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8. Absolute mimimum at 1, absolute maximum at 5,

local maximum at 2, local mimimum at 4
y
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16. f(2) = 3 — 22, = < 5. Absolute nunimum £(5) = —7;

no local mmimum_ No absolute or local maximum.
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68. g(z) =2+ (z—5)7° = ¢'(z)=3(x—5)> = ¢'(5)=0,s05 isacrtical number. But g(5) = 2 and g takes on

values > 2 and values < 2 in any open interval containing 5, so g does not have a local maximum or mimimum at 5.

4.2
10. (a) 5 (b) The slope of the secant line 1s 2, and its equation is

y=2z f(z)=2>—2z = f'(x)=32*-2,
-3 3 sowesolve f'(c) =2 = 3?%=4 =

c = +2¥2 ~ 1.155. Our estimates were off by about

-5 0.045 1n each case.
It seems that the tangent lines are parallel
to the secant at x ~ +1.2.

18. Let f(xz) = 22 — 1 —sinz. Then f(0) = —1 < O and f(7/2) = ¥ — 2 > 0. f 1s the sum of the polynomial 2z — 1 and the
scalar multiple (—1) - sin z of the trigonometric function sin z, so f 1s continuous (and differentiable) for all . By the
Intermediate Value Theorem, there 1s a number c in (0, 7 /2) such that f(c) = 0. Thus, the given equation has at least one real
root. If the equation has distinct real roots a and b with a < b, then f(a) = f(b) = 0. Since f is continuous on [a, b] and
differentiable on (a, b), Rolle’s Theorem implies that there is a number r in (a, b) such that f'(r) = 0. But
f'(r) =2 — cosr > 0 since cosr < 1. This contradiction shows that the given equation can’t have two distinct real roots, so

1t has exactly one real root.



v(1/6) —v(0) 50 —30
1/6—0 ~—  1/6

32. Let v(t) be the velocity of the car ¢ hours after 2:00 PM. Then = 120. By the Mean Value

Theorem, there is a number ¢ such that 0 < ¢ < 1 with o/(c) = 120. Since v'(#) is the acceleration at time #, the acceleration
c hours after 2:00 PM is exactly 120 mi/h*.
4.3
2. (a) f1sincreasmgon (0, 1) and (3, 7). (b) f 1s decreasmg on (1, 3).
(c) f 1s concave upward on (2, 4) and (5, 7). (d) f 1s concave downward on (0, 2) and (4, 5).
(e) The points of inflection are (2, 2), (4,3), and (5,4).
4.4

22. lim cos z does not exist because as x increases cos « does not approach any one value, but oscillates between 1 and —1.

T—00

40. (a) 10 1
=10 10 =100 100
\ J N o
—10 -1
From the oranh it amneoarc at ﬁfcf ﬂ\nf ﬂ\m ic onlv ona hnn’rmfnl nnmdnfn at 2; =~ 0 and a vertical acumntnts a
Tom NS grapn, 1L appears TS 1S CIuY Oone Ao asympiote, at Y v, anc a venica: asympicie atl

x a2 1.7. However, if we graph the function with a wider viewing rectangle, we see that in fact there seem to be two
horizontal asymptotes: one at y =~ 0.5 and one at y =~ —0.5. So we estimate that
222 41 222 +1

Jim —— ~05 and zBr_noo 32_5 ~—05

2
(b) £(1000) ~ 0.4722 and (10,000) ~ 0.4715, so we estimate that lim Y2 11

z—00 T —

=~ 0.47.

£(—1000) ~ —0.4706 and f(—10,000) ~ —0.4713, so we estimate that lim Yoot 1 ~ _047.

z——0o0 3T — 5

VETFI _ . 2HUE
© lim 32; - . +5/’ = [sincevzZ=zforz >0] = % ~ 0.471404.

