊂
∞⋃
i=1

Bδ(xi).

From compactness of K, there exists a finite subset, call it {x1, ..., xp} such that

K ⊂
p⋃
i=1

Bδ(xi).

(f) Since {gk(xi)} are Cauchy, there exists an N such that for any i = 1, ..., p and for any
n,m ≥ N , we have

|gn(xi)− gm(xi)| < ε/3.

(g) Now, for any x ∈ K, there exists xi such that x ∈ Bδ(xi). We have for any n,m ≥ N

|gn(x)− gm(x)| ≤ |gn(x)− gn(xi)|+ |gn(xi)− gm(xi)|+ |gm(xi)− gm(x)| < ε.

Thus, {gk} converges uniformly in K.

6.2.2 Compact sets in Hilbert spaces

Roughly speaking, the compact set in a Hilbert space is almost like a bounded set in a finite dimen-
sional subspace. We have the following abstract theorem, which says that the “tail” of a compact
set has to be equally small.

Theorem 6.9. LetH be a separable Hilbert space. SupposeD ⊂ H is a bounded set. If in addition,
there is an orthonormal basis {en} ofH such that for any ε > 0, there exists an N such that

∞∑
n=N+1

|(x, en)|2 < ε for all x ∈ D, (6.1)

then D is precompact inH.
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Proof. Let (xn) be a sequence in D. By the boundedness of D, the sequence (xn) is bounded, say
by 1. Let Vn = 〈e1, · · · , en〉 and Pn be the orthogonal projection onto Vn. We shall use diagonal
process to construct a convergent subsequence of (xn).

By assumption, given ε = 1/k, there exists an Nk, which satisfies Nk ≥ Nk−1 and
∞∑

Nk+1

|(x, en)|2 ≤ 1

k
for all x ∈ D.

The sequence (PN1(xn)) is bounded in the finite dimensional space VN1 , by Hein-Borel theorem, it
has a convergent subsequence (PN1x1,n). In fact, we select (x1,n) such that

‖PN1(x1,n − x1,m)‖2 ≤ 1

n
for all n < m.

Next, we consider PN2(x1,n) in VN2 . We can choose convergent subsequence (PN2x2,n), n ≥ 2
such that

‖PN2(x2,n − x2,m)‖2 ≤ 1

n
for all n < m.

Continuing this process, we construct (xk,n)n≥k, which is a subsequence of (xk−1,n)n≥k−1, such
that

‖PNk(xk,n − xk,m)‖2 ≤ 1

n
for all n < m.

Now, we claim xk,k is a Cauchy sequence. For any large k, l with l > k, we have xl,l ∈ {xk,n|n ≥
k} and

‖xk,k − xl,l‖2 = ‖PNk(xk,k − xl,l)‖2 + ‖(I − PNk)(xk,k − xl,l)‖2

≤ ‖PNk(xk,k − xl,l)‖2 +
2

k

≤ 3

k
.

This shows (xk,k) is a Cauchy sequence inH. Hence D is precompact.

The Sobolev space Hs(T), s > 0, is defined to be

{u ∈ L2(T)|
∑
n

(1 + |n|2)s|(u, en)|2 <∞}

Here, en = 1√
2π
einx. The Sobolev norm of u is defined by

‖u‖2s =
∑
n

(1 + |n|2)s|(u, en)|2

Theorem 6.10. A bounded set D in Hs(T) with s > 0 is a precompact set in L2(T).

Proof. For, if u ∈ D, then
∞∑
N+1

|(u, en)|2 ≤ 1

1 +N2s

∞∑
N+1

(1 + |n|2)s|(u, en)|2 ≤ 1

1 +N2s
‖u‖2s

Thus, D has uniformly small tails. Hence it is precompact in L2(T).
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Remarks

1. Consider the generalization of Aszelà-Ascoli theorem to continuous functions in the whole
space Rd. We can compactize Rn by Rn∗ := Rn ∪ {∞}. The topology is generated by
the union of the neighborhoods of ∞ and the topology of Rn. The topological space Rn∗ is
compact. Indeed, for any open cover {Uα|α ∈ A} = Rn∗ , there exists Uβ which is open and
covers∞. This means that there exists an M > 0 such that the outer open ball BM (0)

c
:=

{x| |x| > M} ⊂ Uβ . On the other hand, {Uα|α ∈ A} is also an open cover of the compact
set BM (0). Thus, there exists a finite subcover α1, ..., αn. These together with Uβ covers Rn∗ .

Alternatively, one can identify Rn∗ with Sn in Rn+1 by the polar stereographic transform:
x ∈ Rn∗ 7→ (x′, z′) ∈ Sn with

|x′|
|x|

=
1− z′

1
, |x′|2 + z′

2
= 1.

These give

z′ =
|x|2 − 1

|x|2 + 1
, x′ = (1− |z′|)x.

The polar stereographic projection induces a natural metric on Rn∗ .

With this, then we can define C(Rn∗ ) and the equi-continuity for F ⊂ C(Rn∗ ) as usual. In
fact, the equi-continuity at ∞ is: for any ε > 0, there exists an M > 0 such that for any
f ∈ F and for any x ∈ Rn with |x| > M , we have

|f(x)− f(∞)| < ε.

2. Consider L2(R). Let α, β > 0, M > 0. Define

D = {u ∈ L2(R) |
∫

(1 + |x|2)α|u(x)|2 dx+

∫
(1 + |ξ|2)β|û(ξ)|2 dξ ≤M}

Show that D is a precompact set in L2(R). Hint: use Haar basis.

3. In quantum mechanics, one considers the space H := H1(R3) ∩ L2
V (R3), where V : R3 →

R+ satisfying
V (x)→∞ as |x| → ∞.

One can define the norm

‖u‖2H := ‖u‖2H1(R3) + ‖u‖2L2
V

:=

∫
R3

(
|∇u|2 + |u|2 + V (x)|u|2

)
dx.

Show that a bounded set inH is pre compact in L2(R3).
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6.3 Weak Convergence

A sequence (xn) in a Hilbert spaceH is said to converge weakly to x ∈ H if

(xn, y)→ (x, y) for all y ∈ H.

We denote it by xn ⇀ x. It is clear that if xn → x in H, then, by Cauchy-Schwarz, xn⇀x. We
call xn → x in norm the strong convergence. Below, we give some typical examples of weak
convergence.

1. sinnx ⇀ 0 in L2[a, b]. This is due to the Riemann-Lebesgue lemma: If f ∈ L1(a, b), then∫ b
a f(x) sinnx dx→ 0 as n→∞. The sequence {sinnx} has no cluster point:∫ b

a
| sin(nx) sin(mx)|2 dx ≥ C(b− a).

2. In `2(N), let en = (0, · · · , 1, 0, · · · ) be the standard basis in `2(N). Then en ⇀ 0. Further,
‖en − em‖2 = 2. Therefore, {en} has no cluster point.

3. Let H be a Hilbert space and {en} be an orthonormal set. Then en⇀0 as n → ∞. This is
due to the Bessel’s inequality: for any x,

∞∑
n=1

|(x, en)|2 ≤ ‖x‖2,

Hence, (x, en)→ 0.

4. In `2(N), the unbounded sequence {nen} does not converge to 0 weakly. For, choosing
x =

(
n−3/4

)∞
n=1
∈ `2(N), but (x, nen) = n1/4 does not not converge.

5. In L2[0, 1], consider the Haar basis ψjk(x) = 2j/2ψ(2jx − k), 0 ≤ k < 2j , j = 0, 1, · · · .
Then ψjk ⇀ 0, as j →∞.

6. In L2(R), the Haar basis ψjk ⇀ 0 as k → ∞. In particular, consider the box function
B0(x) = 1 for 0 ≤ x < 1 and 0, otherwise. Then B0(x− n) ⇀ 0 as n→∞.

7. In L2[0, 1], consider

fn(x) =

{ √
n if 0 ≤ x < 1/n

0 if 1/n ≤ x ≤ 1

Then fn ⇀ 0. This is because for any g ∈ L2(0, 1)),∫ 1

0
g(x)fn(x) dx =

√
n

∫ 1/n

0
1 · g(x) dx

≤
√
n

(∫ 1/n

0
12 dx

)1/2(∫ 1/n

0
|g(x)|2∆x

)1/2

=

∫ 1/n

0
|g(x)|2 dx→ 0.
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8. Let fn(x) := n1/4e−nx
2
. Then fn⇀0 in L2(R).

Remarks.

(i) For functions in physical space such as L2[0, 1] or L2(R), typical weak convergences are
either oscillation, concentration, or escape to infinite.

(ii) When ‖x‖2 < lim inf‖xn‖2, we say that energy is lost in the weak convergence process.

Theorem 6.11. Let H be a Hilbert space and D is a dense subset in H. Then a sequence (xn) in
H converges to x weakly if and only if

(a) ‖xn‖ ≤M for some constant M ;

(b) (xn, y)→ (x, y) as n→∞ for all y ∈ D.

Proof. (⇐): Let z ∈ H, we want to show that (xn, z) → (x, z) as n → ∞. Since D is dense in
H, for any ε > 0, there exists y ∈ D such that ‖z − y‖ < ε. On the other hand, (xn, y) → (x, y).
Thus, there exists an N such that for any n ≥ N , (xn − x, y)| < ε. Now,

|(xn − x, z)| ≤ |(xn − x, y)|+ |(xn − x, z − y)|
≤ |(xn − x, y)|+ (‖xn‖+ ‖x‖)‖y − z‖
≤ ε+ (M + ‖x‖)ε.

Thus, (xn − x, z)→ 0 as n→∞.
(⇒): (a) is followed from the uniform boundedness theorem below which basically says that

pointwise boundedness of a family of bounded linear functional φn ∈ H∗ implies uniform bound-
edness. In the present case, define φn(x) := (xn, x). Then for any x ∈ H, φn(x) converges, thus
is bounded. By the uniform boundedness principle, ‖φn‖, or equivalently ‖xn‖, are bounded. (b) is
trivial.

The following theorem is the Uniform Boundedness Principle, or the Banach-Steinhaus theo-
rem.

Theorem 6.12 (Banach-Steinhaus). LetX be a Banach space and let F ⊂ X∗. Then the point wise
boundedness of F implies uniform boundedness of F . This means that: if for any x ∈ X , there
exists an Mx such that ‖φ(x)‖ ≤Mx for all φ ∈ F , then there exists an M such that ‖φ‖ ≤M for
all φ ∈ F .

Theorem 6.13. If xn⇀x, then ‖x‖ ≤ lim infn→∞‖xn‖. If, in addition, ‖xn‖ → ‖x‖, then xn → x.

