PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same manner as in Section 5.2. We assume that all of the integrals exist. Properties 7 and 8 are referred to as the *linearity* of the integral.

7
$$\iint\limits_{R} \left[f(x, y) + g(x, y) \right] dA = \iint\limits_{R} f(x, y) \, dA + \iint\limits_{R} g(x, y) \, dA$$

 Double integrals behave this way because the double sums that define them behave this way.

8
$$\iint_{R} cf(x, y) dA = c \iint_{R} f(x, y) dA \quad \text{where } c \text{ is a constant}$$

If $f(x, y) \ge g(x, y)$ for all (x, y) in *R*, then

9

$$\iint\limits_{R} f(x, y) \, dA \ge \iint\limits_{R} g(x, y) \, dA$$

16.1 EXERCISES

I. (a) Estimate the volume of the solid that lies below the surface z = xy and above the rectangle

$$R = \{(x, y) \mid 0 \le x \le 6, 0 \le y \le 4\}$$

Use a Riemann sum with m = 3, n = 2, and take the sample point to be the upper right corner of each square.

(b) Use the Midpoint Rule to estimate the volume of the solid in part (a).

- 2. If $R = [-1, 3] \times [0, 2]$, use a Riemann sum with m = 4, n = 2 to estimate the value of $\iint_R (y^2 2x^2) dA$. Take the sample points to be the upper left corners of the squares.
- (a) Use a Riemann sum with m = n = 2 to estimate the value of ∬_R sin(x + y) dA, where R = [0, π] × [0, π]. Take the sample points to be lower left corners.
 - (b) Use the Midpoint Rule to estimate the integral in part (a).
- 4. (a) Estimate the volume of the solid that lies below the surface z = x + 2y² and above the rectangle R = [0, 2] × [0, 4]. Use a Riemann sum with m = n = 2 and choose the sample points to be lower right corners.
 - (b) Use the Midpoint Rule to estimate the volume in part (a).
- 5. A table of values is given for a function f(x, y) defined on $R = [1, 3] \times [0, 4]$.
 - (a) Estimate $\iint_R f(x, y) dA$ using the Midpoint Rule with m = n = 2.

(b) Estimate the double integral with m = n = 4 by choosing the sample points to be the points farthest from the origin.

x	0	1	2	3	4
1.0	2	0	-3	-6	-5
1.5	3	1	-4	-8	-6
2.0	4	3	0	-5	-8
2.5	5	5	3	-1	-4
3.0	7	8	6	3	0

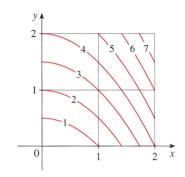
6. An 8-meter by 12-meter swimming pool is filled with water. The depth is measured at 2-m intervals, starting at one corner of the pool, and the values are recorded in the table. Estimate the volume of water in the pool.

	0	2	4	6	8	10	12
0	1	1.5	2	2.4	2.8	3	3
2	1	1.5	2	2.8	3	3.6	3
4	1	1.8	2.7	3	3.6	4	3.2
6	1	1.5	2	2.3	2.7	3	2.5
8	1	1	1	1	1.5	2	2

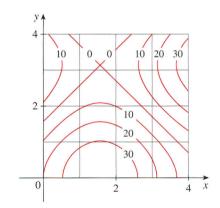
7. Let *V* be the volume of the solid that lies under the graph of $f(x, y) = \sqrt{52 - x^2 - y^2}$ and above the rectangle given by $2 \le x \le 4, 2 \le y \le 6$. We use the lines x = 3 and y = 4 to

divide R into subrectangles. Let L and U be the Riemann sums computed using lower left corners and upper right corners, respectively. Without calculating the numbers V, L, and U, arrange them in increasing order and explain your reasoning.

8. The figure shows level curves of a function f in the square $R = [0, 2] \times [0, 2]$. Use the Midpoint Rule with m = n = 2 to estimate $\iint_R f(x, y) dA$. How could you improve your estimate?



- **9.** A contour map is shown for a function *f* on the square $R = [0, 4] \times [0, 4]$.
 - (a) Use the Midpoint Rule with m = n = 2 to estimate the value of $\iint_{P} f(x, y) dA$.
 - (b) Estimate the average value of f.



