2. $y = \sin x \cos x - \cos x \implies y' = \sin x (-\sin x) + \cos x (\cos x) - (-\sin x) = \cos^2 x - \sin^2 x + \sin x$

LHS =
$$y' + (\tan x)y = \cos^2 x - \sin^2 x + \sin x + (\tan x)(\sin x \cos x - \cos x)$$

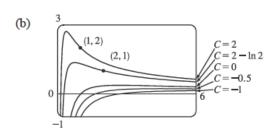
= $\cos^2 x - \sin^2 x + \sin x + \sin^2 x - \sin x = \cos^2 x$ = RHS,

so y is a solution of the differential equation. Also, $y(0) = \sin 0 \cos 0 - \cos 0 = 0 \cdot 1 - 1 = -1$, so the initial condition is satisfied

6. (a)
$$y = \frac{\ln x + C}{x}$$
 \Rightarrow $y' = \frac{x \cdot (1/x) - (\ln x + C)}{x^2} = \frac{1 - \ln x - C}{x^2}$.

LHS =
$$x^2y' + xy = x^2 \cdot \frac{1 - \ln x - C}{x^2} + x \cdot \frac{\ln x + C}{x}$$

 $= 1 - \ln x - C + \ln x + C = 1 = \text{RHS}$, so y is a solution of the differential equation.



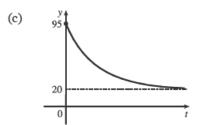
A few notes about the graph of $y = (\ln x + C)/x$:

- (1) There is a vertical asymptote of x = 0.
- C = 2 $C = 2 \ln 2$ C = 0 C = -0.5 C = -1(2) There is a horizontal asymptote of y = 0. $(3) y = 0 \Rightarrow \ln x + C = 0 \Rightarrow x = e$ (3) $y = 0 \Rightarrow \ln x + C = 0 \Rightarrow x = e^{-C}$, so there is an x-intercept at e^{-C} .
 - (4) $y' = 0 \implies \ln x = 1 C \implies x = e^{1-C}$, so there is a local maximum at $x = e^{1-C}$.

(c)
$$y(1) = 2 \implies 2 = \frac{\ln 1 + C}{1} \implies 2 = C$$
, so the solution is $y = \frac{\ln x + 2}{x}$ [shown in part (b)].

(d)
$$y(2) = 1 \implies 1 = \frac{\ln 2 + C}{2} \implies 2 + \ln 2 + C \implies C = 2 - \ln 2$$
, so the solution is $y = \frac{\ln x + 2 - \ln 2}{x}$ [shown in part (b)].

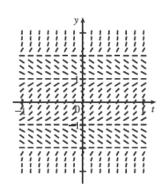
- 14. (a) The coffee cools most quickly as soon as it is removed from the heat source. The rate of cooling decreases toward 0 since the coffee approaches room temperature.
 - (b) $\frac{dy}{dt} = k(y R)$, where k is a proportionality constant, y is the temperature of the coffee, and R is the room temperature. The initial condition is y(0) = 95°C. The answer and the model support each other because as y approaches R, dy/dt approaches 0, so the model seems appropriate.



10.2

6. $y' = \sin x \sin y = 0$ on the lines x = 0 and y = 0, and y' > 0 for $0 < x < \pi$, $0 < y < \pi$. Direction field II satisfies these conditions.

18.



Note that when f(y)=0 on the graph in the text, we have y'=f(y)=0; so we get horizontal segments at $y=\pm 1, \pm 2$. We get segments with negative slopes only for 1<|y|<2. All other segments have positive slope. For the limiting behavior of solutions:

- If y(0) > 2, then $\lim_{t \to \infty} y = \infty$ and $\lim_{t \to -\infty} y = 2$.
- If 1 < y(0) < 2, then $\lim_{t \to \infty} y = 1$ and $\lim_{t \to -\infty} y = 2$.
- If -1 < y(0) < 1, then $\lim_{t \to 0} y = 1$ and $\lim_{t \to 0} y = -1$.
- If -2 < y(0) < -1, then $\lim_{t \to \infty} y = -2$ and $\lim_{t \to -\infty} y = -1$.
- If y<-2, then $\lim_{t\to\infty}y=-2$ and $\lim_{t\to-\infty}y=-\infty$

10.3

$$\mathbf{12.} \ \frac{dy}{dx} = \frac{y \cos x}{1 + y^2}, \ y(0) = 1. \ (1 + y^2) \, dy = y \cos x \, dx \quad \Rightarrow \quad \frac{1 + y^2}{y} \, dy = \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \cos x \, dx \quad \Rightarrow \quad \int \left(\frac{1}{y} + y\right) \, dy = \int \left(\frac{1}{y} +$$

 $\ln|y| + \frac{1}{2}y^2 = \sin x + C. \quad y(0) = 1 \quad \Rightarrow \quad \ln 1 + \frac{1}{2} = \sin 0 + C \quad \Rightarrow \quad C = \frac{1}{2}, \text{ so } \ln|y| + \frac{1}{2}y^2 = \sin x + \frac{1}{2}.$

We cannot solve explicitly for y.

