15.1

2. (a) From Table 3, £(95, 70) = 124, which means that when the actual temperature is 95°F and the relative humidity is 70%,
the perceived air temperature is approximately 124°F.

(b) Looking at the row corresponding to 7" = 90, we see that £(90, k) = 100 when h = 60.

(c) Looking at the column corresponding to k = 50, we see that (7", 50) = 88 when T" = 8§5.

(d) I = (80, k) means that T is fixed at 80 and h is allowed to vary, resulting in a fimction of & that gives the humidex values
for different relative humidities when the actual temperature is 80°F. Similarly, I = f(100, k) 1s a function of one
varnable that gives the hunudex values for different relative humidifies when the actual temperature 1s 100°F. Looking at
the rows of the table corresponding to T = 80 and T" = 100, we see that f(80, 2) increases at a relatively constant rate of
approximately 1°F per 10% relative humidity, while £{100, k) increases more quickly (at first with an average rate of
change of 5°F per 10%; relative humidity) and at an increasing rate (approximately 12°F per 10%; relative humidity for
larger values of k).
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(d) Smce In(x + y — 1) can be any real number, the range 1s F.

16. /T + /25 — 2 — y? 15 defined only when y > 0 and
25 —22 -2 >0 & 2% 44% <25 Sothe domain
fois{{;r,y]|x2+y2525__ yEO}Paha]fdiskof

radius 5.

+yt=25

24. z = cosx, a “wave.”




30. All six graphs have different traces in the planes » = 0 and y = 0, so we mvestigate these for each function.

(@) flz,y) =|z| + |y|- Thetracenx = 01s z = |y|,and n y = 0 1s z = |z|, so 1t must be graph VI.
(b) f(z,y) = |ry|- Thetraceinx =015z = 0, and in y = 0 15 =z = 0, so 1t must be graph V.

1 . . 1 . .
(r:)f(:ry]:mThelracemx:(]mz:m,aﬂdmy=0152=

close to 0 for large values of = and y, so this is graph L.

g - In addition, we can see that f is
x

(d) f(x,y) = (2> —y®)®. Thetracemx = 0is z = *, andiny = 0 1s z = *. Both graph Il and graph IV seem plausible;
notice the tracein » = 01s 0 = (z® — 3*)® = y = %=, so it must be graph TV

(@ f(x,y) = (r —y)* Thetraceinx =0is > = y°,andiny = 0 is z = 2> Both graph II and graph IV seem plausible;
notice the tracein z = 0is 0 = (x —y)®* = y =, 50 it must be graph IL

() f(z,y) =sin(|xz| + |y|)- The trace in = = 01s » = sin |y|, and in y = 0 15 = = sin |z|. In addition, notice that the
oscillating nature of the graph is characteristic of trigonometric functions. So this 1s graph I

15.2

2. (a) The outdoor temperafure as a function of longitude, latitude, and time is continuous. Small changes in longifude, latitude,
or time can produce only small changes in temperature, as the temperature doesn’t jump abruptly from one value to
another.

(b) Elevation 1s not necessarily continuous. If we think of a cliff with a sudden drop-off, a very small change in longitude or
latitude can produce a comparatively large change in elevation, without all the intermediate values being attained.
Elevation can jump from one value to another.

(c) The cost of a taxi ride is usually discontinuous. The cost normally increases in jumps, so small changes in distance traveled
or fime can produce a jump in cost. A graph of the function would show breaks in the surface.
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. fle,y,2) =

We male a table of values of Y|-03 |-02 |-01 | 0o |01 [o02 | o3

X
2ay
f(z. yJ=mf0f asetof (x,y) —03 | o0667| 0706| 0545| 0,000 |—-0545 |—0.706 | -0.667
points near the origin. —02 | o0s545| 0.667| 0667 0.000 |—0.667 [—0.667 |-0.545

=0.1 0316 ( 0444 | 0.667 | 0.000 |—0.667 [—0.444 | 0316

0 0.000 | 0.000| 0.000 0.000 | 0.000] 0.000

0.1 | —0.316 | —0.444 | —0.667 | 0.000 0.667 | 0444 0316

0.2 | —0.545 | —0.667 | —0.667 | 0.000 0.667 | 0.667 | 0.545

0.3 | —0.667 | —0.706 | —0.545 | 0.000 0.545| 0706 | 0.667

It appears from the table that the values of f(x, y) are not approaching a single value as (x, y) approaches the origin. For
verification, if we first approach (0, 0) along the x-axis, we have f(x,0) = 0, so f(x, y) — 0. But if we approach (0, 0) along
2z
z? + 222
to the origin, this limit does not exist.