Proof. The first result is obtained by

‖x‖2 = lim(x, xn) ≤ ‖x‖ lim infn→∞‖xn‖

The second result comes from

‖xn − x‖2 = ‖xn‖2 − (xn, x)− (x, xn) + ‖x‖2.
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Remarks

1. When ‖x‖2 < lim inf ‖xn‖2, we say that there is an energy lost. For instance, those en⇀0
in `2(N) but ‖en‖ = 1. You can also see that the concentration examples. For instance,
fn = n1/4e−nx

2
. Each of them has finite energy, but their weak limit is 0, which has zero

energy.

Theorem 6.14 (Mazur). If xn⇀x in a Hilbert H, then there is a sequence {yn} which are finite
convex combination of {xn} such that yn → x (strongly).

Proof. We may assume x = 0. We will choose a subsequence (xnk)k≥1 of (xn), then take average
of them to produce the sequence (yk). We start from n1 = 1. From (xn, xn1) → 0, we can choose
n2 such that |(xn2 , xn1)| ≤ 1/2. Next, from (xn, xni)→ 0, i = 1, 2, we pick n3 such that

|(xn3 , xni)| ≤
1

3
for i = 1, 2.

Given n1, · · · , nk, we pick nk+1 such that

|(xnk+1
, xni)| ≤

1

k + 1
, for all i = 1, · · · , k.

Now, we define

yk =
1

k
(xn1 + · · ·+ xnk).

Then

‖yk‖2 =
1

k2

j−1∑
i=1

‖xni‖2 +
2

k2
Re

k∑
j=1

j−1∑
i=1

(xni , xnj )

≤ M2

k
+

2

k2

k∑
j=1

j−1∑
i=1

1

j
≤ M2 + 2

k
.

Thus, yk → 0.

Examples

1. We have seen that e−inx⇀0 from Riemann-Lebesgue lemma. Define

FN (x) =
1

2N + 1

N∑
n=−N

einx.

Then FN → 0 strongly in L2(T).

2. The sequence en converges to 0 weakly in `2(N). Their averages yn = 1
n(1, 1, · · · , 1, 0, 0, · · · )

have norm ‖yn‖ = 1/
√
n which converges to 0 strongly.
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3. Let fn ∈ L2(0, 1) given by

fn(x) =

{ √
n if 0 ≤ x < 1/n

0 if 1/n ≤ x ≤ 1

Let gn(x) = 1
n (f1 + · · ·+ fn) . Is gn → 0 strongly in L2(0, 1)?

4. Let fn(x) = n1/4e−nx
2
. Then fn⇀0 in L2(R). What is gn = (f1 + · · · + fn)/n? Does it

converge to 0 strongly?

Remark If H is a convex function in Rn and if∇un⇀∇u in L2(Ω), then

lim inf
n→∞

∫
Ω
H(∇un) dx ≥

∫
Ω
H(∇u) dx.

Theorem 6.15 (Banach-Alaoglu). A closed bounded set in a Hilbert spaceH is weakly compact.

Proof. We shall prove the theorem for separable Hilbert spaces. We show that if (xn) is bounded,
then it has a weakly convergent subsequence. We use diagonal process. Suppose D = {yn|n ∈ N}
is dense in H. Then (xn, y1) is bounded in C. By Hein-Borel theorem, there exists a subsequence
(x1,k) such that (x1,k, y1) converges. We repeat this process, there exists a subsequence (x2,k)
of (x1,k) such that (x2,k, y2) converges. Continuing in this way, we obtain (xm,k)k≥0 such that
(xm,k, yi), k ≥ 0 converges for all 1 ≤ i ≤ m. Taking the diagonal subsequence (xk,k), we claim
(xk,k, y) converges for all y ∈ D. If y ∈ D, then y = yn for some n. Taking k > n, we have
(xk,k, yn) converges as k →∞. This limit defines a linear functional ` on D by

`(y) = lim
k→∞

(xk,k, y)

From (xn) being bounded, say by M , we have ‖xk,k‖ ≤M . Hence, ` is bounded, thus continuous,
onD and has unique extension toHwith norm bounded byM . By the Riesz representation theorem,
there exists an x ∈ H such that `(y) = (x, y). Now, for any y ∈ H, we choose y′ ∈ D such that
y′ → y. Then

lim
k→∞

(xk,k, y) = lim
k→∞

lim
y′→y

(xk,k, y
′)

= lim
y′→y

lim
k→∞

(xk,k, y
′)

= lim
y′→y

(x, y′)

= (x, y)

That the interchange of two limits is allowed is due to the uniform boundedness of (xk,k).

6.4 Direct method in Calculus of Variations

We introduce the direct method in calculus of variations as an application. For simplicity, we con-
sider quadratic minimization problem.
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6.4.1 Dirichlet problem

Let us consider the following variational formulation of the Dirichlet problem: Find u ∈ H1
0 (Ω)

such that it minimizes the Dirichlet integral

J [u] :=

∫
Ω

(
1

2
|∇u(x)|2 − f(x)u(x)

)
dx,

where f ∈ L2(Ω).

1. In H1
0 (Ω), we use ‖u‖1 := ‖∇u‖L2 . From the Poincare inequality, there exists a constant

C such that for any u ∈ H1
0 , ‖u‖L2 ≤ C‖∇u‖L2 . Hence, the usual H1 norm defined by

‖u‖H1 := ‖u‖L2 + ‖∇u‖L2 is equivalent to ‖∇u‖L2 .

2. We show that J [u] is coercive, i.e. there exists an α, β > 0 such that J [u] ≥ α‖∇u‖2 − β.
This is mainly due to Poincarè inequality again. We have

|(f, u)| ≤ ‖f‖ · ‖u‖
≤ ‖f‖C‖∇u‖

≤ ε‖∇u‖2 +
C2

ε
‖f‖2

and

J [u] ≥ 1

2
‖∇u‖2 − ‖f‖ · ‖u‖

≥
(

1

2
− ε
)
‖∇u‖2 − C2

ε
‖f‖2

By choosing ε > 0 small enough, we have J [u] ≥ α‖∇u‖2 − β.

3. From the coerciveness of J [u] in H1
0 , we see that J [u] is bounded from below. Hence

inf{J [u]|u ∈ H1
0} = m > −∞

exists. Now, we choose a sequence un ∈ H1
0 such that

limn→∞J [un] = m.

Such a sequence is called a minimal sequence. From the coerciveness of J [u], we obtain

α‖∇un‖2 ≤ J [un] + β

for all n. Thus, ‖∇un‖ is bounded. Hence, the sequence is bounded in H1
0 (Ω).

4. By the compact embedding of H1
0 (Ω) in L2(Ω) and the Banach-Alaoglu theorem, we can

choose a subsequence of (un), still denoted by (un), such that un → u in L2(Ω) and un⇀u
weakly in H1

0 (Ω).
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5. From un⇀u in H1
0 , we get

‖∇u‖2 ≤ lim inf
n→∞

‖∇un‖2.

From un → u in L2, we get (f, un)→ (f, u). Combining these two together, we get

J [u] ≤ lim inf
n→∞

J [un] = m

Thus, the minimum is attained.

6.4.2 Phase field model for binary systems

Consider a binary system, composed of two species A and B. Let uA, uB be their concentrations.
A phenomenological theory describing the equilibrium state is through a coarse grained Gibb’s free
energy ψ(u, T ), which is defined to be

ψ(uA, uB, T ) = αuAuB + T (SA + SB),

where T is the temperature and SA and SB are the entropy. Usually, Si = ui log ui for i = A,B.
The term αuAuB represents the interaction energy between species A and B. They are repulsive
when α > 0 and attractive when α < 0. Notice that

uA + uB = 1

from conservation of volume. Thus, we can use u = uA only and the Gibb’s free energy is

ψ(u, T ) = αu(1− u) + T (u log u+ (1− u) log(1− u)) , 0 ≤ u ≤ 1.

For the repulsive case, the interaction energy is concave downward, while the entropy term is con-
cave upward. Therefore, there exists a critical temperature Tc, such that for T > Tc, the function
ψ(u, T ) is strictly convex in u and has a unique minimum. While for T < Tc, ψ(u, T ) has two local
minima and one maximum (i.e. it is a double well). The equilibrium is obtained by

min

∫
Ω
ψ(u(x), T ) dx subject to

∫
Ω
u(x) dx = um|Ω|.

Suppose the concentration of A is uniform, then there exist a unique minimum for T > Tc. How-
ever, there are two minima ua and ub for T < Tc with ψ′(ua) = ψ′(ub) = 0. Let Ωa ⊂ Ω and
Ωb = Ω \ Ωa. Ωa is chosen to satisfy

ua|Ωa|+ ub|Ωb| = um.

We define

u(x) =

{
ua, x ∈ Ωa

ub, x ∈ Ωb
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Then u is a minimum. Thus, this problem is ill-posed. The solution is not unique. Indeed, it is quite
flexible to choose the subdomain Ωa. Cahn-Hilliard modify the free energy by adding a gradient
term γ|∇u|2 where γ > 0 so that the free energy becomes

Ψ(u, T ) = ψ(u, T ) +
γ

2
|∇u|2.

The equilibrium state is

min
u∈A
E(u) subject to

∫
Ω
u(x) dx = um|Ω|.

where
E(u) =

∫
Ω

(
ψ(u(x)) +

γ

2
|∇u|2

)
dx

The function class A is called the admissible class. It should be chosen so that

(a) Boundary condition is satisfied. In our case, it is un(x) = 0, for x ∈ ∂Ω;

(b) The energy E is finite. This requires u ∈ H1(Ω) and 0 ≤ u ≤ 1.

In this case, one can apply the direct method in Calculus of Variation to show the existence and the
phase transition phenomena.

Homeworks 6.2. 1. For general convex function, which is coercive, strongly lower semicontin-
uous (l.s.c), the minimum is also attained. Hint: From Mazur theorem, strongly l.s.c plus
convexity of J implies J is also weakly l.s.c. The coerciveness of J implies bounded set is
weakly precompact. Combining these two together gives the existence of minimum.

2. pp. 214: Ex. 8.22



128 CHAPTER 6. COMPACTNESS



Chapter 7

Bounded Linear Operators in a Hilbert
Space

7.1 Examples of bounded operators

We have seen many examples of bounded and unbounded operators in Chapter 2. We will review
some and provide more examples.

1. The differential operator: D : u→ u′ is a unbounded operator, while its inverse:

Ku(x) =

∫ x

0
u(y) dy =

∫ 1

0
g(x, y)u(y) dy

is a bounded operator fromC[0, 1] toC[0, 1]. Here, g(x, y) = 1 if 0 ≤ y < x and 0 otherwise.
You can see that it is also a bounded map from L2(0, 1) to itself.

2. Consider D2u = f on (0, 1) with the boundary condition: u(0) = u(1) = 0. Its inversion
can be represented as

u(x) =

∫ 1

0
g(x, y)f(y) dy, g(x, y) =

{
x(1− y) for 0 < x < y < 1
y(1− x) for 0 < y < x < 1

The mapping f → u is a bounded linear operator from L2(0, 1) to itself (Check by yourself).