16.
$$xy' + y = y^2$$
 \Rightarrow $x \frac{dy}{dx} = y^2 - y$ \Rightarrow $x dy = (y^2 - y) dx$ \Rightarrow $\frac{dy}{y^2 - y} = \frac{dx}{x}$ \Rightarrow

$$\int \frac{dy}{y(y-1)} = \int \frac{dx}{x} \quad [y \neq 0, 1] \quad \Rightarrow \quad \int \left(\frac{1}{y-1} - \frac{1}{y}\right) dy = \int \frac{dx}{x} \quad \Rightarrow \quad \ln|y-1| - \ln|y| = \ln|x| + C \quad \Rightarrow \quad \ln|y-1| - \ln|y| = \ln|x| + C$$

$$\ln \left| \frac{y-1}{y} \right| = \ln \left(e^C \left| x \right| \right) \quad \Rightarrow \quad \left| \frac{y-1}{y} \right| = e^C \left| x \right| \quad \Rightarrow \quad \frac{y-1}{y} = Kx, \text{ where } K = \pm e^C \quad \Rightarrow \quad 1 - \frac{1}{y} = Kx \quad \Rightarrow \quad 1 - \frac{1}{y$$

 $\frac{1}{y} = 1 - Kx \implies y = \frac{1}{1 - Kx}$. [The excluded cases, y = 0 and y = 1, are ruled out by the initial condition y(1) = -1.]

Now
$$y(1) = -1 \implies -1 = \frac{1}{1 - K} \implies 1 - K = -1 \implies K = 2$$
, so $y = \frac{1}{1 - 2x}$.

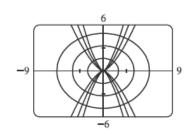
30. The curves $y^2 = kx^3$ form a family of power functions. Differentiating gives $\frac{d}{dx}(y^2) = \frac{d}{dx}(kx^3) \Rightarrow 2yy' = 3kx^2 \Rightarrow$

 $y' = \frac{3kx^2}{2u} = \frac{3(y^2/x^3)x^2}{2u} = \frac{3y}{2x}$, the slope of the tangent line at (x, y) on one of the curves. Thus, the orthogonal

trajectories must satisfy
$$y' = -\frac{2x}{3y} \Leftrightarrow \frac{dy}{dx} = -\frac{2x}{3y} \Leftrightarrow$$

$$3y \, dy = -2x \, dx \Leftrightarrow \int 3y \, dy = \int -2x \, dx \Leftrightarrow \frac{3}{2}y^2 = -x^2 + C_1 \Leftrightarrow$$

 $3y^2 = -2x^2 + C_2 \Leftrightarrow 2x^2 + 3y^2 = C$. This is a family of ellipses.



38. If $S = \frac{dT}{dr}$, then $\frac{dS}{dr} = \frac{d^2T}{dr^2}$. The differential equation $\frac{d^2T}{dr^2} + \frac{2}{r}\frac{dT}{dr} = 0$ can be written as $\frac{dS}{dr} + \frac{2}{r}S = 0$. Thus,

$$\frac{dS}{dr} = \frac{-2S}{r} \quad \Rightarrow \quad \frac{dS}{S} = -\frac{2}{r} \, dr \quad \Rightarrow \quad \int \frac{1}{S} \, dS = \int -\frac{2}{r} \, dr \quad \Rightarrow \quad \ln|S| = -2 \ln|r| + C. \text{ Assuming } S = dT/dr > 0$$

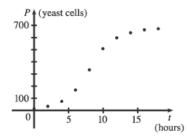
and r > 0, we have $S = e^{-2 \ln r + C} = e^{\ln r^{-2}} e^{C} = r^{-2} k \quad [k = e^{C}] \quad \Rightarrow \quad S = \frac{1}{r^{2}} k \quad \Rightarrow \quad \frac{dT}{dr} = \frac{1}{r^{2}} k \quad \Rightarrow \quad \frac{dT}{dr$

$$dT = \frac{1}{r^2} k dr \implies \int dT = \int \frac{1}{r^2} k dr \implies T(r) = -\frac{k}{r} + A.$$

$$T(1) = 15 \implies 15 = -k + A$$
 (1) and $T(2) = 25 \implies 25 = -\frac{1}{2}k + A$ (2).

Now solve for k and A: $-2(2) + (1) \Rightarrow -35 = -A$, so A = 35 and k = 20, and T(r) = -20/r + 35.

4. (a)



From the graph, we estimate the carrying capacity K for the yeast population to be 680.

