Imaging Sciences and Mathematics

> I-Liang Chern Fall 2010

# **Imaging Sciences**

- The SIAM Journal on Imaging Sciences covers all areas of imaging sciences, broadly interpreted. It includes
  - image formation (imaging)
  - image processing
  - image analysis
  - image interpretation and understanding
  - computer graphics and visualization
  - inverse problems in imaging;
- leading to applications to diverse areas in science, medicine, engineering, and other fields.

Special Thanks to Raymond Chan and Chiu-Yen Kao for their slides.



# **Imaging Sciences**

- Image Acquistion (Imaging)
  - human vision, Optics, Radar imaging, Ultrasound, MRI, X-ray CT,...
- Image Processing

$$I_{input} \xrightarrow{T} I_{output} = T[I_{input}]$$

• Image Interpretation (Visual Intelligence)

### **Image Processing**

- What is Image?
- What is Image Enhancement?
  - Contrast Enhencement
  - Image Denoising
  - Image Deblurring
- Image Inpainting
- Image segmentation
- Image Registration

Book: Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice Hall

### What are Digital Images?

#### 1. What is a digital image?

 $I: \Omega \to R \xrightarrow{\text{sampling, quantized}} I_d: \{1 \le i \le m, 1 \le j \le n\} \to R_k, 1 \le k \le l$ 

A digital image Is an array, or a matrix , of square pixels (picture elements) arranged in columns and rows.

- a. Binary Image (logical array)
  - $I(i, j) = \{1 \text{ or } 0\}$





### What are Digital Images?

b. Intensity Image

8 bit (uint8, 0-255), 16 bit (uint16, 0-65535) and double ([0 1])

c. color Image

**RGB**:

#### 24 bit = 256^3 ~ 16 million colors



|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAGENTA        |         |        | CYAN |
|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------|------|
| 3 <b>5535</b> ) | ) and d   | louble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ([0 1])            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1       | BLUE   |      |
|                 |           | 2235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1294             | Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.419          |         |        |      |
|                 | 5804      | 0.2902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0627             | 0.2902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2902         | 0.48    |        |      |
|                 | 0.5804    | 0.0627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0627             | 0.0627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2235         | 5 0.258 | 18     |      |
| 6.51            | 76 0.19   | 22 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sub>527</sub> Gre | en 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 922 0.2        | 2588 0. | 2588   |      |
| 0.51            | 76 0.12   | 94 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508 0.1            | 294 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 294 0.2        | 2588 0. | 2588 0 |      |
| 0.51            | 76 0.16   | 508 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 527 0.1            | 608 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 922 0.2        | 2588 0. | 2588   |      |
| .5490           | 0.2235    | 0.5490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Red                | 0.7412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7765         | 0.7765  | 902    |      |
| \$490           | 0.3882    | 0.5176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5804             | 0.5804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7765         | 0.7765  | 1961   |      |
| 490             | 0.2588    | 0.2902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2588             | 0.2235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4824         | 0.2235  |        |      |
| 1               | 2588      | 0.1608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2588             | 0.2588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1608         | 0.2500  |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2000             | 0.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2              |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                | Contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1 - C - C - C - C - C - C - C - C - C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |         |        |      |
|                 |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |        |      |
|                 |           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |         |        |      |
| 100 m           |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | - Ander                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              |         |        |      |
|                 | <u>31</u> | Contraction of the local division of the loc |                    | Contraction of the second seco |                |         |        |      |
| 1               |           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _              |         |        |      |
| de la           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |        |      |
| in the          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A COM              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |         |        |      |
|                 | Sec. 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |        |      |
|                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | Chiu \ | lon  |

YELLOW

RED

GREEN

### What are Digital Images?



# **Examples of images**

- Daily-life images
- Astro images
- Medical images

### Standard images



No higher resolution available. Lenna.png (512 × 512 pixels, file size: 464 KB, MIME type: image/png)

### Hubble site



### **3D-Doctor**



### **Image Processing**

- What is Image?
- What is Image Enhancement?
  - Contrast Enhencement
  - Image Denoising
  - Image Deblurring
- Image Inpainting
- Image segmentation
- Image Registration

Book: Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice Hall

### **Image Enhancement**

#### 1. Image Enhancement

c. Deblur

a. Intensity Adjustment









#### b. Denoise





### **Image Inpainting**



# *"Image Inpainting : An Overview",* Guillermo Sapiro



*"Fast Digital Image Inpainting",* Manuel M. Oliveira, Brian Bowen, Richard McKenna and Yu-Sung Chang