3. Consider −4 u = f in R3 with u(x)→ 0 as |x| → ∞. Then u is given by

u(x) =

∫
1

4π

1

|x− y|
f(y) dy

The mapping f → u is a bounded linear map from L2(R3) to L2(R3).

4. Blur operator

Kf(x) =

∫
K(x, y)f(y) dy.

129



130 CHAPTER 7. BOUNDED LINEAR OPERATORS IN A HILBERT SPACE

where K(x, y) is called a kernel. In many cases, K is translational invariant, i.e. K(x, y) =
K(x− y). In this case, we can represent it as a multiplier in the Fourier space:

K̂f(ξ) = K̂(ξ)f̂(ξ).

5. Potential Theory: Consider the potential equation

4u = 0 in Ω ⊂ R2,

Let K(x − y) = − 1
2π ln |x − y| be the fundamental solution of −4 in R2. That is, − 4y

K(x− y) = δ(x− y). Now, we multiply −4y u = 0 by K, integrate it over a domain Ωx,ε

in y, and perform integration by part, then take ε → 0. Here, Ωx,ε is Ω \ Bε(x) and ε << 1
so that Bε(x) ⊂ Ω if x ∈ Ω. Then we will get∫

∂Ω

(
K(x− y)un(y)− ∂K(x− y)

∂ny
u(y)

)
dy = u(x). (7.1)

When x ∈ ∂Ω, there is only half of the ball Bε(x) lies inside Ω and we get∫
∂Ω

(
K(x− y)un(y)− ∂K(x− y)

∂ny
u(y)

)
dy =

u(x)

2
. (7.2)

Here, the data u(x) and un(x) for x ∈ ∂Ω are the limits from inside of Ω. The formula
(7.1) provides us a representation of u(x), x ∈ Ωo in terms of the boundary data u(x) and
un(x), x ∈ ∂Ω. On the other hand, (7.2) gives a relation between the Dirichlet data u(x) and
Neumann data un(x) on the boundary. For instance, suppose we are given a Dirichlet data
u(x) = f(x) for x ∈ ∂Ω. Then we can solve un from∫

∂Ω
K(x− y)un(y) dy =

∫
∂Ω

∂K(x− y)

∂ny
f(y) dy +

f(x)

2
.

This is called the Fredholm integral equation of first kind. On the other hand, if we are given
Neumann data un = g on the boundary, then we can find u on the boundary from

u(x)

2
+

∫
∂Ω

∂K(x− y)

∂ny
u(y) dy =

∫
∂Ω
K(x− y)g(y) dy.

This is called the Fredholm integral equation of the second kind. The mapping: u → un on
the boundary is a linear map, called the Dirichlet-to-Neumann map. Similarly, its inverse map
is a linear map and will be shown that it is a bounded linear map. We will see that this linear
map is a bounded operator from L2(∂Ω) to itself.

6. Radon transform. Given a smooth, compact supported function f in R2 with support inB1(0),
given any θ ∈ S2 and s ∈ R, define

(Rf)(θ, s) =

∫
θ⊥
f(sθ + y) dy

where θ⊥ = {y|(θ, y) = 0}. The transform R is called the Radon transform. We will see that
it is a bounded operator from L2(B1) to L2(B1), where B1 is the unit disk on R2.
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7. Hilbert transform:

(Hf)(x) := P.V.
1

π

∫
R

f(y)

x− y
dy.

The Fourier representation of Hilbert transform is

Ĥf(ξ) = −sign(ξ)f̂(ξ).

Let u be the the harmonic function on the upper half plane with Dirichlet data f on y = 0.
Let v be the complex conjugate of u. Then v(x, 0+) is the Hilbert transform of f .

Issues we are interested The issues we are concerned are:

• Soving Au = f for existence, uniqueness and stability.

• Solving the least square problem: Find min ‖Au− f‖2.

• Eigen-expansion of A.

7.2 Preliminaries

Operator norm . Let H and K are Hilbert spaces. Let A : H → K be a linear operator. We
recall that a linear operator A is called bounded if there exists an M such that ‖Ax‖ ≤ M‖x‖ for
all x ∈ H. It is easy to see that a linear operator A is bounded if and only if it is continuous. For a
bounded operator A, we define its operator norm ‖A‖ by

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖

.

Kernel and Range We denote the kernel of A by N(A) and range by R(A). From the bound-
edness of A, we get N(A) is closed. The range of a bounded linear map may not be closed. For
example, the mapping Kf =

∫ x
0 f(y) dy maps L2[0, 1] to L2[0, 1]. But the range is H1[0, 1] with

u(0) = 0. Its closure is L2[0, 1].

Proposition 1. Let A be a bounded linear map from H to K. The following two statements are
equivalent:

(i) there exists a constant c > 0 such that ‖Ax‖ ≥ c‖x‖ for all x ∈ H;

(ii) R(A) is closed, and N(A) = {0}.

Proof. (i)⇒ (ii). If {Axn} is a Cauchy sequence inR(A), then from the assumption ‖Ax‖ ≥ c‖x‖,
we get that {xn} is also a Cauchy sequence and it converges to x ∈ H. The continuity of A implies
Axn → Ax. Thus, R(A) is closed. Also, from ‖Ax‖ ≥ c‖x‖, we get that Ax = 0 implies x = 0.
Thus, N(A) = {0}.
We prove (ii)⇒ (i). From (ii), R(A) is a Hilbert space and A : H → R(A) is 1-1 and onto. Hence
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A−1 exists from a Hilbert spaceR(A) toH. The open mapping theorem states that a bounded linear
map from a Banach space onto another Banach space maps open sets to open sets. Thus, we get
A−1 is continuous, hence it is bounded. That is, there exists a constant c1 such that any y ∈ R(A),
‖A−1y‖ ≤ c1‖y‖. Or, equivalently, c1‖Ax‖ ≥ ‖x‖ for any x ∈ H.

Example Fredholm operators (A = I + K, K is compact) are typical example of bounded op-
erators that have closed range. For instance, in the space C[0, 1], consider Ku =

∫ x
0 u(y) dy.

Then Au = 0 implies u(x) +
∫ x

0 u(y) dy = 0. Differentiate it in x, we obtain u′ + u = 0. This
leads to u(x) = Ce−x. Thus, N(A) = {Ce−x|C ∈ R}. Notice that if we restrict to the space
{u ∈ C[0, 1]|u(0) = 0}, then N(A) = {0}.

Next, for any f ∈ C[0, 1], we look for a solution u ∈ C[0, 1] such that Au = f . Formally, we
differentiate Au = f and get

u′ + u = f ′.

By using integration factor, we get

(eyu)′ = eyf ′.

Integrate this equation, we get

exu(x)− u(0) =

∫ x

0
eyf ′(y) dy = exf(x)− f(0)−

∫ x

0
eyf(y) dy.

Thus,

u(x) = e−x(u(0)− f(0)) + f(x)−
∫ x

0
e−x+yf(y) dy.

In this expression, we don’t need to require f ′ exists. Thus, R(A) = C[0, 1].

The set of bounded operators . The set

B(H,K) = {A : H → K is a bounded linear operator}

forms a normed linear space with the above operator norm. It is indeed a Banach space from the
completeness of the space K. For, if {An} is Cauchy in operator norm, then for any x ∈ H, it holds
that Anx is also a Cauchy in K and hence converges to a unique point y in K. Thus, we can define
Ax = y. We leave the rest of the proof to the readers.

Dual space. Let H be a Hilbert space over C. We recall that the set B(H,C) is called the dual
space of Hand is denoted by H∗. The Riesz representation theorem says that H∗ is isometric to H.
That is, for any ` ∈ B(H,C), there exists a unique y ∈ H such that `(x) = (y, x) for all x ∈ H.
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Adjoint operator . Let A : H → K be a bounded operator. We can define the adjoint operator
A∗ : K∗ → H∗ by

(A∗y∗)(x) = y∗(Ax) for all y∗ ∈ K∗, x ∈ H.

By the Riesz representation theorem, we can identify each y∗ ∈ K∗ as a point y ∈ K by y∗(z) =
(y, z) for all z ∈ K. Thus, in terms of the inner products inH andK, the adjoint operatorA∗ : K →
H is defined as

(A∗y, x) = (y,Ax) for all x ∈ H, y ∈ K.

The adjoint operator A∗ is well-defined for the following reason. The linear map `(x) = (y,Ax) is
bounded. By Riesz representation theorem, there exists a unique z ∈ H such that (y,Ax) = (z, x)
for all x ∈ H. We then define A∗y = z.

One can show that

1. (A∗)∗ = A

2. (AB)∗ = B∗A∗.

3. If A : H → K is a bounded operator, then A∗ : K → H is also a bounded operator and
‖A∗‖ = ‖A‖:

sup
‖y‖=1

‖A∗y‖ = sup
‖y‖=1

sup
‖x‖=1

(A∗y, x) = sup
‖x‖=1

sup
‖y‖=1

(y,Ax) = sup
‖x‖=1

‖Ax‖ = ‖A‖.

Examples.

1. Let A : Cn → Cm be a linear map with matrix representation A = (aij)m×n. Then its dual
operator A∗ has the matrix representation A∗ = (āji)n×m.

2. Let K : L2[0, 1]→ L2[0, 1] be

Kf(x) =

∫ 1

0
k(x, y)f(y) dy

Then

K∗f(x) =

∫ 1

0
k(y, x)f(y) dy

3. Let S be the shift operator in `2(N) defined by

S(x1, x2, · · · ) = (0, x1, x2, · · · ).

Then
S∗(x1, x2, · · · ) = (x2, x3, · · · ).

If A : H → H satisfies (Ax, y) = (x,Ay), i,e, A = A∗, we call it self-adjoint.



134 CHAPTER 7. BOUNDED LINEAR OPERATORS IN A HILBERT SPACE

7.3 Solving Ax = b and its least-squares solution

The solvability of Ax = b relies heavily on to property of its dual A∗. We have the following
theorem.

Theorem 7.1. Let A : H → K be a bounded linear map. It holds

(i) N(A∗) = R(A)⊥, R(A) = N(A∗)⊥;

(ii) N(A) = R(A∗)⊥, R(A∗) = N(A)⊥;

(iii) A : H = N(A) ⊕ R(A∗) −→ N(A∗) ⊕ R(A), with A : R(A∗) → R(A) being one-to-one
and onto.

Proof. (i) First, we show N(A∗) ⊂ R(A)⊥. Suppose y ∈ N(A∗). For any x ∈ H, we have
(Ax, y) = (x,A∗y) = 0. Thus, y ⊥ R(A), or equivalently, y ∈ R(A)⊥.
Next, we show R(A)⊥ ⊂ N(A∗). If z ∈ R(A)⊥, it means that (z,Ax) = 0 for all x ∈ H.
This implies (A∗z, x) = 0 for all x ∈ H. Thus, A∗z = 0. Hence, R(A)⊥ ⊂ N(A∗). By
taking orthogonal complement, we get

N(A∗)⊥ ⊂ R(A)⊥⊥ = R(A).