(b) An estimate of the initial relative growth rate is $\frac{1}{P_0} \frac{dP}{dt} = \frac{1}{18} \cdot \frac{39-18}{2-0} = \frac{7}{12} = 0.58\overline{3}$.

(c) An exponential model is $P(t) = 18e^{7t/12}$. A logistic model is $P(t) = \frac{680}{1 + Ae^{-7t/12}}$, where $A = \frac{680 - 18}{18} = \frac{331}{9}$.

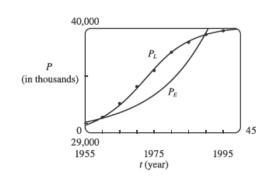
(d)

Time in Hours	Observed Values	Exponential Model	Logistic Model
0	18	18	18
2	39	58	55
4	80	186	149
6	171	596	322
8	336	1914	505
10	509	6147	614
12	597	19,739	658
14	640	63,389	673
16	664	203,558	678
18	672	653,679	679

The exponential model is a poor fit for anything beyond the first two observed values. The logistic model varies more for the middle values than it does for the values at either end, but provides a good general fit, as shown in the figure.

(e)
$$P(7) = \frac{680}{1 + \frac{331}{9}e^{-7(7/12)}} \approx 420$$
 yeast cells

12. Following the hint, we choose t=0 to correspond to 1955 and subtract 29,000 from each of the population figures. We then use a calculator to obtain the models and add 29,000 to get the exponential function $P_E(t) = 1094(1.0668)^t + 29,000 \text{ and the logistic function}$ $P_L(t) = \frac{11,103.3}{1+12.34e^{-0.1471t}} + 29,000. \ P_L \text{ is a reasonably accurate}$ model, while P_E is not, since an exponential model would only be used for the first few data points.



10.5

 $\begin{aligned} \textbf{6.} \ \ y' &= x + 5y \quad \Rightarrow \quad y' - 5y = x. \quad I(x) = e^{\int P(x) \, dx} = e^{\int (-5) \, dx} = e^{-5x}. \text{ Multiplying the differential equation by } I(x) \\ \text{gives } e^{-5x}y' - 5e^{-5x}y = xe^{-5x} \quad \Rightarrow \quad (e^{-5x}y)' = xe^{-5x} \quad \Rightarrow \quad e^{-5x}y = \int xe^{-5x} \, dx = -\frac{1}{5}xe^{-5x} - \frac{1}{25}e^{-5x} + C \\ \text{[by parts]} \quad \Rightarrow \quad y = -\frac{1}{5}x - \frac{1}{25} + Ce^{5x}. \end{aligned}$

26. $xy'' + 2y' = 12x^2$ and $u = y' \implies xu' + 2u = 12x^2 \implies u' + \frac{2}{x}u = 12x$. $I(x) = e^{\int (2/x) \, dx} = e^{2\ln|x|} = \left(e^{\ln|x|}\right)^2 = |x|^2 = x^2. \text{ Multiplying the last differential equation by } x^2 \text{ gives}$ $x^2u' + 2xu = 12x^3 \implies (x^2u)' = 12x^3 \implies x^2u = \int 12x^3 \, dx = 3x^4 + C \implies u = 3x^2 + C/x^2 \implies y' = 3x^2 + C/x^2 \implies y = x^3 - C/x + D.$

28. (a) $\frac{dI}{dt} + 20I = 40 \sin 60t$, so the integrating factor is e^{20t} . Multiplying the differential equation by the integrating factor

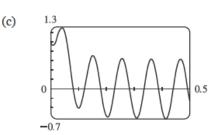
gives
$$e^{20t} \frac{dI}{dt} + 20Ie^{20t} = 40e^{20t} \sin 60t \implies (e^{20t}I)' = 40e^{20t} \sin 60t \implies$$

$$I(t) = e^{-20t} \left[\int 40e^{20t} \sin 60t \, dt + C \right] = e^{-20t} \left[40e^{20t} \left(\frac{1}{4000} \right) (20\sin 60t - 60\cos 60t) \right] + Ce^{-20t}$$

$$= \frac{\sin 60t - 3\cos 60t}{5} + Ce^{-20t}$$

But
$$1 = I(0) = -\frac{3}{5} + C$$
, so $I(t) = \frac{\sin 60t - 3\cos 60t + 8e^{-20t}}{5}$

(b)
$$I(0.1) = \frac{\sin 6 - 3\cos 6 + 8e^{-2}}{5} \approx -0.42 \text{ A}$$



34. Let y(t) denote the amount of chlorine in the tank at time t (in seconds). y(0) = (0.05 g/L) (400 L) = 20 g. The amount of liquid in the tank at time t is (400 - 6t) L since 4 L of water enters the tank each second and 10 L of liquid leaves the tank each second. Thus, the concentration of chlorine at time t is $\frac{y(t)}{400 - 6t}$ $\frac{g}{L}$. Chlorine doesn't enter the tank, but it leaves at a rate