the line y = =, f(z. x) = = % (x #0),50 f(z.y) — % Since f approaches different values along different paths

14+4* . _ : : : o : : :
2—:_y 1s a rational function and hence continuous on its domain, which mncludes (1, 0). In # is a continuous function for
xy
t > 0, so the composition f(z,y) = In Lty 1s continuous wherever 14y’ = 0. In particular, f is confinuous at
¥ 3 y - Iz + Iy Iz + xy - p ]

1+0° 1
1,0) and Ii Y =Ff(1,0)=In[———)=In==0.
(1.0)andso  tim, f(z-9)=7(L0) “(1=+1-0) "

z% sin” y

‘We can use the Squeeze Theorem to show that lim ———— =
(z.¥)—(0,0) @2 4+ 2y

0:

2
T

- 2
o< Z 520 Y < sin? y since

2
x
— x? 43y x? + 2y°

2.2
< 1. and sin2 0as(z 0.0). so li wz[]_
<1, sin® y — (z,y) — (0.0), {_-,:g)l_.m(up) 22 + 292

= 4+ 2% + 327 > +040

x2+y2+22 - ']henf(;r,ﬂ,ﬂ}: m = 1f01';13?é0750f(.‘]3,y__ Z:I —* las(a:__ iy, Z:} —* (D,D,D}

0+2y°+0

along the x-axis. But f(0,y,0) = 01710

=2fory #0,s0 f(z,y,z) —2as (z,y, z) — (0,0,0) along the y-axis.
Thus, the linmt doesn’t exist.

flz,y,2) = vz + y+ 2z = h(g(x,y, z)) where g(z, y, z) = = + y + =, continuous everywhere, and h(t) = /%

is continuous on its domain {¢ | ¢ > 0}. Thus f is continuous on its domain {(x, y, z) | # + v+ =z = 0}, so f is continuous
on and above the plane : = —x — y.

15.3

.z =tanxzy = 2z = (sec? zy)(y) = ysec® xy, 9z = (sec® zy)(x) = x sec® zy

e dy

a d Oz 1 Iz 1 Oz 1
yzr=In(z+z) = E(yz}=${]n(x+4):} = y$=33+z(1+_) = (y— )—=

dz 1/(z+ 2) 1

0%z = y—1/(z+ z) - ylz+2)—1°

2] 2] a9z 1 8z 1 Oz
a—y(yz]—a—y(ln(:r:+z]} = ya—y+4-1—x+z(0+—) =S (y— )—_—z,
9z —z z(z + z)

50 — = . = :
dy y—1/(z+2) 1—ylz+z)




2. fz,t) =2 = fi=2a(—ce ), fu =2°(e™ ), ferr = 2*(—Ce ) = —PxPe™ and

ftz = 2x(—ce_d}, Frzz = 2(—ce_‘“) = —2ce k.

154
4 2= flz,y) =y = felz,y)=y/z, fulz,y) =Inz, so fz(1,4) =4, fy(1,4) = 0, and an equation of the tangent
planeis z — 0 = fo(1,4)(z — 1) + fy(1,4)(y —4) = 2=4(z—1)+0(y—4)orz=4r—4
16. f(x,y) = sin(2x + 3y). The partial derivatives are f.(x.y) = 2cos(2z + 3y) and fy (=, y) = 3 cos(2z + 3y), so
f=(—3.2) =2and f,(—3,2) = 3. Both f. and f, are continnous functions, so f is differentiable at (—3, 2), and the
linearization of f at (—3.2) 1s
Lz,y) = f(—3.2) + f=(—3.2)(z + 3) + fu (—3.2)(y — 2) =0+ 2(z + 3) + 3(y — 2) = 2= + 3.

1

I—Sy aﬂdfy(ﬂ'..yj =

2. f(z,y) =In(z —3y) = folz.y)= 50 fx(7.2) = 1and £,(7,2) = —3.

3
x—3y’
Then the linear approximation of f at (7, 2) is given by

fley) = f(7.2) + f=(7.2)(= = T) + (7. 2)(y — 2)
=0+1{zx—T7)—3y—2)=x—3y—1

Thus f(6.9.2.06) == 6.9 — 3(2.06) — 1 = —0. 28. The graph shows
that our approximated value is slightly greater than the actual value.