This completes the proof of (i).

(ii) We apply (i) to A∗ to get N(A∗∗)⊥ = R(A∗). Taking orthogonal complement and using

A∗∗ = A, we get N(A) = R(A∗)
⊥

= R(A∗)⊥.

(iii) SinceA is bounded, we get thatN(A) is a closed subspace ofH. By the orthogonal projection
theorem,H = N(A)⊕N(A)⊥. Similarly,A∗ is also bounded. Thus,K = N(A∗)⊕N(A∗)⊥.
From (i) and (ii), we have N(A)⊥ = R(A∗) and N(A∗)⊥ = R(A). If x ∈ R(A∗) with
Ax = 0, then x ∈ N(A) ∩ N(A)⊥ = {0}. Hence A is 1-1 on R(A∗). The onto part for
A : R(A∗)→ R(A) is trivial.

Remarks.

1. The necessary condition for the solvability of Ax = b is b ⊥ N(A∗). Usually, it is easier to
solve the homogeneous equation such as A∗y = 0. If R(A) is also closed, then this is also a
sufficient condition. In finite dimensions, R(A) is always closed. So in finite dimension case,
solvability of Ax = b if and only if b ⊥ N(A∗).

2. Another application example is A = I − K, where K is a compact operator. In this case,
R(A) is also closed. We will prove this later. So, b ⊥ N(A∗) is a necessary and sufficient
condition for the solvability of Ax = b.

3. In the case of R(A) being closed, in particular, N(A∗) = {0} if and only if Ax = b is
solvable. Thus, the existence of Ax = b is equivalent to the uniqueness of A∗y = 0.
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4. In general, R(A) may not be closed in the infinite dimensional case. In this case, b ⊥ N(A∗)
does not imply the solvability of Ax = b. As an example, we consider the multiplication
operator M : L2(0, 1)→ L2(0, 1) defined by

Mf(x) = xf(x).

Then M∗ = M . For any f ∈ L2(0, 1), if Mf = 0, then xf(x) = 0. This implies f(x) = 0
almost everywhere. Hence f = 0 in L2(0, 1). This shows N(M) = N(M∗) = {0}. Let
g ≡ 1 on (0, 1). g ∈ L2(0, 1). But the only function f satisfying xf ≡ 1 is 1/x which is not
in L2(0, 1). We can conclude that R(A) is not closed.

5. Another example is that A is an integral operator, say Af(x) =
∫ x

0 f(y) dy. Then A :
L2(0, 1) → L2(0, 1). The range of A are those differentiable function with f(0) = 0. It is
clear that R(A) 6= L2(0, 1). The step function H(x− 1/2) is not in the range of A.

We shall come back to the applications of this theorem after we learn compact operator and singular
value decomposition.

Least-squares solutions We have seen that a necessary condition for solvability of Ax = b is
b ⊥ N(A∗). In the case b 6∈ N(A∗)⊥, we can find the least-squares solution:

x† := arg min ‖Ax− b‖2

The least squares solution may not exist. As in the above example:let us replace

Mf(x) := xf(x) = 1

in L2(0, 1) by finding

inf

∫ 1

0
|xf(x)− 1|2 dx.

This solution, if exists, must be f(x) = 1/x, which is not in L2(0, 1).
To find condition for the existence of the least squares solutions, we decompose b into

b = b̂+ b⊥ ∈ R(A) +N(A∗).

Notice that this decomposition is unique. Now, we have

‖Ax− b‖2 = ‖Ax− b̂‖2 + ‖b⊥‖2.

Thus,
inf ‖Ax− b‖2 = inf ‖Ax− b̂‖2 + ‖b⊥‖2 = ‖b⊥‖2.

If b̂ ∈ R(A), then there exists a x̂ ∈ H such that Ax̂ = b̂. Thus, x̂ is a least squares solution. If
N(A) = {0}, then the solution is unique. Otherwise, we can find a unique x† ∈ N(A)⊥ such that
A is 1-1 from N(A)⊥ → R(A). Any least squares solution satisfies Ax̂ = b̂. We can decompose
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x̂ = x1 +x2 with x2 ∈ N(A) and x1 ∈ N(A)⊥. Then we obtain Ax1 = b̂ and x1 ∈ N(A)⊥. Thus,
x1 = x†.

We conclude that given b ∈ K, the existence of least squares solution of Ax = b if and only if
b ∈ R(A) + N(A∗). These is a unique x† ∈ N(A)⊥ which is the unique least squares solution in
N(A)⊥. The general least squares solutions have the form x̂ = x† +N(A).

We will see the solvability in more detail later for the cases: (i) A is a Fredholm operator and
(ii) A is a compact operator.

7.4 Unitary operators

Definition 7.1. A linear map U : H → K is called unitary (or orthogonal) if it is invertible and
(Ux,Uy)K = (x, y)H for all x, y ∈ H.

In other words, a unitary map is 1-1, onto and preserves inner product. Thus, we have ‖Ux‖ =
‖x‖. This implies ‖U‖ = 1. Two spaces H and K are called isometric if there is a unitary map
between them. We then identify K asH.

Proposition 2. (a) A linear map U : H → H is unitary if and only if (b) U∗U = UU∗ = I .

Proof. (b) ⇒ (a). If Ux = 0, then x = U∗Ux = U∗0 = 0. Thus, N(U) = {0}. Similarly,
N(U∗) = {0}. This shows U and U∗ are 1-1. For any x ∈ H, U(U∗x) = x. This shows U is onto.
Finally, (Ux,Uy) = (x, U∗Uy) = (x, y). This shows U is inner product preserving. This shows
(b)⇒ (a).
(a) ⇒ (b). From (Ux,Uy) = (x, y), we get (U∗Ux, y) = (x, y) for all x, y ∈ H. This implies
U∗Ux = x for all x. Thus, we have U∗U = I . This together with the 1-1 and onto property, we get
U−1 = U∗. This leads to UU∗ = I .

Examples of unitary operators

1. A linear map Q in Rn is orthogonal if and only if QTQ = I .

2. Given a self-adjoint matrix A in Cn (i.e. A−A∗ = 0), define

U = eiA =
∞∑
n=0

(iA)n

n!
.

Then U is a unitary map in Cn. First, we recall that eiA is well-defined. 1 Using (An)∗ =
(A∗)n, we get

U∗ =

∞∑
n=0

(−iA∗)n

n!
= e−iA

∗
.

Because A−A∗ = 0, we get AA∗ = A2 = A∗A. Thus, A commutes with A∗. From this, we
get UU∗ = eiAe−iA

∗
= eiA−iA

∗
= I .

1 WhenA is a matrix, then ‖A‖ is finite inB(Cn,Cn). Thus, the series
∑∞
n=0

An

n!
converges absolutely and uniformly

in B(Cn,Cn). With this property, one can show that If AB = BA, then eA+B = eAeB = eBeA.
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3. Let H = −1
2∇

2 + V (x) be the Schrödinger operator. It is a self-adjoint unbounded operator.
We shall see later that e−itH is a unitary operator.

4. Suppose H is a Hilbert space. Let {un}n∈N and {vn}n∈N be two orthonormal bases of H.
We define a linear map U on the basis by

Uun = λnvn, for all n ∈ N

where λn ∈ C and |λn| = 1. Then U is a unitary map. For, if u =
∑

n αnun, then

‖Uu‖2 = ‖
∑
n

αλnvn‖2 =
∑
n

|αn|2 = ‖u‖2.

5. Consider the harmonic oscillator is quantum system

i∂tψ = Hψ,ψ(0) = ψ0.

The Hamiltonian H = −d2/dx2 + x2. Its eigenvalues are λn = n2, eigenstates are the
Hermite polynomials: un = Hn(x)e−x

2/2. They constitute an orthonormal basis in L2(R).
Its solution ψ(t) := U(t)ψ0 is

U(t)ψ0 :=
∞∑
n=0

e−iλntαnun(x), where ψ0 =
∞∑
n=0

αnun(x).

The operator U(t) is a unitary operator.

6. Periodic Hilbert transforml: H : L2(T)→ L2(T) is defined by

(̂Hf)n = i signnf̂n.

Or equivalently, Heinx = i(signn)einx. See see that the weight

|i signn| =
{

1 when n 6= 0
0 when n = 0.

Thus, H(1) = 0 and its kernel is the space spanned by 1, i.e. N(H) = 〈1〉. Its orthogonal
complement is

H = {f ∈ L2(T)|
∫ 2π

0
f(x) dx = 0}.

Then, H is a unitary map inH.

7. The translation operator Ta : L2(T)→ L2(T) defined by

(Taf)(x) = f(x− a)

is unitary. The set {Ta|a ∈ T} is a unitary representation of the additive group T.
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8. The Fourier transform F : L2(R)→ L2(R) is a unitary map.

9. The Hilbert transform H : L2(R)→ L2(R) is defined by

(̂Hf)(ξ) = i
ξ

|ξ|
f̂(ξ)

is a unitary map.

The mean ergodic theorem. The statistical behavior of a deterministic dynamical system can be
characterized by a probabilistic average.

Theorem 7.2 (von Neumann). Let U be a unitary operator on a Hilbert space H. Let M be its
invariant space, i.e. M = {x ∈ H|Ux = x}. Let P be the orthogonal projection ontoM. Then,
for all x ∈ H, we have

lim
N→∞

1

N + 1

N∑
n=0

Unx = Px. (7.3)

Proof. 1. From the definition, we have N(I − U) = R(P ) = M. We can decompose H =
N(P )⊕R(P ). If x ∈ R(P ), then

1

N + 1

N∑
n=0

Unx =
1

N + 1

N∑
n=0

x = x = Px.

Thus, (7.3) holds for x ∈ R(P ). So, we only need to prove (7.3) for x ∈ N(P ).

2. Since U is unitary, Ux = x if and only if x = U∗Ux = U∗x. Thus, N(I − U) = N(I −
U∗) =M.

3. From Theorem 7.1,

N(P ) = N(I − U)⊥ = N(I − U∗)⊥ = R(I − U).

4. For x ∈ R(I − U), x = (I − U)y for some y ∈ H.

1

N + 1

N∑
n=0

Unx =
1

N + 1

N∑
n=0

(Un − Un+1)y

=
1

N + 1
(y − UN+1y)

→ 0, as N →∞.

