12.1

2. (a) From Definition 1, a convergent sequence is a sequence for which lim a, exists. Examples {1/n}, {1/2"}

n—oo

(b) A divergent sequence is a sequence for which lim ., does not exist. Examples: {n}, {sinn}

n—oo

8. a1 =4 api1 = n Each term 15 defined mn terms of the preceding term.
Ay —
a1 4 4 az 4/3  4/3 .
= = =— a3 = = = —_— =4 Siceaz = we can see that the terms of the ce
“BTa—1 1-1 3% T a1 T3 e I

will alternately equal 4 and 4,3, so the sequence 1s {4, 3.4, 3 4

T3 J"'}'

28. an =cos(2/n). Asn — o0o0,2/n — 0,50 cos(2/n) — cos0 = 1 because cos 1s continuous. Converges

n+1
T

36. a, =ln[n+1}—lnn=]n( ) =]n(1—|—l) — In(1) = 0as n — oo because In 1s confinuous. Converges
n

50. '(“_ - From the graph, it appears that the sequence converges to 5.
: 5= Vo< U3+ < U5 5T = Y2
e teeeeereeeeenns 3.5 s Basn— oo [,}Ln;21f“=2u=]]
Hence, a,, — 5 by the Squeeze Theorem.
o~ J

Alternate solution: Lety = (3% 4 5%)"/%. Then

In (3° + 5% 3*In3+5%1In5 I In3+1nb
lim Iny = lim 28" +57) 1 ndto g imman%ﬁns,
50 lim y =e'™® =5, and so { {/3= + 5= | converges fo 5.
2n—3 . : ] 20 —3
62. a, = T defines an increasing sequence since for f(z) = Tl
; Jxr+4)(2) — (2= —3)(3 17 . )
f(:_r)=( r :}((3:)6_'_51}? )(3) = EEFTIE :>0.Thesequenc915bnundedsmc9an2a1=—$ forn > 1,
2n—3 2n 2
da, < < — = = fi =1
¢ an = In In 3 orm =
12.2
4.
20
mn En ' ot
1 0.50000 )
2 1.90000 .
3 3.60000 -
{sn}
4 5.42353 .
5 7.30814 :
. {an}
6 | 922706 I L L L S B
~— < 11
7 | 11.16706 0
8 | 13.12001 e 921 o
9 | 15.08432 The series nz=:1 =TT diverges, since 1ts terms do not approach 0.
10 | 17.05462




14. 1+ 0.4+ 0.16 + 0.064 + - - - is a geometric series with ratio r = 0.4 = £. Since || = 2 < 1, the series converges to

(I 73/10°  73/100 73
102 " 10% ~1—1/10*  99/100 99

42, 073 =

58. (a) Initially, the ball falls a distance H, then rebounds a distance r H_ falls r H, rebounds »* H  falls »* H etc. The total

distance it travels is

H+2rH+ 2 H+2r"H+-- =H(1+2r + 27 + 27+ ) = H[1+2r(1+r+ 77 +---)]

a5 (1) e

From e 3 m Section 2.1, we ta =gt~ meters 1n ¢ seconds, where g 15 taty
(b) Example 3 1 i know tha ba]lﬁllsé2 i ds, where ¢ 1s the gravitational

acceleration. Thus, a ball falls ~ meters in ¢t = 4/2h /g seconds. The total travel time in seconds 1s

”' +2J—r+2¢2Hz+21ﬁ£ra
g

=E[l+2\ﬁ+2ﬁ2+2‘ﬁ3+r--}
=\/¥(1+2ﬁ[1+ﬁ+ﬁ’+---n
VT e (2R

(c) It will help to make a chart of the time for each descent and each rebound of the ball, together with the velocity just before
and just after each bounce. Recall that the time in seconds needed to fall 4 meters is /2k/g. The ball hits the ground with
velocity —g +/2k/g = —+/2hg (taking the upward direction to be positive) and rebounds with velocity
kg \/2kh]g = k /2hg, taking time k \/2h g to reach the top of its bounce, where its velocity is 0. At that point,
its height is £%h_ All these results follow from the formmulas for vertical motion with gravitational acceleration —g-

%=—g = u=%=vu—g¢ = y=y0+vuf—%gt2_
number of time of speed before speed after time of peak
descent descent bounce bounce ascent height
1 2H/g 2Hg k+/2ZHg k+\/2H/g K H
2 V2k*H/ g V/2k2Hg k+/2k?2Hg | k+/2k2H/g k*H
3 V2k*H/g \/2k*Hg k+/2k*Hg | k+/2k*H/g KOH

The total travel time 1n seconds 1s

F+kf+kf+sz+azf f(1+2k+2k2+2k3—|—}
=\/_[—|—2k(1+k+k2 -]
VE (k)| - B

Another method: We could use part (b). Af the top of the bounce, the height is k*h = rk, so V't = k and the result follows
from part (b).