#### **Introduction to Image Segmentation**

Chiu-Yen Kao

$$X = \bigcup_{i=1}^{N} R_i, \ R_i \cap R_j = 0 \ for \ i \neq j$$



### **Image Registration**





Tumor(green), Vessels(red), Ventricles(blue), Edema (orange)

### **Image Processing**

- What is Image?
- What is Image Enhancement?
  - Contrast Enhencement
  - Image Denoising
  - Image Deblurring
- Image Inpainting
- Image segmentation
- Image Registration

Book: Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice Hall

## **Contrast enhancement-1**

Histogram



## **Contrast enhancement-2**



Histogram equalization

#### g(x, y) = T[f(x, y)]

## **Contrast Enhancement -3**

• Gray-level transform g(x, y) = T[f(x, y)]



a b c d

**FIGURE 3.10** Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of **Biological Sciences**, Australian National University, Canberra, Australia.)

### **Image Processing**

- What is Image?
- What is Image Enhancement?
  - Contrast Enhencement
  - Image Denoising
  - Image Deblurring
- Image Inpainting
- Image segmentation
- Image Registration

Book: Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice Hall

## Noise models

Assume white noise

n(x, y) and n(x', y') are uncorrelated

- Types of noises
  - Additive noise

g = f + n, n: mean 0, variance  $\sigma^2$ 

- Multiplicative noise

g = fn, n: mean 1, variance  $\sigma^2$  – Mixed

$$g = fn_1 + n_2$$

### Noise Models-2



abc def

**FIGURE 5.4** Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image in Fig. 5.3.

#### Noise Models-3



g h i j k l

**FIGURE 5.4** (*Continued*) Images and histograms resulting from adding exponential, uniform, and salt and pepper noise to the image in Fig. 5.3.

## **Denoise methods**

- Filtering techniques
  - Spatial filtering
    - Mean filters
    - Order-Statics filters
  - Frequency filtering
  - Wavelet filtering
- Variational approach

# **Spatial filtering**

• Mean filters:

Arithmetic mean filter

- Geometric mean filter

$$g = f + n$$
$$\tilde{f}(x, y) = \frac{1}{mn} \sum_{(s,t) \in S_{x,y}} g(s, t)$$

$$g = fn$$

$$\tilde{f}(x, y) = \left[\prod_{(s,t)\in S_{x,y}} g(s,t)\right]^{\frac{1}{mn}}$$

- Harmonic mean filter



# Mean filterings

#### a b c d

FIGURE 5.7 (a) X-ray image. (b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size  $3 \times 3.$  (d) Result of filtering with a geometric mean filter of the same size. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)



# Mean filtering

 Convolution with a smoothing mask



 $h_{s,t}$ 

 $\frac{1}{16}$ 

$$\tilde{f}_{i,j} = h * g := \sum_{|s|,|t| \le 1} h_{s,t} g_{i-s,j-t}$$

## **Denoise methods**

- Filtering techniques
  - Spatial filtering
    - Mean filters
    - Order-Statics filters
  - Frequency filtering
  - Wavelet filtering
- Variational approach

Impulse Noise Model



Original Image (a triangle) Image corrupted by *Impulse Noise* 

Only a number of pixels are corrupted

Raymond Chan

### Impulse Noise Model

*Impulse Noise* are caused by

- □ **Malfunctioning pixels** in camera sensors
- **Faulty memory locations** in hardware
- **Transmission** in a noisy channel
- Two types of Impulse Noise
- I. Salt-and-Pepper Noise
- II. Uniformly-Distributed Random Noise

### Salt-and-Pepper Noise

 $\mathbf{x} = (x_{i,j})$ : true image with  $x_{i,j} \in [0, 255]$ .  $\mathbf{y} = (y_{i,j})$ : observed noisy image.

$$y_{i,j} = \begin{cases} 0\\ 255\\ x_{i,j} \end{cases}$$

with probability r/2%, with probability r/2%, with probability 1 - r%.

Noise level = r%.