5. For every x ∈ N(P ), we can find xk ∈ R(I − U) to approximate x. Hence,∥∥∥∥∥ 1

N + 1

N∑
n=0

Unx

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

N + 1

N∑
n=0

Un(x− xk)

∥∥∥∥∥+

∥∥∥∥∥ 1

N + 1

N∑
n=0

Unxk

∥∥∥∥∥
≤ ‖x− xk‖+

∥∥∥∥∥ 1

N + 1

N∑
n=0

Unxk

∥∥∥∥∥ .
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By taking N →∞, then k →∞, it follows that (7.3) holds for x ∈ N(P ).

Now, we study a deterministic discrete dynamical system on a set Ω. We associate a probability
measure P on Ω. That is, (Ω,P) is a probability space. A mapping T : Ω → Ω is measure
preserving if P(T−1A) = P(A) for all measurable set A ⊂ Ω. We shall study statistical behavior
of the iterative map xn+1 = Txn. An important quantity is the average, which is measured by

1

N + 1

N∑
n=0

f(xn)

for any continuous function f . However, we may not have topology on Ω. Therefore, alternative
way is

1

N + 1

N∑
n=0

f ◦ Tn.

The mapping T then induces an operator U on L2(Ω,P) by f → f ◦ T . Since T is measure
preserving, we have ∫

Ω
f ◦ T (x)g ◦ T (x) dP(x) =

∫
Ω
f(x)g(x) dP(x).

That is, 〈Uf,Ug〉 = 〈f, g〉. Thus, U is unitary.

Definition 7.2. A 1-1, onto, measure preserving map T on (Ω,P) is ergodic if the only function
f ∈ L2(Ω,P) such that f = f ◦ T are the constant functions.

This definition states that T is ergodic if the invariant of U is the constant functions, which is
spanned by the constant function f ≡ 1. Then the von Neumann ergodic theorem implies that:

1

N + 1

N∑
n=0

f ◦ Tn → 〈f, 1〉1, as N →∞,

where 〈f, 1〉 =
∫

Ω f(x) dP(x).

Theorem 7.3. Let T : Ω → Ω be a 1-1, onto, measure preserving on a probability space (Ω,P).
Assume T is ergodic on Ω. Then for any f ∈ L2(Ω,P),

1

N + 1

N∑
n=0

f ◦ Tn →
∫

Ω
f(x) dP(x)

in L2(Ω,P).

Since L2 convergence implies convergence almost everywhere, we obtain that

1

N + 1

(
f(x0) + f(x1) + · · ·+ f(xN )

)
→
∫

Ω
f(x) dP(x)

for almost all x0 ∈ Ω with xn+1 := Txn.
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Remarks.

1. The general ergodic theorem holds for f ∈ L1(Ω,P), due to Birkhoff.

2. If T is only measure preserving, then the limit

lim
N→∞

1

N + 1

N∑
n=0

f(Tnx0)

still exists for almost all x0 ∈ Ω.

7.5 Compact operators

Definition 7.3. A linear map A : H → K is compact if it maps bounded set into a precompact set
in K.

Examples of compact operators.

1. Consider the Poisson equation − 4 u = f in a bounded domain Ω ⊂ Rn with Dirichlet
boundary condition. By the Riesz representation theorem, for any f ∈ L2(Ω), there exists
a unique u ∈ H1

0 (Ω) such that (∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω). The mapping K =

(−4)−1 maps f to u is a bounded operator from L2(Ω) to H1
0 (Ω). Since H1

0 (Ω) is compact
embedding into L2(Ω), we get K is a compact operator from L2(Ω) to L2(Ω). The operator
Kf has an integral representation:

u(x) =

∫
Ω
G(x, y)f(y) dy

G is called the Green function. G satisfies

(a) G(x, y) = G(y, x)

(b) −4G(·, y) = δ(· − y),

(c) G(x, y) = 0 for x ∈ ∂Ω.

The Green function has the following unique representation

G(x, y) =
1

4π

1

|x− y|
+ h(x, y)

where h(x, y) = h(y, x), h(·, y) is harmonic in Ω and h(x, y) = − 1
4π

1
|x−y| for x ∈ ∂Ω.

2. An operator with finite dimensional range is compact.

3. A diagonal operator A : `2(N)→ `2(N) defined by

A(x1, x2, x3, · · · ) = (λ1x1, λ2x2, λ3x3, · · · )

is compact if and only if λn → 0 as n→∞.
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Proposition 3. (a) Let A : H1 → H2 and B : H2 → H3 be bounded linear operators. If one of
them is compact, then AB is also compact.

(b) Let An : H → H be compact operators and An → A uniformly. Then A is also compact.

Proof. (a) The key is that a bounded operator (which is continuous) maps a compact set into a
compact.

(b) We use diagonal process to prove (b). Let (xn) be a bounded sequence in H. We claim
that we can find a convergent subsequence of (Axn). Since Am are all compact. We start
from m = 1, the sequence (A1xi) is bounded and hence has a convergent subsequence
(A1x1,n). The sequence A2x1,n is again bounded, thus we can find subsequence (x2,n) of
(x1,n) such that A2x2,n converges. We continuous this process to get a subsequence (xm,n)
of (xm−1,n) with (Amxm,n)n∈N converges. Then we take the subsequence (xm,m) which
has the property: for every k ∈ N , the sequence (Akxm,m)m∈N is a Cauchy sequence. We
claim that the sequence (Axm,m) is also a Cauchy sequence. For any ε > 0, we can find k
large enough such that ‖A − Ak‖ < ε.With this k, we can find N such that for n,m ≥ N ,
‖Akxm,m −Akxn,n‖ < ε. Combining these two, we get

‖Axm,m −Axn,n‖ < 3ε.

This shows Axm,m is a Cauchy sequence, hence Axn has convergent subsequence.

Theorem 7.4 (Schauder). If K : H → K is compact, then so is its dual K∗.

Proof. Suppose (yn) is a sequence in K with ‖yn‖ ≤ 1. We want to show (K∗yn) has convergent
subsequence. Let B be the unit ball in H and C = KB. From compactness of K, we get that C
is compact. Now, (yn) is not only continuous on C, in fact, they are equi-continuous on C because
their norms are bounded by 1. By Arzela-Ascoli theorem, (yn) has a subsequence, still denoted by
(yn), which converges on C. That is, for any small ε > 0, we have

sup
z∈C
|(yn − ym, z)| < ε,

if m,n are large enough. But this is the same as

sup
‖x‖≤1

|(yn − ym,Kx)| = sup
‖x‖≤1

|(K∗(yn − ym), x)| = ‖K∗yn −K∗ym‖

Hence, (K∗yn) is a Cauchy sequence inH. This shows (K∗yn) has Cauchy subsequence.

Hilbert-Schmidt operator Let Ω be a measurable set in Rd. Let us consider the following integral
operator in L2(Ω):

Ku(x) =

∫
Ω
k(x, y)u(y) dy
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We assume ∫
Ω

∫
Ω
|k(x, y)|2 dy dx <∞.

Then

|Ku(x)|2 ≤
(∫

Ω
k(x, y)|2 dy

) (∫
Ω
|u(y)|2 dy

)
Hence ∫

|Ku(x)|2 dx ≤
(∫

Ω

∫
Ω
k(x, y)|2 dy dx

) (∫
Ω
|u(y)|2 dy

)
This shows that

‖K‖2 ≤
∫

Ω

∫
Ω
|k(x, y)|2 dy dx

Such operator is called a Hilbert-Schmidt operator. We define the Hilbert-Schmidt norm of K by

‖K‖2HS =

∫
Ω

∫
Ω
|k(x, y)|2 dy dx.

We claim that Hilbert-Schmidt operator is compact. To see this, let {en(y)} be an orthonormal basis
in L2(Ω). Since k ∈ L2(Ω × Ω), we have for almost x ∈ Ω, k(x, ·) ∈ L2(Ω) and we can expand
k(x, y) in terms of en(y) as

k(x, y) =
∑
n

an(x)en(y)

By Parseval equality
‖k(x, ·)‖2 =

∑
n

|an(x)|2

We integrate in x to get ∫
Ω

∫
Ω
|k(x, y)|2 dy dx =

∑
n

∫
Ω
|an(x)|2 dx

Here, dominant convergence theorem is used. Now, we approximate the operator K by Knu(x) =∫
Ω kN (x, y)u(y) dy with

kN (x, y) =
∑
n≤N

an(x)en(y).

Clearly, KN has finite dimensional range and hence a compact. We claim that KN converges to K
uniformly. For

‖K −KN‖2 ≤
∫

Ω

∫
Ω
|k(x, y)− kN (x, y)|2 dy dx =

∑
n>N

∫
Ω
|an(x)|2 dx

Since
∞∑
n=1

∫
Ω
|an(x)|2 =

∫
Ω

∫
Ω
|k(x, y)|2 dy dx <∞,

we get ‖K − KN‖2 → 0 as N → ∞. Thus, KN converges to K uniformly. Since all KN are
compact operators, we get that K is also a compact operator.
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7.6 Fredholm Operators

In applications, we encounter the operator T := I −K, where K is a compact operator, frequently.
Indeed, K is treated as a perturbation relative to the identity operator. Below, we analyze its kernel
and range.

Theorem 7.5. Let K be a compact operator in a Hilbert space H. Let T = I −K. The following
statements hold.

(i) N(T ) is finite dimensional.

(ii) There is an integer m such that N(T k) = N(Tm) for all k ≥ m.

(iii) R(T ) is closed.

Remarks From Schauder’s theorem, K is compact if and only if K∗ is compact. From duality
principle and (iii), we get N(T )⊥ = R(T ∗) and N(T ∗)⊥ = R(T ).

Theorem 7.6 (Fredholm Alternative). Let T = I −K. Then one of the following is true:

(a) either Tu = f has a solution for every f ∈ H,

(b) or T ∗v = 0 has a nontrivial solution.

The statement (a) is R(T ) = H, which is equivalent to N(T ∗) = {0}. The statement (b) is
R(T ∗) 6= {0}. In applications, if N(T ∗) 6= {0}, then the solvability for Tu = f is f ⊥ N(T ∗).

Proof. (i) If N(T ) is not finite dimensional, then we can construct an orthonormal set {en}n∈N
in N(T ). Since T = I − K and Ten = 0, we have en = Ken. From K being compact,
(Ken)n∈N , hence (en)n∈N, is precompact. But this is impossible because (en, em) = 0 for
all m 6= n.

(ii) If there exists m such that N(Tm+1) = N(Tm), then for all k > m, N(T k) = N(Tm).
We prove by induction. We will only show that if N(Tm+1) = N(Tm), then N(Tm+2) =
N(Tm+1). It is obvious that N(Tm+1) ⊂ N(Tm+2). Conversely, if x ∈ N(Tm+2), then
Tx ∈ N(Tm+1). By our assumption N(Tm+1) = N(Tm). Hence Tm(Tx) = 0. Thus, we
get x ∈ N(Tm+1).