22. From the table, f(40, 20) = 28. To estimate f,(40, 20) and f:(40, 20) we follow the procedure used mn Exercise 15.3.4

F(40 + k. 20) — f(40,20)
h

[ET 14.3.4]. Smce f»(40,20) = rl..in% , We approximate this quantity with ~ = 10 and use the

values given m the table:

_ f(50,20) — f(40,20) _ 40—28 _
- 10 DT

£(30.20) — £(40,20) 17—28
—10 ST

11

f+(40,20) 1.2,  f,(40,20) =

Averaging these values gives f, (40, 20) =z 1.15. Smmlarly, f:(40, 20) = lim £(40,20+ h) = (40.20)

h—0 h

,soweuse h =10

and h = —5:

f(40.30) — f(40.20) _31-28 _ £(40.20) F(40, 15]_—53‘(40__20] _ 25_—528 _

10 10 ’ 06

£:(40. 20) ~

Averaging these values gives f;(40, 15) ~z 0.45. The hinear approximation, then, is
Fv.t) ~ £(40,20) + £.(40,20)(v — 40) + £:(40,20)(t — 20) ~ 28 + 1.15(v — 40) + 0.45(¢ — 20)
When v = 43 and ¢ = 24, we estimate f(43, 24) =~ 28 4 1.15(43 — 40) + 0.45(24 — 20) = 33.25, so we would expect the
wave heights to be approximately 33.25 fi.
15.5
30. sinz + cosy = sinz cosy, so let F(x,y) = sinz + cosy — sinz cosy = 0. Then

dy  Fi cosz —cosz cosy _ cosx(cosy —1)

de  F,  —siny+sinzsiny siny(sinz —1)
42. Let x and y be the respective distances of car A and car B from the intersection and let = be the distance between the two cars.

Then dz /dt = —90, dy/dt = —80 and z* = z* +4* Whenz =03 andy =04, » = /025 = 0.5 and

2z (dz/dt) = 2z (dz/dt) + 2y (dy/dt) or dz/dt = 0.6(—90) + 0.8(—80) = —118 km/h.

15.6



6. f(x,y) = xsin(zy) = folz y) = xcos(xy) - y + sin(ay) = xy cos(xy) + sin(xy) and

fy(.y) = z cos(zy) - = = ” cos(zy). If u is a unit vector in the direction of & = Z, then from Equation 6

Du (2,0) = f2(2,0) cos & + f,(2,0)sin & = n+4("73) =23

8 flz.y) =1/

9 9 22
@ Vi(zy) = a_ii B—J;.i = V(=27 + (2y/2)i = —Z5i + =
() VF(1,2) = —4i+4j

(c) By Equation 9, Dy, f(1,2) = VF(1,2) -u= (—4i+4j) - 3 (2i++5j) =2 (-8+4/5) =2 (v5—2).

30. The fisherman is traveling in the direction (—80, —60). A unit vector in this direction is u = 35 (—80, —60) = {(—2 -2},
and if the depth of the lake is given by f(x, y) = 200+ 0.02z° — 0.0013°, then V f(z,y) = (0.04z, —0.003y°).
D, £(80,60) = V£(80,60) - u= (3.2, —10.8) - (—%,—2) = 3.92. Since D, f(80, 60) is positive, the depth of the lake is
mcreasing near (80, €0) m the direction toward the buoy.

36. The curve of steepest ascent is perpendicular to all o]

of the contour lines.

15.7
6 flz.y)=a"y+122° —8y = fo =3z y+24x,
fy=7"—8, fea=6zy+24, fo =32°, fi, =0.
Then f, = 0 implies = = 2, and substitution into f. = 0 gives
12y +48 =0 = y = —4. Thus, the only critical point 15 (2, —4).

D(2,—4) = (—24)(0) — 12> = —144 < 0, so (2, —4) 1s a saddle point.

