10.1
2. y=sinz cosx —cosx = 1 =sinz(—sinz)+ cosx (cosz) — (—sinx) = cos’ x — sin® x + sina.
LHS =y’ + (tanz)y = cos® = — sin® = + sinx + (tanz)(sinx cos z — cos z)

2 . 2 - .2 - 2
=cos x —sin"x+sinz +sin” £ —sinx = cos” x = RHS

3

s0 y 15 a solution of the differential equation. Also, (0) = sin0 cos0 —cos0 = 0-1 — 1 = —1, so the mnrtal condition 1s
satisfied.

Inz+C

, x-(1/z)—(lnz+C l—-lnz—0C
B.(a)szz}-yz (1/=) = ( J: .
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]—lnr—C+x_1nx+C
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LHS = 2%y + zy = 27 -

a a

=1—Inz—C+Inxz+ C =1=RHS, soy isa solution of the differential equation.

(b) 3 A few notes about the graph of y = (Inz 4+ C) /-
{1.2)

b b

(1) There is a vertical asymptote of x = 0.
(2) There is a horizontal asymptote of y = 0.

2,1 =In2

aooen
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LL=
n

(3) y=0 = lha+C0=0 = z=¢°
so there is an z-intercept at e <.

4 3y =0 = lhae=1-C = z=¢"°
1-¢

3

§

]

50 there 15 a local maximum at x = e

©u(1)=2 = 2:ln].—|-{:* N Inz+2
T

1 2 = (, so the solution is y = [shown in part (b)].

m2+C o 24m24C = C=2—In2 sothesolutionisy = 2E2—n2

@y)=1 = 1==2

[shown in part (b)].

14. (a) The coffee cools most quickly as soon as 1t is removed from the heat source. The rate of cooling decreases toward 0 since
the coffee approaches room temperature.

() % = k(y — R), where k is a proportionality constant, y is the (© ’
temperature of the coffee, and R is the room temperature. The initial
condition is y(0) = 95°C. The answer and the model support each
other because as y approaches R, dy/dt approaches 0, so the model 20
seems appropriate. 0 !

10.2

6. v =sinzsiny =0onthelines x =0andy = 0,andy’ > 0for0 < = < 7, 0 < y < 7. Direction field II satisfies these

conditions.



¥ Note that when f(y) = 0 on the graph in the text, we have y' = f(y) = 0; so we
LI U B I B O I B
iiiiiiiiiiiiii get honizontal segments at y = +1, 2. We get segments with negative slopes only
TIIIIIIFIR for 1 < |y| < 2. All other segments have positive slope. For the limiting behavior
J’-D’l'ffd’ja"f"//}'f
17777794779777% of solutions:
e L : _
zzzzzz2}z222722 . Ify(D})Q,then lim y=ooand lim y=2.
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<7333 5777777 e If1 < y(0) < 2, then llm y=1and _.]J_t_nmy—Q
RN ARER R
T o If— lay([]}althenhmy—land lim y=-—1.
e If —2 < y(0) < —1, then limy=—2and lim y=—1.
. Ify<—2thenh.my——2andth.m y=—
10.3
2
.—y=ycosz,y(0}=1. (1+¢%)dy =yeoszdr = 1+ydy=cos:&:d:€ = f l+y dy=fcc-s:t:d:t: =
dx 1442 y y

Inly| +1y* =sinz+C. y(0)=1 = Inl+1=sin0+C = C=21soln|yl+iy’=sinz+1i

‘We cannot solve explicitly for .
d d. dx
Iyr_'_y:yz = xd_y:yZ_y iy ;ra’yz(yg—y}dx iy 2y =
T v —y x

[s-[% wron = f(%—l)dyz E L mly—1l—lnly —Injs+C =
x y— x

y(y—1) y

-1 _1 _1 .
ln'—?’I 'zln(ec|x|) = ‘y_‘=ﬂc|$| = y—=f{xjwheref{=:|:ec = 1l—=-=FKr =
l:l—Kz = y=1 II’ . [The excluded cases, y = 0 and y = 1, are ruled out by the initial condition y(1) = —1.]
y — K=z

]' - -

Nowy(l)=—-1 = —l=g—% = I-K=-1 = K=2s50y=7—.
. The curves * = kz* form a family of power functions. Ihfferentlahngglves d (y)_—(.k:r:} = 2yy =3k =

3kx®  3(y?/2%)® 3 _
y = 25 _ (v fzi Jx =2—i,theslﬂpeofthetangenthneal(x,y}nnoneofthecu:wes_ Thus, the orthogonal

. ; . 2 d 2
trajectories must satisfy y’:—g—; o= d_z:_S_z 6
Jydy = 2xrdr < f3ydy=f—2xd:c o %y2=—E2+C1 = ) .

3y = 20 +C> = 22" + 3y = C. This is a family of ellipses.