Next, if for every m ∈ N, N(Tm) is a proper subspace of N(Tm+1), then for all m ∈ N,
we can find unit vector em+1 ⊥ N(Tm) and em+1 ∈ N(Tm+1). Then (em)m∈N is an
orthonormal set. Take m < n, from T = I −K, we have

Ken −Kem = en − Ten − em + Tem.

The last three terms: em ∈ N(Tm) ⊂ N(Tn−1); en ∈ N(Tn) implies Ten ∈ N(Tn−1); and
Tem ∈ N(Tm−1) ⊂ N(Tn−1). Thus, the last three terms are in N(Tn−1). Hence,

‖Ken −Kem‖ = ‖en − (Ten + em − Tem)‖ ≥ 1

for all m < n. This contradicts to the compactness of K.
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(iii) Suppose (yn = (I − K)xn) is a convergent sequence in R(I − K). We want to show that
there is an x and a subsequence of (xn) which converges to x. Let first assume N(T ) = {0}.
Suppose ‖xn‖ is unbounded. Pick up the subsequence, still call it (xn), whose norm tends to
∞. Consider zn = xn/‖xn‖. We have

yn
‖xn‖

= zn −Kzn.

Since yn is a convergence, yn/‖xn‖ → 0. (zn) is a bounded sequence now, hence Kzn has a
convergent subsequence, still denote it by (zn), which converges to z. Then we have

0 = z −Kz.

Hence z ∈ N(T ). By our assumption, z = 0. But z is the limit of zn and ‖zn‖ = 1 for all n.
This is impossible. Hence the assumption ‖xn‖ is unbounded is impossible.

Now (xn) is a bounded sequence. Hence (Kxn) has convergent subsequence, still denote
by Kxn. From yn = xn − Kxn, we see both (yn) and (Kxn) converge. Thus, (xn) also
converges.

Finally, we do not make the assumption N(T ) = {0}. Let zk be the projection of xk on
N(T ). Consider wk = (xk − zk) ⊥ N(T ). Then

yk = Txk = T (xk − zk) = Twk.

We now replace H by N(T )⊥. By the previous argument, we get (wk) has a subsequence
converges to w ∈ N(T )⊥. Hence y = lim yk = limTwk = Tw. This shows that R(T ) is
closed.

Least-Squares Solutions Let K be a compact operator in H and let T = I − K. Consider the
equation

Tu = f

and suppose f 6∈ N(T ∗)⊥. In this case, we look for a solution which minimizes ‖Tu− f‖2. Such
a solution is called the least-squares solution. We can decomposeH in the domain and range as the
follows:

T : N(T )⊕R(T ∗)→ N(T ∗)⊕R(T ).

This is because both R(T ∗) and R(T ) are closed. Further, T is 1-1 and onto from R(T ∗)→ R(T )
and has a bounded inverse.

Now, given f ∈ H, we decompose f = f∗ + f⊥, with f∗ ∈ R(T ) and f⊥ ∈ N(T ∗). With
f∗, there exists a unique u∗ ∈ R(T ∗) such that Tu∗ = f∗. Then the solution u∗ is the least-squares
solution. For any u ∈ H, we can decompose u = v + u⊥, with v ∈ R(T ∗) and u⊥ ∈ N(T ). Then
Tu = Tv. We have

‖Tu− f‖2 = ‖Tv − f∗‖2 + ‖f⊥‖2 ≥ ‖f⊥‖2

= ‖f⊥‖2 + ‖Tu∗ − f∗‖2 = ‖Tu∗ − f‖2.

This shows that u∗ is a least-squares solution.
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Homeworks 7.1.

Consider the Dirichlet problem in a bounded smooth domain Ω ⊂ R3:

4u(x) = 0, x ∈ Ω

u(x) = f(x), x ∈ ∂Ω

Let

k(x, y) =
1

2π

(x− y, ny)
|x− y|3

, x ∈ Ω, y ∈ ∂Ω,

where ny is the outer normal of ∂Ω at y. The goal of boundary integral method is to find a function
φ defined on ∂Ω such that u(x) =

∫
∂Ω k(x, y) dy. The problems below are the steps toward this

goal.

1. If x0 ∈ ∂Ω, show that

u(x)→ −φ(x0) +

∫
∂Ω
k(x0, y)φ(y) dy, as x→ x0 from inside.

2. The operator Kφ(x) :=
∫
∂Ω k(x, y)φ(y) dy is a compact operator in L2(∂Ω).

Hint: Consider the regularization

kδ(x, y) =
1

2π

(x− y, ny)
|x− y|3 + δ

, δ > 0.

Try to show Kδ → K and Kδ is compact.

3. Show that
(−I +K)φ = f

has a unique solution for f ∈ L2(∂Ω).
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Chapter 8

Spectrum of Bounded Operators

8.1 Spectrum and resolvent

In this chapter, we want to represent a bounded operator as a direct sum of simple operators on
smaller spaces. Such a small space is called an invariant space. If the operator restricted to this
invariant space is a scalar multiple of a identity, such invariant subspace is called an eigenspace.

Definition 8.1. (a) Let A be a bounded operator on a Hilbert space H. A subspace K is called
invariant under A if AK ⊂ K.

(b) If Ax = λx for some λ ∈ C and x ∈ H, then λ is called an eigenvalue of A and x the
corresponding eigenvector. The space 〈x〉 is an invariant subspace.

(c) A complex number λ is said to be in the resolvent set ρ(A) is that the operator (λ − A) is a
bijection with a bounded inverse Rλ(A) := (λ−A)−1.

(d) We call σ(A) := C\ρ(A) the spectrum of A.

Remarks.

1. From the bounded inverse theorem (or the open mapping theorem) that a bijective bounded
operator from a Banach space onto another Banach space has bounded inverse. In finite
dimensional space H, the complement of resolvent set is the collection of all eigenvalues. In
infinite dimensional space, it contains others.

2. If |λ| > ‖A‖, then λ ∈ ρ(A). This is because

(λ−A)−1 = λ−1

(
I − A

λ

)−1

= λ−1
∞∑
n=0

(
A

λ

)n
This series converges uniformly and absolutely because ‖A/λ‖ < 1.

Definition 8.2. Let A be a bounded linear operator on a Hilbert spaceH.

147
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(a) The point spectrum of A are those λ ∈ σ(A) such that λ−A is not 1-1, that is, N(λ−A) 6=
{0}. The point spectrum consists of those eigenvalues. We denote this set by σp(A).

(b) The continuous spectrum of A consists of those λ such that (λ − A) is 1-1 but not onto, and
R(λ−A) is dense inH.We denote this set by σc(A).

(c) The residual spectrum ofA consists of those λ such that (λ−A) is 1-1, not onto, andR(λ−A)
is not dense inH.We denote this set by σr(A).

Example 1 LetH = L2(0, 1). Define

Mu(x) = xu(x).

Then M : H → H is a bounded operator with ‖M‖ = 1. We claim that σ(M) = σc(M) = [0, 1].
If λ ∈ C\[0, 1], then (λ −M) has bounded inverse. Namely, (λ − x)u(x) = f(x) gives u(x) =
(λ − x)−1f(x) which is in L2(0, 1) provided f ∈ L2(0, 1). This shows σ(M) ⊂ [0, 1]. On the
other hand, if λ ∈ [0, 1], we first find that (λ −M) is 1-1. This is because Mu = λu for some
λ ∈ [0, 1], then u(x) = 0 a.e.. Thus M is 1-1 and M has no eigenvalue. For λ ∈ [0, 1], (λ −M)
is not onto, because the nonzero constant function g(x) = c is in L2(0, 1) while its pre image of
λ−M is c/(λ− x) with is not in L2(0, 1). This shows that σ(M) = [0, 1]. Finally, we claim that
for any λ ∈ [0, 1], R(λ−M) is dense in L2(0, 1). To see this, for any f ∈ L2(0, 1), we define

fn(x) =

{
f(x) if |x− λ| > 1/n,
0 if |x− λ| ≤ 1/n.

Then fn → f in L2(0, 1). Notice that every fn ∈ R(λ−M) because (λ− x)−1fn(x) ∈ L2(0, 1).
We conclude that σ(M) = σc(M).

Example 2 We can also define the resolvent and spectrum of an unbounded operator by the same
way. For instance, A = −∂2 is an unbounded operator in L2(R). For any λ ∈ C, we can solve

(λ+ ∂2
x)u = f

by using Fourier transform:
(λ− |ξ|2)û(ξ) = f̂(ξ).

This yields

û(ξ) =
1

λ− |ξ|2
f̂(ξ).

If λ ∈ C and λ 6∈ [0,∞), then û ∈ L2(R) provided f̂ ∈ L2(R). From Parseval equality: ‖f‖2 =
‖f̂‖2, we conclude that λ+∂2

x has a bounded inverse in L2(R) for any λ ∈ C\ [0,∞). On the other
hand, for any λ ∈ [0,∞), we claim that (λ + ∂2) is 1-1, but not onto and R(λ + ∂2) is dense in
L2(R). These can easily be checked by taking the Fourier transform. The operator λ+ ∂2 becomes
λ − |ξ|2. Using the same argument as example 1, we get that λ − |ξ|2 in L2(Rξ) is 1-1, not onto,
but the range is dense in L2(Rξ). Thus, σ(−∂2) = σc(−∂2) = [0,∞).
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Example 3 Consider the shift operators `2(N)→ `2(N) defined by

R(x1, x2, ...) = (0, x1, x2, ...), L(x1, x2, x3, ...) = (x2, x3, ...).

1. It is easy to see that L∗ = R and R∗ = L. And LR = I but RL 6= I .

2. Both L and R satisfy ‖R‖ = 1 and ‖L‖ = 1. Hence we have both σ(R), σ(L) ⊂ {λ | |λ| ≤
1}.

3. We claim that 0 ∈ σr(R) = {0}. This is because N(R) = {0} but e1 6∈ R(R). Thus, the
range of R is not dense in `2(N). Hence, 0 ∈ σr(R).

4. For any |λ| < 1, we claim λ is an eigenvalue of L. We solve (λ− L)x = 0, which is

λxn − xn+1 = 0, n = 1, 2, ...

This yields x = (1, λ, λ2, λ3, ...)x1, which is in `2 if and only if |λ| < 1. Thus,

{λ| |λ| < 1} = σp(L).

5. We claim that N(λ− L) = {0} for |λ| = 1. When (λ− L)x = 0, we have λxn − xn+1 = 0
for n ≥ 1. This gives x = x1(1, λ, λ2, ...). Such x ∈ `2 with |λ| = 1 yields x1 = 0. Thus,
N(λ− L) = {0} for |λ| = 1.

6. We claim that N(λ−R) = {0} for λ 6= 0. When λ 6= 0, (λ−R)x = 0 means

λ(x1, x2, x3, ...)− (0, x1, x2, ...) = (0, 0, 0, ...).

This yields that λx1 = 0, xn = λ−1xn−1 for n ≥ 2. Thus, x = 0.