#### **Noise-free Image**



#### At 30% Noise



#### At 10% Noise



#### At 50% Noise

Raymond Chan

#### **Random-Valued Impulse Noise**

 $\mathbf{x} = (x_{i,j})$ : true image with  $x_{i,j} \in [0, 255]$ .  $\mathbf{y} = (y_{i,j})$ : observed noisy image.

$$y_{i,j} = \begin{cases} n_{i,j} & \text{with probability } r, \\ x_{i,j} & \text{with probability } 1 - r, \end{cases}$$

where  $n_{i,j}$  is randomly distributed in [0,255].

### **Denoising Schemes**

### Median Filter



### 30% Salt-and-Pepper Noise



#### **Median filter**
### Median-type Filters

- Drawback of Median Filter: Every pixel is modified, hence fuzziness and blurring
- Extensions of Median Filters (Median-type Filters):
  - Adaptive Median Filter (Wang, *IEEE Trans IP*, (1995))
  - Adaptive Center Weighted Median Filter (2001)
  - □ Multi-state Median Filters (2001)
  - □ Filter based on homogeneity info (2003)
  - Detection statistics (*IEEE TIP* 2007)

### **Adaptive Median Filter**



If **Median** =  $y_{i_1}$  or  $y_{i_9}$ , then increase window size.

### **Characteristics of Median-type Filters**

Two Steps

1. Noise Detection (e.g., thresholding)

2. Noise Replacement (by Median or its variants)

Advantages

**1.** Fast

2. Accurate Detection

### 30% Salt-and-Pepper Noise



Median Filter



Adaptive Median Filter



## **Denoise methods**

- Filtering techniques
  - Spatial filtering
    - Mean filters
    - Order-Statics filters
  - Frequency filtering
- Variational approach

## **Frequency filter**

### • Noise in frequency





a b

#### FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum
(each pair of
conjugate
impulses
corresponds to
one sine wave).
(Original image
courtesy of
NASA.)

## **Frequency filtering**

• Taking Fourier transform:

$$\hat{f}(\xi,\eta) = \iint f(x,y) e^{-i(x\xi+y\eta)} dxdy$$

• Noise model:

$$\hat{g} = \hat{f} + N$$

• Band reject/pass filter  $\hat{\tilde{f}}(\xi,\eta) = k(\xi,\eta)\hat{g}(\xi,\eta)$ 

## **Bandreject filter**

a b c d

FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(c) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)



## Denoise methods

- Filtering techniques
  - Spatial filtering
    - Mean filters
    - Order-Statics filters
  - Frequency filtering
  - Wavelet filtering
- Variational approach

## Variation approach-1

• Noise model: Z = u + n n: mean 0, variance  $\sigma^2$ 

• Find a smooth solution *u* under constraint

$$\int |u-z|^2 = \sigma^2$$

• If the solution is to minimize H1 norm  $\int |\nabla u|^2$ we call it H1 regularization

## Variational approach to denoising-2

• H1 denoising  $\min_{u} \int |u-z|^2 + \alpha \int |\nabla u|^2$ 

Regularization penalty

**Euler-Lagrange equation** 

$$\alpha \Delta u - (u - z) = 0$$

Total variation denosing

$$\min_{u} \int |u-z|^2 + \alpha \int |\nabla u|$$

Euler-Lagrange equation

$$\alpha \nabla \cdot \left( \frac{\nabla u}{|\nabla u|} \right) - (u - z) = 0$$

## Why Total variation denoising

TV norm: Keep edge sharp

A) Exact and Noisy Data B) Sobolev H–1 Reconstruction 2 (×) n(X 0.5 0.5 Λ Λ x axis y ayis C) TV Reconstruction D) Fourier Reconstruction 2 (×) (X) -2 0.5 0.5 0 n x axis x axis

Rudin, Osher, Fatemi

TV norm is insensitive to jumps (edges)

Picture by Vogel and Oman

### **Image Processing**

- What is Image?
- What is Image Enhancement?
  - Contrast Enhencement
  - Image Denoising
  - Image Deblurring
- Image Inpainting
- Image segmentation
- Image Registration

Book: Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice Hall

Convolution

$$g(x) = [h * f](x) \coloneqq \int h(x - y) f(y) dy$$

- If h is a positive weight, then h\*f is an averaging process, i.e. blurring
- Example: Finite size mask  $h_{s,t} = \frac{1}{16}$

FIGURE 5.24 Degradation estimation by impulse characterization. (a) An impulse of light (shown magnified). (b) Imaged (degraded) impulse.

$$g = h * f$$
$$\hat{g} = \hat{h} \cdot \hat{f}$$

Atmospheric turbulence

Gaussian model

$$\hat{h}(\xi,\eta) = e^{-k(\xi^2 + \eta^2)^{5/6}}$$
  
 $\hat{h}(\xi,\eta) = e^{-k(\xi^2 + \eta^2)}$ 



a b

a b c d

#### FIGURE 5.25

Illustration of the atmospheric turbulence model. (a) Negligible turbulence. (b) Severe turbulence, k = 0.0025.(c) Mild turbulence, k = 0.001.(d) Low turbulence, k = 0.00025.(Original image courtesy of NASA.)