For = < 0, we have /22 = |z| = —z, so when we divide the numerator by z, with = < 0, we

222 +1= —\/% V222 +1 = —\/2+ 1/22. Therefore,
] — 2 1[/' 2
V2RIAl_ o CV2HUSE V2 o
z——c0 3x—5 z——00 3—H/x 3

60. (a) After ¢ minutes, 25¢ liters of brine with 30 g of salt per liter has been pumped into the tank, so 1t contains
(5000 + 25¢) liters of water and 25¢ - 30 = 750¢ grams of salt. Therefore, the salt concentration at time ¢ will be
750t 30t g

“®)=3000+25 20047 L
30t . 30t/t 30 : .
(b) hm C(t)= h n S50 TE - oo 300/ 1% 01 30. So the salt concentration approaches that of the brine
being pumped into the tank.

4.5



2 y=f(z)=2"+62"+92=2(x+3)> A. D=R B. z-intercepts are H. y
=3.0)

—3 and 0, y-intercept = 0 C. No symmetry D. No asymptote
E fl(z)=322+1224+9=3(z+ 1)(z+3) <0 & —-3<z<-—1,

so f 1s decreasing on (—3, —1) and increasing on (—oo, —3) and (—1, 00).
F. Local maximum value f(—3) = 0, local minimum value f(—1) = —4

G f'llz)=62x24+12=6(z+2)>0 & x> -250 fisClUon(—2 oc)
J \=7 v \ ] = . e J \ ? 7 J

and CD on (—oo, —2). IP at (—2, —2)

aX +b _ Var? +b
i

40. Let a = mjc* and b = h?c?, so the equation can be written as E = f(\) = y/a +b/\? = \/

A+ b .
im Y22 0 o A=0EaVA
A—0T A

Em Var? +b — Bm Var? +b/A _
A

A—o00 A/A

/ 2
lim %”M =Va,s0 E =va=mec? isaHA
A—00 A—00

A-3(aX? +5) 7% (2a)) — (@A’ +5)*(1) (@A +b)"2[ar? — (aX? +B)] —b
N - A2 T A2aXTtb
so f 1s decreasing on (0, oo). Using the Reciprocal Rule,

ff(A) = <0,

A% 2(aA? 4+ b)73(2a) + (aA® +5)1/2(2))
2
()\2 ax® + b)

FN)=b-

_ bA(@X? +b)7?[a? +2(aX? +b)]  b(3a)? +2b)
(v Va+3)’ 2 (aX? + )72

>0,

so f1s CU on (0, co). There are no extrema or mflection points. The graph -
shows that as \ decreases, the energy increases and as \ increases, the energy
decreases. For large wavelengths, the energy is very close to the energy at rest.

4.6



22 —1 —40z* + 1212% + 2z + 1
4 f(z) = ———

e S A Ry o ey = f=)=
0.1 0.5
P ],
i) /
-5 + + 5
x=—026 { i
0.1 -2.5

802(402° — 2432° — T2? — 3z + 3)
(4023 + =z +1)3

0.01

-5 5

=0.01

From the first graph of f, we see that there is a VA at = ~z —0.26. From the graph of f’, we estimate that f is decreasing on
(—o0, —1.73), increasing on (—1.73, —0.26), increasing on (—0.26, 1.75), and decreasing on (1.75, oo), with local
minmimum value f(—1.73) z —0.01 and local maximum value f(1.75) =2 0.01.

0.0

=0.01

20

e P

—-20

From the graphs of f”, we estimate that f is CD on (—oo, —2.45), CU on (—2.45, —0.26), CD on (—0.26, 0), CU on

(0,0.21),CD on (0.21,2.48), and CU on (2.48, o). There is an inflection point at (0, —1) and at about (—2.45, —0.01),

(0.21, —0.62), and (2.48. 0.00).

6. f(z) =tanz +5cosz = f'(z)=sec’z—5sinz = f"(z)=2sec’z tanx — 5 cosz. Since f is periodic with

period 27, and defined for all = except odd multiples of Z, we graph £ and its derivatives on [—%, 2= ].
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We estimate from the graph of /' that f is increasing on (—%,0.21), (1.07, %), (%,2.07), and (2.93, &), and decreasing

on and (2.07,2.93). Local mmnimum values: f(1.07) = 4.23, f (2.93) a~~ —5.10. Local maximum values:

£(0.21) =~ 5.10, £(2.07) ~ —4.23.