7. To study R(λ−R), we solve

λ(x1, x2, x3, ...)− (0, x1, x2, ...) = (y1, y2, y3, ...).

This yields
λx1 = y1, λxn − xn−1 = yn, n ≥ 2.

If we choose y = e1. This gives

x1 = 1/λ, xn = λ−n+1, n ≥ 2.

If |λ| ≤ 1 and y = e1, then x 6∈ `2(N). Thus, R(λ−R) 6= `2(N).

8. Similarly, we solve (λ− L)x = y with |λ| = 1 and y = e1, we find

xn = λn−1x1 + λn−2, n ≥ 2.

Thus, e1 6∈ R(λ− L) for |λ| = 1.
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9. From duality principle,

R(λ∗ −R) = N(λ− L)⊥ = `2(R) for |λ| = 1

and
R(λ∗ − L) = N(λ−R)⊥ = `2(R) for λ 6= 0.

Thus, we have
σc(L) = {λ | |λ| = 1}, σc(R) = {λ | |λ| ≤ 1, λ 6= 0}

We summary them as

σp(L) = {λ | |λ| < 1}, σc(L) = {λ | |λ| = 1}, σr = φ;

σp(R) = φ, σc(R) = {λ | |λ| ≤ 1, λ 6= 0}, σr(R) = {0}.

Operator-valued analytic function We consider the space of all bounded operators inH, denoted
by B(H). It is a Banach space under operator norm. Given A ∈ B(H), we consider Rλ(A) =
(λ−A)−1, which is an operator-valued function defined on ρ(A).

Proposition 4. Let A be a bounded operator in a Hilbert spaceH.

(a) The resolvent set ρ(A) is an open set in C.

(b) Rλ(A) : ρ(A)→ B(H) is analytic.

(c) For any λ, µ ∈ ρ(A), Rλ(A) and Rµ(A) commute and

Rλ(A)−Rµ(A) = (µ− λ)Rµ(A)Rλ(A).

(d) σ(A) ⊂ {z | |z| ≤ ‖A‖}.

(e) σ(A) is not empty.

Proof. (a) We begin with formal computation. Suppose λ ∈ ρ(A). For µ ∼ λ,

1

µ−A
=

1

µ− λ+ λ−A
= (λ−A)−1 1

1−
(
λ−µ
λ−A

)
=

(
1

λ−A

)[ ∞∑
n=0

(
λ− µ
λ−A

)n]

= Rλ(A)

[ ∞∑
n=0

(λ− µ)nRλ(A)n

]
Since ‖Rλ(A)n‖ ≤ ‖Rλ(A)‖n, the series

∞∑
n=0

(λ− µ)nRλ(A)n
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converges uniformly if
|λ− µ| < ‖Rλ(A)‖−1.

One can check that

(µ−A)

[ ∞∑
n=0

(λ− µ)nRλ(A)n+1

]
= I =

[ ∞∑
n=0

(λ− µ)nRλ(A)n+1

]
(µ−A).

This shows that µ ∈ ρ(A) if |µ− λ| < ‖Rλ(A)‖. Thus, ρ(A) is open.

(b) Since Rµ(A) has a power series expansion, it is analytic.

(c) We have

Rλ(A)−Rµ(A) = Rλ(A)(µ−A)Rµ(A)−Rλ(A)(λ−A)Rµ(A)

= (µ− λ)Rλ(A)Rµ(A).

Interchanging λ and µ in the above formula shows that Rλ(A) and Rµ(A) commute.

(d) Notice that

Rλ(A) =
1

λ

∞∑
n=0

(
A

λ

)n
(8.1)

If |λ| > ‖A‖, then the series converges. Hence λ ∈ ρ(A). Or equivalently, σ(A) ⊂ {λ | |λ| ≤
‖A‖}.

(e) If σ(A) is empty, then Rλ(A) is analytic on entire C. From (8.1), we see that Rλ(A)→ 0 as
λ → ∞. Thus, Rλ(A) is a bounded entire function. By Liouville theorem, Rλ(A) would be
a constant and hence zero. This is a contradiction.

Definition 8.3. The spectral radius r(A) := sup{|λ| |λ ∈ σ(A)}.

Proposition 5. If A is a bounded operator, then r(A) = limn→∞ ‖An‖1/n.

Proof. Let an = log ‖An‖. We want to show that an/n conveges. Since ‖Am+n‖ ≤ ‖Am‖ ‖An‖,
we have

am+n ≤ am + an, and apm ≤ pam.

We write n = pm+ q with 0 ≤ q < m. It follows that

an ≤ pam + aq.

Dividing this formula by n. Taking n→∞ with m fixed. We get p/n→ 1/m. Hence

lim sup
n→∞

an
n
≤ am

m
.
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Then we take m→∞ to obtain

lim sup
n→∞

an
n
≤ lim inf

m→∞

am
m
.

This shows limn→∞ an/n exists.
Let us denote limn→∞ ‖An‖1/n by ρ. We shall show r(A) = ρ.
First, we expand (λ−A)−1 formally as a Neumann series

1

λ

∞∑
n=0

(
A

λ

)n
.

From the definition of ρ, we see that this Neumann series converges if ρ/|λ| < 1 and diverges if
ρ/|λ| > 1. For if ρ/|λ| < 1, it means that we can find an N such that for any n ≥ N ,

‖An‖1/n

|λ|
< η < 1.

Or
‖An‖
|λ|n

< ηn, with η < 1.

Thus, the Neumann series converges. Similar augument for the divergence proof. Thus, we get
{λ | |λ| > ρ} ⊂ ρ(A) from the convergence argument, and {λ | |λ| < ρ} ⊂ σ(A) from the
divergence argument. These two imply ρ = r(A).

Remark. Notice that r(A) = 0 does not imply A = 0. For instant, the matrix(
0 1
0 0

)
has zero spectral radius but it is not zero. A bounded operator is called nilponent if r(A) = 0.

Homeworks 8.1. 1. Ex. 9.2

2. Ex. 9.6

3. Ex. 9.7

4. Ex. 9.8

5. Ex. 9.10
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8.2 The spectrum of bounded self-adjoint operators

Definition 8.4. A linear operator A in a Hilbert spaceH is self-adjoint if A∗ = A.

The operator Mu(x) := xu(x) defined in the last subsection is a self-adjoint operator.

Proposition 6. If A is a bounded self-adjoint operator on a Hilbert spaceH andM is an invariant
subspace of A, thenM⊥ is also an invariant subspace of A.

Proof. If x ∈M⊥, we need to check Ax ⊥M. For any y ∈M,

(Ax, y) = (x,Ay) = 0.

Thus, Ax ∈M⊥.

This proposition says that A can be decoupled onM andM⊥.

Proposition 7. The eigenvalues of a bounded self-adjoint operator on a Hilbert space H are real,
and the eigenvectors associated with different eigenvalues are orthogonal.

Proof. Suppose λ ∈ C is an eigenvalue of A associated with an eigenvector x 6= 0.

λ(x, x) = (x,Ax) = (Ax, x) = λ(x, x).

Since x 6= 0, we conclude λ = λ.
If Ax = λx and Ay = µy, with λ 6= µ and λ, µ ∈ R, then

λ(x, y) = (Ax, y) = (x,Ay) = µ(x, y)

Since λ 6= µ, we obtain (x, y) = 0.

Proposition 8. If A is a bounded self-adjoint operator on a Hilbert spaceH, then

(a) ‖A‖ = sup‖x‖=1 |(Ax, x)|;

(b) The spectral radius r(A) = ‖A‖.

Proof. (a) 1. Let us denote sup‖x‖=1 |(Ax, x)| by α. From

|(Ax, x)| ≤ ‖A‖‖x‖2,

we get α ≤ ‖A‖.
2. To prove the reverse inequality, we first show that

‖A‖ = sup{|(Ax, y)| | ‖x‖ = 1, ‖y‖ = 1}.

This follows from
‖A‖ = sup

‖x‖=1
‖Ax‖ = sup

‖x‖=1
sup
‖y‖=1

|(Ax, y)|. (8.2)
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3. We use polarization formula

(Ax, y) =
1

4
[(A(x+ y), x+ y)− (A(x− y), x− y)

−i(A(x+ iy), x+ iy) + i(A(x− iy), x− iy)]

Since A is self-adjoint, the first two terms are real and the last two are pure imaginary. We
replace y by eiφ so that (Ax, eiφy) is real. Then the last two imaginary terms vanish. Hence
we get

|(Ax, y)|2 =
1

16
|(A(x+ y), x+ y)− (A(x− y), x− y)|2

≤ α2

16
(‖x+ y‖2 + ‖x− y‖2)2

=
α2

4
(‖x‖2 + ‖y‖2)2.

Here, we have used the parallelogram laws. Using this in (8.2), we obtain ‖A‖ ≤ α.

(b) 1. First, we show ‖A2‖ = ‖A‖2. We have

‖A‖2 = sup
‖x‖=1

(Ax,Ax) = sup
‖x‖=1

|(A2x, x)| = ‖A2‖

Here, we have used self-adjointness of A. From this, we can get ‖A‖2m = ‖A2m‖
2. We have shown that r(A) = limn→∞ ‖An‖1/n. In particular, we choose a subsequence
with n = 2m, then we get r(A) = ‖A‖.

Theorem 8.1. If A is a bounded self-adjoint operator on a Hilbert spaceH, then

(a) σ(A) ⊂ [−‖A‖, ‖A‖];

(b) The residual spectrum of A is empty.

Proof. 1. We want to show that for λ = a+ ib with b 6= 0, it holds that λ−A is invertible. For
any x ∈ H,

‖(A− λ)x‖2 = ((A− λ)x, (A− λ)x)

= ((A− a)x, (A− a)x) + ((−ib)x, (−ib)x)

+(Ax, (−ib)x) + ((−ib)x,Ax)

= ‖(A− a)x‖2 + b2‖x‖2

≥ b‖x‖2.

This shows that λ−A is 1-1 and has closed range.

2. If R(λ−A) = H, then λ−A has bounded inverse, hence λ ∈ ρ(A).
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3. If R(λ−A) 6= H, then, because it is closed, there exists z 6= 0 such that z ⊥ R(λ−A). That
is,

0 = (z, (λ−A)x) = ((λ−A)z, x), for all x ∈ H.

Here, we have used A∗ = A. This implies λ is an eigenvalue of A. Since the eigenvalues of
bounded self-adjoint operator must be real, we get λ ∈ R. This is a contradiction.

4. We have shown that r(A) = ‖A‖ and σ(A) ⊂ R. Combine these two, we get σ(A) ⊂
[−‖A‖, ‖A‖].

5. If λ ∈ σr(A), then R(λ−A) 6= H. Hence there exists a z 6= 0 such that z ⊥ R(λ− A). By
the same argument above, we get that λ is an eigenvalue. Since σ(A) ⊂ R, we see that λ = λ
and λ ⊂ σp(A) ∩ σr(A), which is an empty set. Thus, σr(A) is empty.