64.

18.

28.

12.

|CD| = bsin®, |DE| = |CD|sin8 = bsin’ 8, |EF| = |DE|sin@ = bsin® 8, . _ Therefore,

= in & : . . . ;
|CD|+ |DE|+ |[EF|+ |FG|+---=b 3" sin“ﬁ':b(%) since this 1s a geometric series with » = sin @
nel — sin
and [sinf| < 1 [because0 < 6 < Z].
123
. From the first figure, we see that ¥ y = flx) ¥
. y =1l
ff flz)dx < ; ;. From the second figure,
1]
we see that s [P dz. Thus, we =
,—;a ‘ﬁl f(:t‘) * a | ay | as | ay | as ;| 3| ay | ds | dg
& 5 0 1 2 3 4 5 g=x 0 1 2 3 4 5 6°
have %" a; {fff{r]dz{ 3 as
i=2 i=1
124
?13 3 3
1}—=—fora]1n>2502 dwergesbycompansonmthE , which diverges because it is a p-series
— n=2 T
with p = 1 < 1 (the harmonic series).
Use the Limit Comparison Test with a L andbe == m 2% = lim —2— = lim — = == >0
" T 2i+3 T Mmoo by, now2nt3 n-e2+(3/n) 2
Since the harmonic series Z dwerges,sodms E !
n—=1 2?’1+3
n® —5n n® — 5n? 1—5/n
Ifap=———— and b, ——theﬂl 2 him —— 2 hm—— " 10
“ n4+n+1 e by mnooeni4ntl n—-cc]—l—l;’nz—l—ljn"" ’
= |
so Y ———— diverges by the Limit Companison Test with the divergent harmonic series 3~ —.
n=1 ?13+?’1+1 n=1 1

(Note that a,, > 0 forn > 6.)

1/n oo Gl/n oo
= }lfarallngl,soz = divergesbycmllpanson“rithiheharmonicselieszl_
n e n—_i N n=1 1
10 sin®n sin1  sin®2 sin®3 sin® 10 511'12 1 1 :
= ~ 0.83253. N < —, so the error
P 1 T3 27 T 000 ow =% ®
=1 1] 1,1 1
o =T < —dr = lim |—=— =1 —— +=— | = =— = 0.005.
=S j:u = t—*m|: 22 |, giﬂ( T 200) 200
125
1/n 1/= B 1/’:(_1}.' 2] _ /= -1 _ 1}’:1:(1_'_ ]
e - . - [} a-e € e e x )
by = - }Ufurnzl_{bn}lsdecreasmgsmce( - ): ’IZ = g < 0 for
llfn,
x > 0. Also, lim b, = Osince lim e'/™ = 1. Thus, the series Z( =1 converges by the Alternating Series Test.
n—oo n—oo n
n=1
The series Z =1)" satisfies (1) of the Alternating Series Test because ! < ! and (i1) 1i L 0, so
' 2 nsn 08 (n+1)5%H ~ nb® ntembn
. 1 .
the series 1s convergent. Now by = 5= 0.0004 > 0.0001 and b5 = T 0.000064 = 0.0001, so by the Alternating

Series Estimation Theorem, n = 4. (That 15, since the 5th term 15 less than the desired error, we need to add the first 4 terms to
get the sum to the desired accuracy)



~ ({1/n”} 15 decreasing) and lim L? = 0, so the series converges by the Alternating Series Test.

1
R2.fp >0, ———= <
p= ( +1:}p_ n—oo 1

n—1 n—1
Ip<0, lim ¢Mthﬂ so the series diverges by the Test for Divergence. Thus, Z( 1}

n—oo 1P n=1

converges < p > 0.

12.6
z n 2
2. Thesenesz:—llaspomtwetermsand'}l.n;a:: =n!i-m [(?12“;4_11} i__z} =r}in§c(1+;) .%:%(1,5«0&@

series is absolutely convergent by the Ratio Test.