10. The contour map shows the temperature, in degrees Fahrenheit, at 4:00 PM on February 26, 2007, in Colorado. (The state measures 388 mi east to west and 276 mi north to south.) Use the Midpoint Rule with m = n = 4 to estimate the average temperature in Colorado at that time.

16.2

II-I3 Evaluate the double integral by first identifying it as the volume of a solid.

- **II.** $\iint_{R} 3 \, dA, \quad R = \{(x, y) \mid -2 \le x \le 2, 1 \le y \le 6\}$ **I2.** $\iint_{R} (5 - x) \, dA, \quad R = \{(x, y) \mid 0 \le x \le 5, 0 \le y \le 3\}$ **I3.** $\iint_{R} (4 - 2y) \, dA, \quad R = [0, 1] \times [0, 1]$
- 14. The integral $\iint_R \sqrt{9 y^2} \, dA$, where $R = [0, 4] \times [0, 2]$, represents the volume of a solid. Sketch the solid.
- **15.** Use a programmable calculator or computer (or the sum command on a CAS) to estimate

$$\iint\limits_R \sqrt{1 + x e^{-y}} \, dA$$

where $R = [0, 1] \times [0, 1]$. Use the Midpoint Rule with the following numbers of squares of equal size: 1, 4, 16, 64, 256, and 1024.

- 16. Repeat Exercise 15 for the integral $\iint_R \sin(x + \sqrt{y}) dA$.
- **17.** If f is a constant function, f(x, y) = k, and $R = [a, b] \times [c, d]$, show that $\iint_{R} k \, dA = k(b a)(d c)$.
- 18. Use the result of Exercise 17 to show that

$$0 \le \iint_{R} \sin \pi x \cos \pi y \, dA \le \frac{1}{32}$$

where
$$R = \left[0, \frac{1}{4}\right] \times \left[\frac{1}{4}, \frac{1}{2}\right]$$
.

ITERATED INTEGRALS

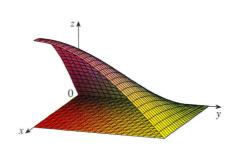
Recall that it is usually difficult to evaluate single integrals directly from the definition of an integral, but the Fundamental Theorem of Calculus provides a much easier method. The evaluation of double integrals from first principles is even more difficult, but in this sec**EXAMPLE 5** If $R = [0, \pi/2] \times [0, \pi/2]$, then, by Equation 5,

$$\iint_{R} \sin x \cos y \, dA = \int_{0}^{\pi/2} \sin x \, dx \int_{0}^{\pi/2} \cos y \, dy$$
$$= \left[-\cos x \right]_{0}^{\pi/2} \left[\sin y \right]_{0}^{\pi/2} = 1 \cdot 1 = 1$$

The function $f(x, y) = \sin x \cos y$ in Example 5 is positive on R, so the integral represents the volume of the solid that lies above Rand below the graph of f shown in Figure 6.

FIGURE 6

2. $f(x, y) = y + xe^{y}$



16.2 EXERCISES

1–2 Find $\int_0^5 f(x, y) dx$ and $\int_0^1 f(x, y) dy$.

I.
$$f(x, y) = 12x^2y$$

3-14 Calculate the iterated integral.

- **3.** $\int_{1}^{3} \int_{0}^{1} (1 + 4xy) \, dx \, dy$ **4.** $\int_{2}^{4} \int_{-1}^{1} (x^{2} + y^{2}) \, dy \, dx$ **5.** $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin x \cos y \, dy \, dx$ **6.** $\int_{\pi/6}^{\pi/2} \int_{-1}^{5} \cos y \, dx \, dy$ **7.** $\int_{0}^{2} \int_{0}^{1} (2x + y)^{8} \, dx \, dy$ **8.** $\int_{0}^{1} \int_{1}^{2} \frac{xe^{x}}{y} \, dy \, dx$ **9.** $\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x}\right) \, dy \, dx$ **10.** $\int_{0}^{1} \int_{0}^{3} e^{x + 3y} \, dx \, dy$ **11.** $\int_{0}^{1} \int_{0}^{1} (u v)^{5} \, du \, dv$ **12.** $\int_{0}^{1} \int_{0}^{1} \sqrt{s + t} \, ds \, dt$
- **15–22** Calculate the double integral.
- **15.** $\iint_{R} (6x^{2}y^{3} 5y^{4}) dA, \quad R = \{(x, y) \mid 0 \le x \le 3, \ 0 \le y \le 1\}$
- **16.** $\iint_{R} \cos(x + 2y) \, dA, \quad R = \{(x, y) \mid 0 \le x \le \pi, \ 0 \le y \le \pi/2\}$