8.3 The spectrum of compact operators

Given a compact operator K in a Hilbert space H, we shall study the operator λ − K. We may
normalize it by I − K

λ .

Corollary 8.3. Let K be a compact operator in a Hilbert space H. Then the only possible contin-
uous spectrum is zero.

8.4 Spectral theorem for compact, self-adjoint operators

Theorem 8.2. If A is a compact self-adjoint operatorin a Hilbet spaceH, then the only accumula-
tion points of eigenvalues of A is zero.

Proof. Suppose λn 6= 0 are eigenvalues of A, λn → λ. Suppose λ 6= 0, we want to get a contradic-
tion. Let en be the associated unit eigenvectors. They form an orthonormal set. Let fn = en/λn.
Then fn are bounded because λn are bounded away from zero. The sequence (Afn) = (en) cannot
have a Cauchy subsequence. This contradicts to the compactness of A.

Theorem 8.3 (Rayleigh Principle). SupposeA is a compact, self-adjoint operator in a Hilbert space
H. Then the maximum

sup
‖x‖=1

|(Ax, x)| = ‖A‖

is attained. The maximal point is an eigenvalue of A.

Proof. We have seen that sup‖x‖=1 |(Ax, x)| = ‖A‖ for bounded self-adjoint operator. Suppose
(xn) be a sequence of unit vectors such that (Axn, xn) → λ, where λ = ‖A‖ or −‖A‖. From the
boundedness of (xn) and compactness of A, (Axn) has a convergent subsequence. We still denote
it by (Axn) and Axn → y. We claim y is an eigenvector.
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First, y 6= 0, otherwise (Axn, xn)→ 0 and leads to ‖A‖ = 0, and the statement is trvially true.
Second, we check

‖Ay − λy‖2 = lim
n→∞

‖(A− λ)Axn‖2

≤ ‖A‖2 lim
n→∞

‖(A− λ)xn‖2

= ‖A‖2 lim
n→∞

[‖(Axn‖2 − 2λ(Axn, xn) + λ2‖xn‖2]

≤ ‖A‖2 lim
n→∞

[‖A‖2‖xn‖2 − 2λ(Axn, xn) + λ2‖xn‖2]

= ‖A‖2[λ2 − 2λ2 + λ2] = 0.

Theorem 8.4 (Spectral theorem for compact, self-adjoint operators). Let A be a compact, self-
adjoint operator on a Hilbert spaceH. Then A can be diagonalized in the following sense:

1. there are countable (finite or infinite) eigenvalues λn which can be ordered so that (|λn|) is a
nonincreasing sequence and λn → 0;

2. The eigenspaces En associated with those nonzero eigenvalues λn are finite dimensional.

3. Let Pn be the orthogonal projection onto En. Then

A =
∑
n

λnPn.

Proof. 1. We shall find the eigenspaces by successively applying the Rayleigh principle. We
begin withA1 = A andN1 = H. By the Rayleigh principle, there exists a unit vector e1 such
that A1e1 = λ1e1 and |λ1| = ‖A1‖. Let E1 = 〈e1〉 and N2 = E⊥1 . Hence, N1 = E1 ⊕N2.

2. SinceA1 is self-adjoint,N2 is also an invariant subspace ofA. We define P1 be the orthogonal
projection onto E1 and A2 be the restriction of A1 on N2. Then

A1 = A1 ◦ (P1 + (I − P1)) = λ1P1 +A2,

and A2 : N2 → N2 is compact and self-adjoint. Since A2 is a restriction of A1, we get
‖A2‖ ≤ ‖A1‖. We apply Rayleigh principle to A2 on N2 to get λ2, e2 and E2 := 〈e2〉. We
have

|λ2| = ‖A2‖ ≤ ‖A1‖ = |λ1|,

and e2 ⊥ e1.

3. We continue this process inductively: Given the decomposition Nn−1 = En−1 ⊕Nn and the
operator An−1 = λn−1Pn−1 + An, we apply Rayleigh principle to An on Nn to get λn and
en; define En = 〈en〉; Nn+1 to be the orthogonal complement of En in Nn; and define An+1

to be the restriction of An on Nn+1. Then we get |λn| = ‖An‖, en ⊥ ei for all i < n, and
An = λnPn +An+1.
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4. If An+1 = 0 for some n, then A =
∑n

i=1 λiPi and N(A) = Nn+1.

5. If An 6= 0 for all n, then there are infinite many eigenvalues λn, n ∈ N. Each of them has
only finite multiplicity. By Theorem 8.2 and monotonicity of |λn|, we get λn → 0.

6. For every n,

A =
n∑
i=1

λiPi +An+1.

Since ‖An+1‖ = |λn+1| → 0 as n→∞, we get∥∥∥∥∥A−
n∑
i=1

λiPi

∥∥∥∥∥→ 0.

7. The range of A is

R(A) = {
∞∑
n=1

λnanen |
∞∑
n=1

|an|2 <∞.}

Hence, its closureM := R(A) is

M = {
∞∑
n=1

bnen |
∞∑
n=1

|bn|2 <∞}.

8. We claim N(A) =M⊥. If x ⊥M, then x ⊥ en for all n ∈ N. Hence

Ax =
∞∑
n=1

λn(x, en)en = 0.

Conversely, Ax = 0 implies (x, en) = 0 for all n ∈ N. Hence, x ⊥M.

Singular Value Decomposition for Compact Operators We have seen that for bounded operator
A : H → K, the spaceH and K can be decomposed such that

A : N(A)⊕R(A∗)→ N(A∗)⊕R(A)

and A : R(A∗) → R(A) is 1-1 and onto. Below, we show that for compact operator, we can find
orthonormal bases in R(A∗) and R(A) such that A can be represented as a diagonal matrix. Such a
decomposition is important in image processing, inverse problems,etc.

Theorem 8.5 (Singular Value Decomposition of Compact Operators). LetA : H → K be a compact
operator, whereH andK are Hilbert spaces. Then there exist an orthonormal bases {ui} inN(A)⊥

and {vi} in N(A∗)⊥ and µi > 0 such that

Aui = µivi
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Proof. 1. The operator B = A∗A is a compact, self-adjoint operator in H. Hence, B has
eigenvalues λi and eigenvectors ui such that (ui) constitutes an orthonormal basis ofN(B)⊥.

2. We notice that
λi(ui, ui) = (A∗Aui, ui) = (Aui, Aui) > 0.

so we can define µi =
√
λi.

3. We also notice that A∗Ax = 0 ⇒ (A∗Ax, x) = 0 ⇒ (Ax,Ax) = 0, hence N(A∗A) ⊂
N(A). On the other hand, if Ax = 0, then A∗Ax = 0. Thus, N(A) ⊂ N(A∗A). We get
N(B) = N(A∗A) = N(A) and

R(A∗) = N(A)⊥ = N(B)⊥.

Thus, {ui} constitutes an orthonormal basis in N(A)⊥.

4. Define
vi =

1

µi
Aui.

We have Aui = µivi,
A∗vi = A∗Aui/µi = λi/µiui = µiui.

From
(vi, vj) =

1

µiµj
(Aui, Auj) =

1

µiµj
(A∗Aui, uj) =

µi
µj

(ui, uj)

we see that (vi) is an orthonormal set in R(A). In fact,

R(A) =

{ ∞∑
n=1

µnanvn

∣∣∣ ∞∑
n=1

|an|2 <∞

}
=

{
b ∈ N(A∗)⊥

∣∣∣ ∞∑
n=1

|µn|−2|(b, vn)|2 <∞

}
and µn → 0, we get that

R(A) =

{ ∞∑
n=1

bnvn

∣∣∣ ∞∑
n=1

|bn|2 <∞

}
.

8.5 Ill-posed problems

Let A be a compact operator fromH to K. We are interested to solve the problem

Ax = b.

In application, for example, the operator A is a blur operator in image processing, the Radon trans-
form in computed tomography, etc. In general, we call A the sensing operator, b the measured data
and x the data to be restored. The measured data should be b ∈ R(A), otherwise there is no solution.
Unfortunately, the measured data usually contains noise, namely, we collect bδ = b+ n, where n is
a noise. We assume ‖n‖ ≤ δ in our Hilbert space. Our goals are
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• To solve Ax = b with b ∈ R(A) (noise free problem).

• To solve Axδ = bδ with ‖bδ − b‖ ≤ δ

• To find least square solution for general bδ ∈ K.

In many situations, the sensing operator is compact because the sensing process is sort of averaging
process. In this case, the singular value µn of A tends to 0. This is the source of ill-posedness.
Namely, a small perturbation of b causes a large variation of x.

Noise free problem Let A have singular value decomposition (µi, ui, vi)
∞
i=1. We have seen that

b ∈ R(A) if and only if
∞∑
i=1

µ−2
i |(b, vi)|

2 <∞.

The solution x† is

x† =
∞∑
i=1

µ−1
i (b, vi)ui ∈ N(A)⊥ ⊂ H.

We denote x† by A†b, called the pseudo-inverse of A.

Noisy problem The above solution is not stable under small perturbation of b. Suppose the per-
turbation is bδ = b+δvn. ThenA†bδ = A†b+δ/µnun. We see thatA†xδ →∞ as n→∞ because
µn → 0. Thus, A† is not bounded on R(A).

We look for least squares solution

inf ‖Ax− b‖2.

As we have seen before that this least squares solution exists if and only if

b = b̂+ b⊥ ∈ R(A) +N(A∗),

or if and only if b̂ ∈ R(A). The corresponding least squares solution is A†b̂. For simplicity, we
assume N(A∗) = {0}. Otherwise, we just replace b by b̂.

We are given b ∈ R(A). We know that inf ‖Ax − b‖2 has no solution unless b ∈ R(A). Now,
instead, we consider the regularized problem

inf Fα(x) := α‖x‖2 + ‖Ax− b‖2, α > 0.

This is a convex optimization problem. The functional Fα is strictly convex, ontinuous, and co-
ercive. Thus, it has a unique minimum in H. Alternatively, the corresponding Euler-Lagrange
equation is

αx+A∗Ax = A∗b.
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This equation is called the normal equation. The operator Tα := αI+A∗A is self-adjoint, positively
definite, with eigenvalues bounded above 0. Thus, Tα has bounded inverse in H. Let us denote it
by (αI +A∗A)−1. The corresponding solution

xα := (αI +A∗A)−1A∗b.

In terms of singular value decomposition of A, we project the normal equation into ui:(
α+ µ2

i

)
(xα, ui)ui = µi(b, vi)ui.

We obtain
(xα, ui) =

µi
α+ µ2

i

(b, vi).

Thus, the regularized solution xα is given by

xα =

∞∑
i=1

µi
α+ µ2

i

(b, vi)ui.
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