From the graph of f", we estimate that f is CU on (0.76, 3 ) and (2.38, 2*), and CD on (—%,0.76) and (%, 2.38).

£ hasTPat (0.76,4.57) and (2.38, —4.57).



sinx xrcosx —sinx

8 f(z) =28, 2r <z <o fl(a)= :
x x
” z*(cosz — zsinz —cosz) — (zcosz —sinz)(2z) —a’sinz —2zcosz + 2sinzx
f (x) = 2\2 = 3
(=?) x
1.2 0.5 0.4
£
f [ ’"/]
—2m 2 27 2w

2w 2w r J

—0.3 —0.5 =0.4

f 1s an even function with domain (—oo, 0) U (0, co). There is no y-intercept, but Iinr}’ f(z) = 1. The z-intercepts are —27,

—, 0, m, and 27 From the graph of 7', we estimate that f is decreasing on (—2, —4.49), increasing on (—4.49, 0),
decreasing on (0, 4.49), and increasing on (4.49, 2r7). Thus, f has local minima of f(+4.49) ~~ —0.22. From the graph of

£ wra actimata that £ ic an(_9-— __E QA) Tean (504 _9208\ (Man/_920R
,weestmate that f1sCDon {27 —5.04) CUcn {504 —208) CDon {208
and CD on (5.94, 27). f has IPs at approximately (+5.94, —0.06) and (+2.08, 0.42)

4.7
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z-intercepts: When ¢ > 0, 0 1s the only z-intercept. When ¢ < 0, the z-intercepts are 0 and +v/—c.

y-intercept = f(0) = 0. f is odd, so the graph is symmetric with respect to the origin. /() < 0 forz < 0 and

f"(z) > 0forz > 0,s0 f is CD on (—oo, 0) and CU on (0, co) . The origin is the only inflection point.

Ifc > 0, then f'(z) > 0 for all z, so f is increasing and has no local maximum or minimum.

If ¢ = 0, then f'(x) > 0 with equality at = = 0, so again f is increasing and has no local maximum or minimum.

Ifc < 0, then f'(z) = 3[z® — (—¢/3)] = 3(1‘+ \/T/I?) (r o \/T,’:?), so f' (x) > 0 on (—oo. —\/T/f)')

and (y/=</3.00): f' (=) < 0on (—/=¢/3.\/=</3 ). It follows that
f(=V=e/3) = —%c/=c/3 is a local maximum value and
f(v/=</3) = 3e/=¢/3 is a local minimum value. As c decreases
(toward more negative values), the local maximum and minimum move
further apart.

There 1s no absolute maximum or minimum value. The only transitional
value of ¢ corresponding to a change in character of the graph is ¢ = 0.

4

a6 a
I

L)
]
PNl



8. We need to maximize P for 7 > 0. P(I) = B

I’+1+4
P(I) = (I* +1+4)(100) —1007(27 +1) _ 100(J* +7+4—21"—1) —100(J* —4) _ —100( +2)(I —2)
(I +1+4) (I +I+4) (P +I+4) T +1+4)

P'(I) > 0for0 < I < 2and P'(I) < 0 for I > 2. Thus, P has an absolute maximum of P(2) = 20at ] = 2.

16. (a) Let the rectangle have sides = and y and area A, so A = zy or y = A/z. The problem 1s to mininize the

I - o ;o o : o4t oIy AT N o o 4 2 af 2 ah 2 B e am._ __cac _w.____ & =
PENINECIET = 4 + &Y = 4 T 4A/ T =r(\x). NOW r (r) =4 — 244/ =£\I _‘1}/I.wmemucalnmls

z = /A Since P'(z) < 0for0 < = < /A and P'(z) > 0 for = > /A, there is an absolute minimum at = = v/A.
The sides of the rectangle are /A and A/v/A = v/A, so the rectangle is a square.