17.
$$\iint_{R} \frac{xy^{2}}{x^{2}+1} dA, \quad R = \{(x, y) \mid 0 \le x \le 1, \ -3 \le y \le 3\}$$

18. $\iint_{R} \frac{1+x^{2}}{1+y^{2}} dA, \quad R = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le 1\}$ 19. $\iint_{R} x \sin(x+y) dA, \quad R = [0, \pi/6] \times [0, \pi/3]$ 20. $\iint_{R} \frac{x}{1+xy} dA, \quad R = [0, 1] \times [0, 1]$ 21. $\iint_{R} xye^{x^{2}y} dA, \quad R = [0, 1] \times [0, 2]$ 22. $\iint_{R} \frac{x}{x^{2}+y^{2}} dA, \quad R = [1, 2] \times [0, 1]$

23–24 Sketch the solid whose volume is given by the iterated integral.

- **23.** $\int_{0}^{1} \int_{0}^{1} (4 x 2y) dx dy$ **24.** $\int_{0}^{1} \int_{0}^{1} (2 - x^{2} - y^{2}) dy dx$
- **25.** Find the volume of the solid that lies under the plane 3x + 2y + z = 12 and above the rectangle $R = \{(x, y) \mid 0 \le x \le 1, -2 \le y \le 3\}.$
- **26.** Find the volume of the solid that lies under the hyperbolic paraboloid $z = 4 + x^2 y^2$ and above the square $R = [-1, 1] \times [0, 2]$.

- **27.** Find the volume of the solid lying under the elliptic paraboloid $x^2/4 + y^2/9 + z = 1$ and above the rectangle $R = [-1, 1] \times [-2, 2]$.
- **28.** Find the volume of the solid enclosed by the surface $z = 1 + e^x \sin y$ and the planes $x = \pm 1$, y = 0, $y = \pi$, and z = 0.
- 29. Find the volume of the solid enclosed by the surface z = x sec²y and the planes z = 0, x = 0, x = 2, y = 0, and y = π/4.
- **30.** Find the volume of the solid in the first octant bounded by the cylinder $z = 16 x^2$ and the plane y = 5.
- **31.** Find the volume of the solid enclosed by the paraboloid $z = 2 + x^2 + (y 2)^2$ and the planes z = 1, x = 1, x = -1, y = 0, and y = 4.
- **32.** Graph the solid that lies between the surface $z = 2xy/(x^2 + 1)$ and the plane z = x + 2y and is bounded by the planes x = 0, x = 2, y = 0, and y = 4. Then find its volume.
- **33.** Use a computer algebra system to find the exact value of the integral $\iint_R x^5 y^3 e^{xy} dA$, where $R = [0, 1] \times [0, 1]$. Then use the CAS to draw the solid whose volume is given by the integral.

16.3

- **(AS)** 34. Graph the solid that lies between the surfaces $z = e^{-x^2} \cos(x^2 + y^2)$ and $z = 2 x^2 y^2$ for $|x| \le 1$, $|y| \le 1$. Use a computer algebra system to approximate the volume of this solid correct to four decimal places.
 - **35–36** Find the average value of f over the given rectangle.

35. $f(x, y) = x^2 y$, *R* has vertices (-1, 0), (-1, 5), (1, 5), (1, 0)**36.** $f(x, y) = e^y \sqrt{x + e^y}, R = [0, 4] \times [0, 1]$

(AS) 37. Use your CAS to compute the iterated integrals

$$\int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dy \, dx \quad \text{and} \quad \int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dx \, dy$$

Do the answers contradict Fubini's Theorem? Explain what is happening.