 $g(x, y) = \int_0^T f(x - x_0(t), y - y_0(t))dt$ 

K : Translation

$$g = h * f + n$$

h: Blur operator n: noise f: true image

## **Deblur methods**

- Deconvolution in frequency domain
  - Inverse filtering
  - Wiener filtering
- Deconvolution via wavelets

Variational approach

## Deconvolution

$$\tilde{f} = k * g$$

Inverse filtering

$$g = h * f + n \Longrightarrow \hat{g} = \hat{h} \cdot \hat{f} + \hat{n}$$

$$\hat{\tilde{f}} = \hat{k}\hat{g} = \frac{1}{\hat{h}}\hat{g}$$

• Wiener filtering

$$\hat{k} = \frac{\bar{\hat{h}}E\{\hat{f},\hat{f}\}}{|\hat{h}|^2 E\{\hat{f},\hat{f}\} + E\{\hat{n},\hat{n}\}}$$

## **Deblur-1**



#### a b c

**FIGURE 5.28** Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b). (b) Radially limited inverse filter result. (c) Wiener filter result.

### Wiener filter

### **Deblur-2**



## **Deblur methods**

- Deconvolution in frequency domain
  - Inverse filtering
  - Wiener filtering
- Deconvolution via wavelets

Variational approach

## **Debur via TV regularization-1**

- Blur model g = h \* f + n
- Total variation regularization:

$$\min_{f} \alpha \int |\nabla f| + \int |h * f - g|^2$$

Alternative formulation

$$\min_{f,w} \alpha \int |w| + \beta \int |\nabla f - w|^2 + \int |h * f - g|^2$$

Y Wang et al.

## **Deblur via TV regularization-2**



Y Wang et al.

## **Deblur via TV regularization-3**

#### issnert's

### dinte for Business Terreb

- NATABACHAR MACHAR
- terminister i den derek provideriken i erherde ( 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -
- all forthe teel ( ) attacks to be for the
- And the post of the second
- Personal de la segurador

anarine (ter) raak yerheel warmee binne ar yefte chuite webbe ine war

#### France:

#### Hints for Business Traveler

- Paris has two airports:
  - + Charles de Gaulle Roissy (Northeast of city center)
  - · Only (South of dity center)
  - Halcoptar carvice available between airports.
- Business hours are generally 9:00 am to 12:50 pm and 3:30 pm to 6:30 pm

#### Banking hours vary and some banks close for lunch between noon and 2:00 pm



### France:

#### **Hints for Business Traveler**

- Paris has two airports:
  - . Charles de Gaulle Roissy (Northeast of city center)
  - · Only (South of eity cautar)
  - · Haloopus service contrible hanvas reports
- Business hours are generally 9:00 am to 12:30 pm and 3:30 pm to 6:30 pm

 Banking hours vary and some banks close for lunch between noon and 2:00 pm

### Y Wang et al

# **Imaging Sciences**

- Image Acquistion (Imaging)
  - human vision, Optics, Radar imaging, Ultrasound, MRI, X-ray CT,...
- Image Processing

$$I_{input} \xrightarrow{T} I_{output} = T[I_{input}]$$

• Image Interpretation (Visual Intelligence)

# What is imaging?

- Use physical methods to get geometrical or physical properties of the objects
  - Geometry: shape, morphology, structure,...
  - Physical properties:
    - Mechanical: density, pressure, velocity, concentration, viscosity, diffusion coefficients,...
    - Electrical: potential, current, impedance, conductivity, resistance,
    - Optical: absorption/reflection...
    - nuclear

# Medical imaging (Wiki)

- <u>1 Projection radiography</u>
- <u>2 Tomography</u>
- <u>3 Ultrasound</u>
- <u>4 Fluoroscopy</u>
- <u>5 Magnetic resonance imaging (MRI)</u>
- <u>6 Nuclear medicine</u>
- <u>7 Positron emission tomography (PET)</u>
- <u>8 Photoacoustic imaging</u>