44. Let x, y, z, be the positive numbers. Then = + y + z = 12 and we want to mininize
2yt =2 (12— —y) = flzy)for0 <z, y <12 f =22 4+ 2(12 — 2 — y)(—1) = 4z + 2y — 24,
fu=20+2(12—z—y)(—1) =2z +4y — 24, for =4, foy =2, fy, = 4. Then f, = 0 implies 4 4 2y = 24 or
y = 12 — 2z and substifuting info f, = 0 gives 2o +4(12 —2x) =24 = 6xr=24 = zr=4andtheny=4, 50
the only critical pomnt 15 (4,4). D(4,4) = 16 —4 > 0 and f..(4,4) =4 > 0,50 f(4,4) 15 a local mummum. f(4, 4) 1s also

the absolute minimum [compare to the values of f as z, y — 0 or 12] so thenumbersare x =y = z = 4.
50. The cost equals 5zy + 2(xz + yz) and zyz = V', s0 C(z, y) = bxy + 2V (x +y) /(ey) = Sy + 2V (=~ +y~"). Then
Cx =5y —2Va™> Cy =52 —2Vy~?, f, = 0implies y = 2V/(5z7), f, = 0 implies » = /21" = y. Thus the

dimensions of the aquarium which minimize the costarez = y = § %‘i’ units, z = ‘L’UQ{E)ZH.

15.8



10.

18.

36.

flzy,2) =222 gley.2) =2+  +22 =1 = Vf= {2ry2z2,2y1222,2zx2y2), AV g = {2z, 22y, 2A2).
Then Vf = AVg implies (1) A = 3*2® = 22 = 2%y® and X # 0, or (2) )\ = 0 and one or two (but not three) of the
coordinates are 0. If (1) then 2 = * = 2* = 1. The minimum value of f on the sphere occurs in case (2) with a value
of 0 and the maximum value is 2= which arises from all the points from (1), that is, the points (:I:&-,vlg__ ?15)

1 1 1 1 1 1
(2% % %) (Fh-5%)
flz,y) =22 +3 —de—5 = Vf=(dr—46y)=(00) = =z=1,y=0. Thus(1,0) isthe only critical point
of £, and it lies in the region z* + * < 16. On the boundary, g(x,y) = 2> + 3> =16 = AVg = (2\x,2)\y), s0
6y=2\y = ethery=00rA=3Ify=0thenx=44;1f A\ =3, thendex —4=2)z = zx=—2and
y = £2/3 Now f(1,0) = —7, f(4,0) = 11, f(—4,0) = 43, and f(—2,+2+/3) = 47. Thus the maximum value of

F(z.y) onthe disk =* + y* < 16 1s f(—2,+2+/3) = 47, and the minimum value is f(1,0) = —7.

L@ fle.y) =2 +3y,9(e.y) = VE+T=5 = Vf={2-.3)=Wg=A< L >Then

2V 24y

md3=——s0dVz=A=6/F = z=2vz Withvz+7=5wehave Vz+2Vz=5 =

A
T2z 2./y
Vz=3 = & =09 Substitutinginto \/y = 2V gives \/y = 2 or y — 4. Thus the only possible extreme value

2

subject to the constraint is f(9, 4) = 30. (The question remains whether this is indeed the maximum of f.)
(b) (25, 0) = 50 which 1s larger than the result of part (a).

© fiey = 30\:\; We can see from the level curves of f that the maximum
fix,y) = ?c\“ i0,25)

flx.y) = 60~ occurs at the left endpomt (0, 25) of the constraint curve g.
fix,y) =350~ The maximum value is f(0,25) = 75.
fie, y) =40~ |
filx, ¥) =30\\
e y) =20~
(9. 4)

(25.0)
AN
\.f';+ \f;= 5

(d) Here Vg does not exust if z = 0 or y = 0, so the method will not locate any associated points. Also, the method of

Lagrange multipliers identifies points where the level curves of f share a common tangent line with the constraint curve g.
This normally does not occur at an endpoint, although an absolute maximum or minimum may occur there.

(e) Here f(9, 4) 1s the absolute minimum of f subject to g.

flr,y,z) =2yz, glz,y.z) =y +yz+22=32 = Vf=(yz,zz zy) =AVg=(AMy+2), Mz+z), \M(z+v))-
Then AMy+z)=yz ), Alr+z)==zz (2), and Mz+y) ==y (3). And (1) nunus (2) implies Ay — =) = z(y — )
sox =yor A=z If A\ = z, then (1) imphes z(y + 2) = y= or = = 0 which is false. Thus & = y. Similarly (2) minus (3)

implies A\(z —y) =x(z —y)soy =zor A== Asabove, A\ # x sor=y=zand 32" =320rr =y =2 = = cm

Sl