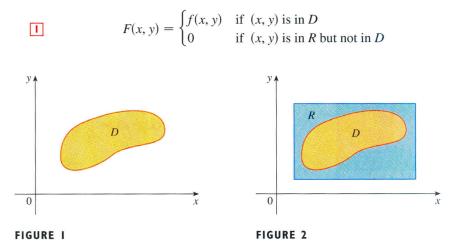
- **38.** (a) In what way are the theorems of Fubini and Clairaut similar?
 - (b) If f(x, y) is continuous on $[a, b] \times [c, d]$ and

$$g(x, y) = \int_a^x \int_c^y f(s, t) dt ds$$

for a < x < b, c < y < d, show that $g_{xy} = g_{yx} = f(x, y)$.

DOUBLE INTEGRALS OVER GENERAL REGIONS

For single integrals, the region over which we integrate is always an interval. But for double integrals, we want to be able to integrate a function f not just over rectangles but also over regions D of more general shape, such as the one illustrated in Figure 1. We suppose that D is a bounded region, which means that D can be enclosed in a rectangular region R as in Figure 2. Then we define a new function F with domain R by



EXAMPLE 6 Use Property 11 to estimate the integral $\iint_D e^{\sin x \cos y} dA$, where D is the disk with center the origin and radius 2.

SOLUTION Since $-1 \le \sin x \le 1$ and $-1 \le \cos y \le 1$, we have $-1 \le \sin x \cos y \le 1$ and therefore

$$e^{-1} \leq e^{\sin x \cos y} \leq e^{-1} = e^{-1}$$

Thus, using $m = e^{-1} = 1/e$, M = e, and $A(D) = \pi(2)^2$ in Property 11, we obtain

$$\frac{4\pi}{e} \le \iint_{D} e^{\sin x \cos y} dA \le 4\pi e \qquad \Box$$

16.3 EXERCISES

I–6 Evaluate the iterated integral.

1.
$$\int_{0}^{1} \int_{0}^{x^{2}} (x + 2y) \, dy \, dx$$

2.
$$\int_{1}^{2} \int_{y}^{2} xy \, dx \, dy$$

3.
$$\int_{0}^{1} \int_{x^{2}}^{x} (1 + 2y) \, dy \, dx$$

4.
$$\int_{0}^{2} \int_{y}^{2y} xy \, dx \, dy$$

5.
$$\int_{0}^{\pi/2} \int_{0}^{\cos \theta} e^{\sin \theta} \, dr \, d\theta$$

6.
$$\int_{0}^{1} \int_{0}^{v} \sqrt{1 - v^{2}} \, du \, dv$$

7-18 Evaluate the double integral.

- 7. $\iint_{D} x^{3}y^{2} dA, \quad D = \{(x, y) \mid 0 \le x \le 2, \ -x \le y \le x\}$ 8. $\iint_{D} \frac{4y}{x^{3} + 2} dA, \quad D = \{(x, y) \mid 1 \le x \le 2, \ 0 \le y \le 2x\}$ 9. $\iint_{D} x dA, \quad D = \{(x, y) \mid 0 \le x \le \pi, \ 0 \le y \le \sin x\}$ 10. $\iint_{D} x^{3} dA, \quad D = \{(x, y) \mid 1 \le x \le e, \ 0 \le y \le \ln x\}$ 11. $\iint_{D} y^{2}e^{xy} dA, \quad D = \{(x, y) \mid 0 \le y \le 4, \ 0 \le x \le y\}$ 12. $\iint_{D} x \sqrt{y^{2} - x^{2}} dA, \quad D = \{(x, y) \mid 0 \le y \le 1, \ 0 \le x \le y\}$ 13. $\iint_{D} x \cos y dA, \quad D \text{ is bounded by } y = 0, \ y = x^{2}, \ x = 1$ 14. $\iint_{D} (x + y) dA, \quad D \text{ is bounded by } y = \sqrt{x} \text{ and } y = x^{2}$ 15. $\iint_{D} y^{3} dA, \quad D \text{ is the triangular region with vertices } (0, 2), (1, 1), (3, 2)$
- 16. $\iint_{D} xy^2 \, dA, \quad D \text{ is enclosed by } x = 0 \text{ and } x = \sqrt{1 y^2}$