7 oo (==
12. Slz:m < 4%,50 3 51114?: converges by comparison with the convergent geometric series % [|r| = % < l]_
n=1 n—=1
22 sindn .
Thus, > T s absolutely convergent.
n=1
n 4(n+1)]![1103 + 26 390(n + 1 )* 396*"
. @ Gim | 2| i |4 D[1103 4263000 +1)] ()
noo | am || mese [(n+ 1)1]*396%(n+D (4n)! (1103 + 26,390n)
o @nt4(n+3)(4n +2)(4n +1)(26390n +27403) 40 1 <1
it (n + 1)* 306* (26,3901 + 1103) T 396%  99F 7
. .2 (4n)! (1103 4 26,390n)
so by the Ratio Test, the series éﬂ (T)? 396 COTVerges.

o5 (4n)! n
(b)%_ 24/2 = (4n)!(1103 + 26,390n)

T 9801 ,= (n!)* 3064

With the first term (n = 0), ; 3%[/]: 1]]03 = =2 3.141 592 73, so we get € cormrect decimal places of , which is

3.141 592653 589 793 238 to 18 decimal places.

!
1o 2v2 (1103 4'(1103+25=390}) — 3141502653580 793878, so

‘With the second term (n = 1), - ~ G301 T 2061
we pet 15 correct decimal places of .
12.7
2 Gim 3ffan]= lim pf|C2ED o 2Rl o (241 —Ualsotheseneszw
n—oo n—oo nin n—oo n? n—oo \ 1 n? n—=1 n2n
converges by the Root Test.
12. The series Z sin n diverges by the Test for Divergence since lim sinn does not exist.
n=1 n—oo
. |arsr| _ k+6 5% | 1. k+6 1 +5
20. kh_{& il B b= 5k]i. S5 3 > converges by the Ratio Test.
2 T o 2 2
. Gn11 . Gpal ; n +2n+2 5 . 1+2/n+2/n° 1 1 = ont 41
26. 1 ——| = lim —— = lim . =1 s s =221
ni-n;a Cn n—oo (g n—om( fn+1 n?+1 nl—H;c 1+1/n? 5 5 = ,5021 an
converges by the Ratio Test.

12.8



2. (a) Given the power series 3"~ | cn(z — a)", the radius of convergence is:
(1) 0 if the series converges only when x = a
(11) oo if the series converges for all x, or
(111) a positive number R such that the senes converges if | — «| < B and diverges if |z — a| > R.
In most cases, R can be found by using the Ratio Test.

(b) The mterval of convergence of a power series 1s the interval that consists of all values of = for which the series converges.
Corresponding to the cases in part (a), the mterval of convergence 1s: (1) the single point {a}, (11) all real numbers; that 1s,
the real number line (—oo, oo), or (111) an interval with endpoints « — R and « + R which can contain neither, either, or
both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the mterval of

convergence.
10. If an = 10 31- , then

T
. |ans 1ottt 5F 10z n® 10 |z| 10 |z|

lim = : - — | = L — =10z|

n—oo Oy n—oo (n + 1]3 107 zm n—oo (?'.'. + ]]3 n—oo (]_ + ];"ﬂ:}a 13
. =N (1l i 1 . ) 1

By the Ratio Test, the series né:l — converges when 10 x| < 1 < |z| < 55, so the radms of convergence is R = 5.

When = = —% , the series converges by the Alternating Series Test; when x = %, the series converges because it 15 a p-series

1 1

with p = 3 > 1. Thus, the interval of convergenceis I = [—15., 75]-
2. n 2 n n
n T nox n¥
.24. m o = = B
TS L6 (2n) 2l (m—D
- 1) z" 2%(n—1)! 1 _ _
ﬂll'nﬂl‘c aa:1 = nli.néu (n _;n_zllzll . fjﬂ“ ) = nlinc]:;j % % = 0. Thus, by the Ratio Test, the series converges for

all real = and we have R = oo and I = (—o0, o0).
34. The partial sums of the series > | =™ definitely do not converge

to f(z) =1/(1 —z) forx > 1, since f 15 undefined at = = 1 and
negative on (1, oo}, while all the partial sums are positive on this
mterval. The partial sums also fail to converge to f forx < —1,
since 0 < f(z) < 1 on this interval, while the partial sums are

etther larger than 1 or less than 0. The partial sums seem to

converge to f on (—1, 1). This graphical evidence is consistent

with what we know about geometric series: convergence for
|| < 1, divergence for |x| = 1 (see Examples 1 and 5 in Section 11.2).
12.9



9 2 1 oo 2y TE 2n+1
2. f(z)=In(a"+4) = fl=)= = f(m)%z (_%) E 0 G

n=>0
2n+1 x2n+2 o n x2n.+‘3
o 2) = | ECV" Grmrde =+ B0 gy~ B OV

[£(0) = In4, 50 C = In4]. The series converges when |—z*/4| <1 & 27 <4 & |z] <2,s0R=21

= 1
x =22 then f(x) =Ind + 3 (—1)" nE T which converges by the Alternating Series Test. The partial sums
n=>0
IZ £4 1'5 ]
are 5o = Ind [~=1.39], 5; =Su+T,Sz =351 — ﬁ;53:52+ﬁ134 =53 — ——=

2.5

1

As n increases, sn(x) approximates f better on the interval of convergence, which is [—2, 2].