(b) Let p be the perimeter and x and y the lengths of the sides, sop =2z +2y = 2y=p—2z = y=%p—x.
Theareais.—l(x)=x(%p—x)=%px—x2.N0w.-l'(x)=0 = %p—2x=0 = 2x=%p = :c=;1;-p.Since
A"(z) = —2 < 0, there is an absolute maximum for A when z = 1p by the Second Derivative Test. The sides of the

rectangle are 1p and p — 2p = 1p, so the rectangle is a square.

3 _ 2 _ .3
2 @E@) =L o F)=arlT ZY _ g ghen ® F V
v—u (v—u)?
20° =3uw?® = 2v=3u = v=3u

. of ™ 3 )
The First Denivative Test shows that this value of v gives the minimum N4 3w ‘

1
1
\
\

value of E.

46 In 1sosceles triangle AOB, Z0 = 180° — 8 — 6, s0 ZBOC = 26. The distance rowed 15

3 B
‘b
'. 4 cos 6 while the distance walked 1s the length of arc BC' = 2(26) = 46. The time taken
A c

. dcosf 48
is given by T(8) = “2’8 + =2c0s6+06,0<0<3

T'(6) = —2sinf+1=0 < sinO:% = 0=

Check the value of T" at # = T and at the endpoints of the domain of T; thatis, 6 = 0 and 6§ = 3.

T(0)=2,T(Z) =3+ Z ~226,and T(%) = Z ~ 1.57. Therefore, the minimum value of 7" is = when 6 = J; that is

>

the woman should walk all the way. Note that 7"/ (6) = —2cos 8 < 0for0 < 6 < Z,so § = T gives a maximum time.
4.8

1 3 1.2
ITLn STn 3
6 f(z) =1+ 12243 = f(2) =2 +2,50 a1 = an — 2ont 2n ¥

3 _.Nowz; =-3 =
Tp + Tn

1(—275)° 4+ 1(—2.75)2+3
«"-‘2=—3—9—23=—3—(—1)=—2.75 = 13=—2.75—3( ) + 3 ) +

~ —2.7186.
(—2.75)% + (—2.75)

100 _
12. f(z) =2 —100 = f'(x) =1002"°,50 zps1 = zpn — xﬂngl;m. We need to find approximations until they agree
Tn
to eight decimal places. z1 = 1.05 = 3 = 1.04748471, 23 &2 1.04713448, x4 ~ 1.04712855 ~ z5.

So *°/100 = 1.04712855, to eight decimal places.



From the graph, we see that there appear to be points of intersection near

z=—12andz=08. Solvmgl = 1+ 2? is the same as solving
x

@) =t-1-2"—0 f@) =i -1 > @) =g -0

1/zn —1—ad

r = —-12 =038
2~ —1.221006 o A2 0.724767
~ —1.220744 =~ x4 23 A2 0.724492 ~ x4

To six decimal places, the roots of the equation are —1.220744 and 0.724492.

3

—za—1
0.2°—z=1 & 2°—2—-1=0f(z)="—-2—-1 = f'(x)=3xz—1,sox"+1=x"—%
@ z1 =1,z =15, 23 1347826, x4 ~ 1.325200, x5 ~ 1.324718 =~ z¢

() 21 = 0.6, 22 = 179, 23 =~ 11.946802, x4 =~ 7.985520, x5 ~ 5.356909, z¢ ~~ 3.624996, x7 =~ 2.505589,
zg = 1.820129, g ~2 1.461044, 219 =2 1.339323, 211 =2 1.324913, 212 =~ 1.324718 = 213