 $\prod_{D} \iint_{D} (2x - y) \, dA,$

D is bounded by the circle with center the origin and radius 2

- **18.** $\iint_{D} 2xy \, dA, \quad D \text{ is the triangular region with vertices } (0, 0), (1, 2), \text{ and } (0, 3)$
- 19–28 Find the volume of the given solid.
- 19. Under the paraboloid $z = x^2 + y^2$ and above the region bounded by $y = x^2$ and $x = y^2$
- **20.** Under the paraboloid $z = 3x^2 + y^2$ and above the region bounded by y = x and $x = y^2 y$
- **21.** Under the surface z = xy and above the triangle with vertices (1, 1), (4, 1), and (1, 2)
- **22.** Enclosed by the paraboloid $z = x^2 + 3y^2$ and the planes x = 0, y = 1, y = x, z = 0
- **23.** Bounded by the coordinate planes and the plane 3x + 2y + z = 6
- **24.** Bounded by the planes z = x, y = x, x + y = 2, and z = 0
- **25.** Enclosed by the cylinders $z = x^2$, $y = x^2$ and the planes z = 0, y = 4
- **26.** Bounded by the cylinder $y^2 + z^2 = 4$ and the planes x = 2y, x = 0, z = 0 in the first octant
- **27.** Bounded by the cylinder $x^2 + y^2 = 1$ and the planes y = z, x = 0, z = 0 in the first octant
- **28.** Bounded by the cylinders $x^2 + y^2 = r^2$ and $y^2 + z^2 = r^2$
- **29.** Use a graphing calculator or computer to estimate the *x*-coordinates of the points of intersection of the curves $y = x^4$ and $y = 3x - x^2$. If *D* is the region bounded by these curves, estimate $\iint_D x \, dA$.

30. Find the approximate volume of the solid in the first octant that is bounded by the planes y = x, z = 0, and z = x and the cylinder $y = \cos x$. (Use a graphing device to estimate the points of intersection.)

31–32 Find the volume of the solid by subtracting two volumes.

- **31.** The solid enclosed by the parabolic cylinders $y = 1 - x^2$, $y = x^2 - 1$ and the planes x + y + z = 2, 2x + 2y - z + 10 = 0
- **32.** The solid enclosed by the parabolic cylinder $y = x^2$ and the planes z = 3y, z = 2 + y

33–34 Sketch the solid whose volume is given by the iterated integral.

33.
$$\int_0^1 \int_0^{1-x} (1-x-y) \, dy \, dx$$
 34. $\int_0^1 \int_0^{1-x^2} (1-x) \, dy \, dx$

- **(AS) 35–38** Use a computer algebra system to find the exact volume of the solid.
 - **35.** Under the surface $z = x^3y^4 + xy^2$ and above the region bounded by the curves $y = x^3 x$ and $y = x^2 + x$ for $x \ge 0$
 - **36.** Between the paraboloids $z = 2x^2 + y^2$ and $z = 8 x^2 2y^2$ and inside the cylinder $x^2 + y^2 = 1$
 - **37.** Enclosed by $z = 1 x^2 y^2$ and z = 0
 - **38.** Enclosed by $z = x^2 + y^2$ and z = 2y

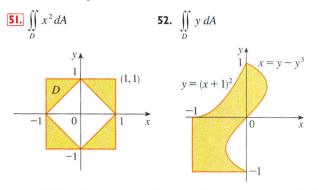
39–44 Sketch the region of integration and change the order of integration.