=6
dT ds _ d’T d°T | 2dT ! ds | 2
.IfS—E, en — = ——. . The differential equation 2—|—;E—Dcanbemttenasa+;s—0_'['hus,
?z_zs = d—:z——dr = f—ds_f——d:r = In|S| = —2In|r|+ C. Assuming S = dT /dr > 0
I r
. —2lnr+c mr? o _ -2 15, dTl’ 1
andr > 0, wehave S = ¢ == e k [k=e"] = S——.fc = d_=_'3k =
T T

a’T:izkdr = /dT:fizkdr = T{r}=—£+_4_
r b r

T(1)=15 = 15=—k+A@andT(2)=25 = 25=—-1k+4(Q)
Now solveforkand A: —2(2)+(1) = —-35=-4,s0 A=35andk =20,and T(r) = —20/r + 35.



10.4

4. (a) 'muP (yeast cells) From the graph, we estimate the carrying capacity K for the yeast
- population to be 630.
100 .t )
0 510 15 ¢t
(hours)
. L. : .1 dP 1 39-18 T =
An estimate of the initial relatr tels —— = — - = — = 0.583.
(b) An es 20 iitial rela ve‘ggru:lwtl]rae15P“Eﬂ 5 3 0 T
An ential model is P(t) = 18e"*/'2. A logistic model is P(t) = 650 where 4 = £20=18 _ 331
(c) An expon: model is P(t) = 18e . A logistic 1s (}_m, ere A = 57— = .
(d) - . - - TOO P (yeast cells)
Time in | Observed | Exponential | Logistic =
Hours | Values Model Model o
0 13 18 18 .
2 39 58 59 .
4 80 186 149 .
6 171 506 | 322 - v
8 336 1914 505 (hours)
10 500 6147 €14 . - -
The exponential model is a poor fit for anything beyond the
12 597 19,739 658 o _
14 640 63,389 673 first two observed values. The logistic model varies more for
16 664 203,558 678 the middle values than it does for the values at either end, but
18 672 653,679 679 provides a good general fit, as shown in the figure.
€650
(e) P(T) = == 420 yeast cells

1+ %8_7(7112)

12. Following the hint, we choose ¢ = 0 to correspond to 1955 and subtract
29,000 from each of the population fipures. We then use a calculator to
obtain the models and add 29,000 to get the exponential function
Px(t) = 1094(1.0668)* + 29,000 and the logistic function

11,103.3 _
Pr(t)= T 12 340-0 1971 <+ 20,000. Pr 1s a reasonably accurate
model, while P is not, since an exponential model would only be used 1955 rg::: ) 1995
for the first few data points.

10.5

6.y =z+5y = y —Sy==2 I(z)=elF®de — J(=B)d= _ —5= Nmitiplying the differential equation by I(x)
gives e 2%y —Be Ty =ae ™ = (ey) =xe” = e Fy= fxe_ar dxr = —%xe_az - %3_5: +C

1 b
[by parts] = y=—%I—E+Ce .

2. 2y +2) =122 andu =9y = 2u +2u=122" = u‘-l—%u = 12z
2
I(x) = e [(2/=)az _ g2mi=] _ (e'nl"'l) — |z|® = 2. Multiplying the last differential equation by = gives

gl +2zu =122 = (2Pu) =122 = 2Pu= [122"dz=3*+C = u=3"+C/z* =

Y =322 +C/x? = y=2"-Clz+D.



dal . . . . ; . . . .
28. (a) p + 207 = 40sin 60¢, so the integrating factor is e*°*. Multiplying the differential equation by the integrating factor
: 20t dl 20t 20t _- 208 Fyr 208 -
gives e™ +207e™™ = 40" sin60t = (e”T) =40e”" sin60f =
I(t) = e 2% [ [ 406" sin 60t dt + C| = e [40e"* (55 ) (205in 60t — 60 cos 60¢)] + C'e 2"
4000

_ sin 60t — 3 cos 60t 1 Ce—20
5

sin 60t — 3 cos 60t + Se 2%

Butl=1I(0)=—-2+C,s0I(t) = E

in6 —3cos€ + 8e 2
®) I(0.1) = — ‘"“;S t 8 . _042A © 13

=07

34. Let y(¢) denote the amount of chlorine in the tank at time ¢ (in seconds). y(0) = (0.05 g/L) (400 L) = 20 g. The amount of
liquid in the tank at time ¢ 15 (400 — 6¢) L since 4 L of water enters the tank each second and 10 L of liquid leaves the tank

each second. Thus, the concentration of chlorine at time ¢ 15 ——— y(t) £ Chlorine doesn’t enter the tank, but it leaves at a rate

2006t L
uit) g Li_ 10y(t) g_ Sult) g dy _ dy _—5dt_ dt
of [400—& L] [10 S|~ T0-6t s To0—g3t 5 Lnerefore Ty = 200 — 3t 200 — 3¢

Iny = 21n(200 — 3t) + C = y=exp(2In(200 — 3¢) + C) = (200 — 3¢)*>/% Now 20 = y(0) = e - 200°/° =

(200 — 3t)°/3
2005/3

20
Loy
e = W,Sﬁy(t} =20

=20(1 — 0.015¢)®/% g for 0 < ¢ < 662 s, at which time the tank is empty.
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