## **Projection radiography**



## Tomography



Basic principle of tomography: superposition free tomographic cross sections S1 and S2 compared with the projected image P

# Type of Tomography-1

- <u>Atom probe tomography</u> (APT)
- <u>Computed tomography</u> (CT)
- Confocal laser scanning microscopy (LSCM)
- <u>Cryo-electron tomography</u> (Cryo-ET)
- <u>Electrical capacitance tomography</u> (ECT)
- Electrical resistivity tomography (ERT)
- Electrical impedance tomography (EIT)
- <u>Functional magnetic resonance imaging</u> (fMRI)
- <u>Magnetic induction tomography</u> (MIT)
- <u>Magnetic resonance imaging</u> (MRI), formerly known as magnetic resonance tomography (MRT) or <u>nuclear</u> <u>magnetic resonance</u> tomography

# Type of Tomography-2

- Optical coherence tomography (OCT)
- Process tomography (PT)
- Positron emission tomography (PET)
- Positron emission tomography computed tomography (PET-CT)
- Quantum tomography
- <u>Single photon emission computed tomography</u> (SPECT)
- Seismic tomography
- <u>X-ray tomography</u> (CT, CATScan)
- <u>Photoacoustic tomography</u> (PAT), also known as Optoacoustic Tomography (OAT) or Thermoacoustic Tomography (TAT)
- Zeeman-Doppler imaging

## X-ray Computed Tomograph





# Nobel winners for CT (1979)





**Godfrey Hounsfield** 

Allan McLeod Cormack
# **Image Reconstruction**

- Tomographic reconstruction :
  - Radon transform

$$Rf(\theta,r) = \int_{x \cdot \theta = r} f(x) dx, \ \theta \in S^1$$

Imaging model

$$z = Ru + n$$

Image reconstruction

Given z, reconstruct u



# Radon transform





M.J. Reiden

# Reconstructed images by CT



# Magnetic Resonance Imaging (MRI)



# **MRI** history



#### The Nobel Prize in Physics 1952

"for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"



#### Felix Bloch

 $\Phi$  1/2 of the prize

USA

Stanford University Stanford, CA, USA



Edward Mills Purcell

 $\Phi$  1/2 of the prize

USA

Harvard University Cambridge, MA, USA



#### The Nobel Prize in Physiology or Medicine 2003

"for their discoveries concerning magnetic resonance imaging"





Sir Peter Mansfield

 $\Phi$  1/2 of the prize

United Kingdom

University of Nottingham, School of Physics and Astronomy Nottingham, United Kingdom

# Basic Principles of Nuclear Magnetic Resonance

- Atoms with odd number of protons and/or neutrons possess nuclear spin angular momentum S
- Associated with S is a magnetic dipole moment
- Magnetic dipole moment rotates under external magnetic field, exhibit magnetic resonance phenomena
- The variation of rotation of spins generates magnetic fluxes and can be recorded
- Hydrogen H+ atoms are abundant in biological specimens





# MRI:

#### use magnetic fields to perform

•Relaxation: Main field B0

•Excitation: Radio Frequency (RF) field B1

•Fourier transform: Gradient field G



# MRI is a Fourier integrator

- RF excitation selects a slice of magnetic dipoles
- The gradient field generates Fourier transform



# Magnetic Resonance Imaging



| EM waves                          | Magnetic dipoles | EM waves                                                                                                                                           | Receive coils                    |
|-----------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Pulse sequences                   |                  |                                                                                                                                                    | Image reconstruction             |
| Transmit coils<br>Contrast agents |                  | <ul> <li>T1 &amp; T2</li> <li>Flow</li> <li>Diffusion</li> <li>Perfusion</li> <li>Temperature</li> <li>Cell tracking</li> <li>Molecules</li> </ul> | Data processing<br>Data analysis |
|                                   |                  |                                                                                                                                                    |                                  |



# **Summary of Imaging Sciences**

- Imaging (data acquisition): CT, MRI
   Solving inverse problems
- Image processing:
  - Enhancement (contrast enhancement, denoising, deblurring,...)
  - Segmentation (edge detection, active contours,...)
- Image analysis, image interpretation

# Image science and mathematics

- Image science is important in medicine
- Low dose, high resolution imaging methods are needed
- Image science needs mathematics

# • Thank you for your attention.