39.
$$\int_{0}^{4} \int_{0}^{\sqrt{x}} f(x, y) \, dy \, dx$$
40.
$$\int_{0}^{1} \int_{4x}^{4} f(x, y) \, dy \, dx$$
41.
$$\int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} f(x, y) \, dx \, dy$$
42.
$$\int_{0}^{3} \int_{0}^{\sqrt{9-y}} f(x, y) \, dx \, dy$$
43.
$$\int_{1}^{2} \int_{0}^{\ln x} f(x, y) \, dy \, dx$$
44.
$$\int_{0}^{1} \int_{\arctan x}^{\pi/4} f(x, y) \, dy \, dx$$

45-50 Evaluate the integral by reversing the order of integration.

45.
$$\int_{0}^{1} \int_{3y}^{3} e^{x^{2}} dx \, dy$$
46.
$$\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \cos(x^{2}) \, dx \, dy$$
47.
$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{y^{3} + 1} \, dy \, dx$$
48.
$$\int_{0}^{1} \int_{x}^{1} e^{x/y} \, dy \, dx$$
49.
$$\int_{0}^{1} \int_{\operatorname{arcsin} y}^{\pi/2} \cos x \, \sqrt{1 + \cos^{2}x} \, dx \, dy$$
50.
$$\int_{0}^{8} \int_{\sqrt{y}}^{2} e^{x^{4}} \, dx \, dy$$

51–52 Express D as a union of regions of type I or type II and evaluate the integral.



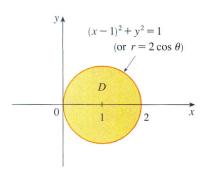
53-54 Use Property 11 to estimate the value of the integral.

- **53.** $\iint_{Q} e^{-(x^2+y^2)^2} dA, \quad Q \text{ is the quarter-circle with center the origin and radius <math>\frac{1}{2}$ in the first quadrant
- 54. $\iint_{T} \sin^{4}(x + y) \, dA, \quad T \text{ is the triangle enclosed by the lines}$ $y = 0, \, y = 2x, \text{ and } x = 1$
- **55–56** Find the average value of *f* over region *D*.
- **55.** f(x, y) = xy, *D* is the triangle with vertices (0, 0), (1, 0), and (1, 3)
- **56.** $f(x, y) = x \sin y$, D is enclosed by the curves y = 0, $y = x^2$, and x = 1
- 57. Prove Property 11.
- **58.** In evaluating a double integral over a region *D*, a sum of iterated integrals was obtained as follows:

$$\iint_{D} f(x, y) \, dA = \int_{0}^{1} \int_{0}^{2y} f(x, y) \, dx \, dy + \int_{1}^{3} \int_{0}^{3-y} f(x, y) \, dx \, dy$$

Sketch the region *D* and express the double integral as an iterated integral with reversed order of integration.

- **59.** Evaluate $\iint_D (x^2 \tan x + y^3 + 4) dA$, where $D = \{(x, y) | x^2 + y^2 \le 2\}$. [*Hint:* Exploit the fact that *D* is symmetric with respect to both axes.]
- **60.** Use symmetry to evaluate $\iint_D (2 3x + 4y) dA$, where *D* is the region bounded by the square with vertices $(\pm 5, 0)$ and $(0, \pm 5)$.
- **61.** Compute $\iint_D \sqrt{1 x^2 y^2} \, dA$, where *D* is the disk $x^2 + y^2 \leq 1$, by first identifying the integral as the volume of a solid.
- **62.** Graph the solid bounded by the plane x + y + z = 1 and the paraboloid $z = 4 x^2 y^2$ and find its exact volume. (Use your CAS to do the graphing, to find the equations of the boundary curves of the region of integration, and to evaluate the double integral.)



ZA

V EXAMPLE 4 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the *xy*-plane, and inside the cylinder $x^2 + y^2 = 2x$.