28. From Example 6, we know In(1 — z) = — f %,50
n=1
o ()" m
ln(l—i—x“] = ln[l - (_I4}] = _nE=:1 n - n£=:1{_1} - n =

£4“+1

fln(] +z)dz = 21(_ 2 e —c+ z( 1)~+1 ey S Thus,

0.4 5 9 13 17 0.4 5 9 13 17
_ 1 _|= T x x _ (04)"  (04) (0.4)™~ (04)
I_/,,u l“(lﬂ)dx_[s 18 30 68 . 5 B T 39 68

The series is alternating, so if we use the first three terms, the error is at most (0.4)'7/68 = 2.5 x 1072,
So I == (0.4)%/5 — (0.4)°/18 + (0.9)*%/39 = 0.002034 to six decimal places.

12.10
2. (a) Using Equation 6, a power series expansion of f at 1 must have the form £(1) + f'(1)(z — 1) + - - - . Comparing to the

gwven series, 1 6 — 0.8(z — 1) + - - -, we must have f'(1) = —0.8. But from the graph, #'(1) 1s positive. Hence, the given
series is not the Taylor series of f centered at 1.

(b) A power series expansion of f at 2 must have the form £(2) + £/(2)(z — 2) + 3 f"(2)(z — 2)* + - - - . Comparing to the
given series, 2.8 + 0.5(z — 2) + 1.5(z —2)> — 0.1(z — 2)° + - - -, we must have 2 f(2) = 1.5; that 1s, /" (2) is positive.
But from the graph, f is concave downward near = = 2, so f"(2) must be negative. Hence, the given series is not the
Taylor senies of f centered at 2.

3 T o f(a) = cos(nz/2) = 50 (1) E’;z}}l — 3 () 225(;@ 2™ R = co.

n=>0 (2?’.‘.} ! n=>0 n=




5. 1i 1—cosz _ 5 1—(1—%I2+$x4—%:€6+~-}
eItz —er o0 _ T 2.1l 3 1 41150 1.0
® rt—e ==01+z—(1+z+g2°+ 52°+ g2t + 528+ 52 +--)

. _ _ _ ..
T
2, 1 4
N T s T EETTI
S F e de e g 10
since power series are continuous functions.
60. secx = L (© T 11 " ;
cCOS T 1—ga? ot —---
1_2 b _4
1+511’.‘ +ﬁ:a: + -
1—%x2+%x4—— 1
1—%9:24-%3:4—
1.2 _ 1 4
1z — Lot ..
1ot ety
%x“-i—--
%:ﬂ:‘l-l—--
From the long division above, secx = 1 + 22" + S +---.
12.11
2. (a)
n () ™) Tn(x)
0 z 1 1
1 —x? — l—(z—1)=2—=x
2 223 2 l—(z—1D4+(z—1)=2>—-32+3
3 —6z—* —6 l—(e—1)+(z—1)° —(z—1° =27 +42® — 6z + 4
4
4 h 3
I‘ Tz
‘\
Ty
\v!’
—0.5 3
\I
\ s
=1 r3 T
()
x f To VE T T3
0.9 1.1 1 11 1.11 1.111
1.3 0.7692 1 0.7 0.79 0.763

(c) As n increases, Tr.(x) 15 a good approximation to f(x) on a larger and larger interval.



28. cosxz =1 —%rz-l—%x‘* — %r5+--—_BytheAllemaﬁﬂgSEﬁes 0-3(4 \
v =cosx + 0.005
Estimation Theorem, the error 1s less than '—é:ﬂﬁ < 0005 =
x® < 720(0.005) < |z| < (3.6)'/® =2 1.238. The curves [ 2
l==4+=
y=1— 212"+ Lo* and y = cosx + 0,005 intersect at = ~ 1244, P
so the graph confirms our estimate. Since both the cosine function ” C cosx — 0.005 y
1. L 1.26
0.32

and the given approximation are even functions, we need to check
the estimate only for = > 0. Thus, the desired range of values for = 1s —1.238 < « < 1.238.