(c) z1 = 0.57, z2 =~ —54.165455, x3 =~ —36.114293, x4 =z —24.082094, x5 ~ —16.063387, x6 ~ —10.721483,
x7 & —T7.165534, g =~ —4.801704, zo =~ —3.233425, x1¢ =~ —2.193674, 211 ~ —1.496867, z1, ~ —0.997546,
13 =2 —0.496305, x14 == —2.894162, x15 =~ —1.967962, 16 ~ —1.341355, z17 =~ —0.8T0187, 15 ~ —0.249949,
210 &2 —1.192219, 259 &~z —0.731952, 221 &2 0.355213, 222 &2 —1.753322, 223 ~ —1.189420, z24 ~ —0.729123,
295 A2 0.377844, 206 ~ —1.937872, 227 ~ —1.320350, 25 =~ —0.851919, 239 ~ —0.200959, x3¢9 ~ —1.119386,
x31 & —0.654291, x3; =2 1.547010, 233 =~ 1.360051, x34 ~2 1.325828, 235 =2 1.324719, 236 ~ 1.324718 =~ x37.

—

(d) From the figure, we see that the tangent line corresponding to =1 = 1 results
0§7\j0_;: / / 1 a sequence of approximations that converges quite quickly (x5 =~ z¢).

- ' The tangent line corresponding to z; = 0.6 is close to being horizontal, so

x5 1s quite far from the root. But the sequence still converges — just a little

more slowly (z12 = z13). Lastly, the tangent line corresponding to

a1 = 0.57 1s very nearly horizontal, z, 1s farther away from the root, and

the sequence takes more iterations to converge (x3¢ = x37).

\

=0.57
| o el
x =06

7

4.9

2 f'z)=2 = flz)=212*+C. z2+y=0 = y=—2z = m=—1LNowm=f(z) = —-1=2°
z=—1 =y =1 (from the equation of the tangent line), so (—1. 1) 1s a point on the graph of f. From f,
1=1(-1)*+C = C =2 Therefore, the functionis f(z) = J2* + 3

54. a(t) = v'(t) = cost +sint = v(t) =sint—cost+C = 5=2(0)=—-14+C = C =650
v(t) =sint —cost+6 = s(t)=—cost—sint+6t+D = 0=s50)=—-14+D = D=1s0

s(t) = —cost —sint + 6t + 1.



70. (@) For0 <t < 3wehavea(t) =60t = ov(t)=30>+C = v(0)=0=C = v(t)=30tso0
s(t)=10F8+C = s(0)=0=C = s(t) = 10t°. Note that v(3) = 270 and s(3) = 270.
For3 <t <1T:a(t)=—g=—-32ft/s = o(t)=-32(t—3)+C = v(3)=270=C =
v(t) = —32(t—3)+270 = s(t)=—16(t—3)*+270(t—3)+C = 35(3)=270=C =
s(t) = —16(¢ — 3)* + 270(t — 3) + 270. Note that v(17) = —178 and 5(17) = 914.
For 17 < ¢ < 22: The velocity increases linearly from —178 ft/s to —18 ft/s during this period, so

Av  —18—(—178) 160

s(t) =16(t — 17)* — 178(t — 17) + 914 and 5(22) = 424 ft.

Fort > 22 v(t)=—18 = s(t)=—18(t—22)+ C.Buts(22) =424=C = s(t) = —18(¢t — 22) + 424.
Therefore, until the rocket lands, we have

[30:&2 f0<t<3
—-32(t—3)+270 if3<t<17
v(e) = 32(t—17)— 178 if 1T <t<22
—18 if t >22
and
10#3 fo0<t<3

—16(t —3)* +270(t —3) +270 f 3 <t <17

s(t) =
) 16(t — 17)* — 178 (t — 17) + 914 if 17 <t < 22
—18(t —22) + 424 if t > 22
v 5
300 1500
AN /\,

0] 3 17 t
=100 300

of 3 17 22 ¢

(b) To find the maximum height, set v(¢) on3 < ¢t < 17Tequalto 0. —32(¢t —3)+270=0 = ¢1 = 11.4375 s and the
maximum height is s(t,) = —16(¢; — 3)? + 270(¢; — 3) + 270 = 1409.0625 ft.

(c) To find the time to land, set s(¢) = —18(¢t — 22) + 424 = 0. Thent — 22 = % =235 sot~456s.