SOLUTION The solid lies above the disk D whose boundary circle has equation $x^2 + y^2 = 2x$ or, after completing the square,

$$(x-1)^2 + y^2 = 1$$

(See Figures 9 and 10.) In polar coordinates we have $x^2 + y^2 = r^2$ and $x = r \cos \theta$, so the boundary circle becomes $r^2 = 2r \cos \theta$, or $r = 2 \cos \theta$. Thus the disk D is given by

$$D = \left\{ (r, \theta) \mid -\pi/2 \le \theta \le \pi/2, \ 0 \le r \le 2 \cos \theta \right\}$$

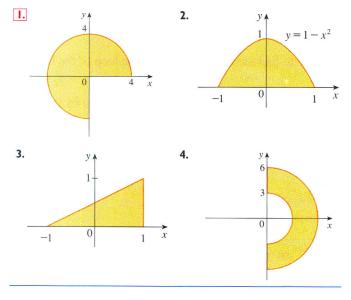
and, by Formula 3, we have

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2} r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^{4}}{4} \right]_{0}^{2\cos\theta} d\theta$$
$$= 4 \int_{-\pi/2}^{\pi/2} \cos^{4}\theta \, d\theta = 8 \int_{0}^{\pi/2} \cos^{4}\theta \, d\theta = 8 \int_{0}^{\pi/2} \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$$
$$= 2 \int_{0}^{\pi/2} \left[1 + 2\cos 2\theta + \frac{1}{2} (1 + \cos 4\theta) \right] d\theta$$
$$= 2 \left[\frac{3}{2} \theta + \sin 2\theta + \frac{1}{8} \sin 4\theta \right]_{0}^{\pi/2} = 2 \left(\frac{3}{2} \right) \left(\frac{\pi}{2} \right) = \frac{3\pi}{2}$$

FIGURE 9

16.4 EXERCISES

1–4 A region *R* is shown. Decide whether to use polar coordinates or rectangular coordinates and write $\iint_R f(x, y) dA$ as an iterated integral, where *f* is an arbitrary continuous function on *R*.



5–6 Sketch the region whose area is given by the integral and evaluate the integral.

- **5.** $\int_{\pi}^{2\pi} \int_{4}^{7} r \, dr \, d\theta$ **6.** $\int_{0}^{\pi/2} \int_{0}^{4 \cos \theta} r \, dr \, d\theta$
- 7-14 Evaluate the given integral by changing to polar coordinates.
- **7.** $\iint_D xy \, dA$, where *D* is the disk with center the origin and radius 3
- **8.** $\iint_R (x + y) dA$, where *R* is the region that lies to the left of the y-axis between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
- 9. $\iint_R \cos(x^2 + y^2) dA$, where *R* is the region that lies above the *x*-axis within the circle $x^2 + y^2 = 9$
- **10.** $\iint_{R} \sqrt{4 x^{2} y^{2}} \, dA,$ where $R = \{(x, y) \mid x^{2} + y^{2} \le 4, x \ge 0\}$
- **II.** $\iint_D e^{-x^2-y^2} dA$, where *D* is the region bounded by the semicircle $x = \sqrt{4 y^2}$ and the *y*-axis
- 12. $\iint_R y e^x dA$, where *R* is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$

- **13.** $\iint_R \arctan(y/x) \, dA$, where $R = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le x\}$
- 14. $\iint_D x \, dA$, where *D* is the region in the first quadrant that lies between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 2x$
- **15–18** Use a double integral to find the area of the region.
- **15.** One loop of the rose $r = \cos 3\theta$
- **16.** The region enclosed by the curve $r = 4 + 3 \cos \theta$
- **17.** The region within both of the circles $r = \cos \theta$ and $r = \sin \theta$
- **18.** The region inside the cardioid $r = 1 + \cos \theta$ and outside the circle $r = 3 \cos \theta$
- 19–27 Use polar coordinates to find the volume of the given solid.
- 19. Under the cone $z = \sqrt{x^2 + y^2}$ and above the disk $x^2 + y^2 \le 4$
- **20.** Below the paraboloid $z = 18 2x^2 2y^2$ and above the *xy*-plane
- **21.** Enclosed by the hyperboloid $-x^2 y^2 + z^2 = 1$ and the plane z = 2
- 22. Inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$
- **23.** A sphere of radius *a*
- **24.** Bounded by the paraboloid $z = 1 + 2x^2 + 2y^2$ and the plane z = 7 in the first octant
- **25.** Above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$
- **26.** Bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 x^2 y^2$
- 27. Inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$
- **28.** (a) A cylindrical drill with radius r_1 is used to bore a hole through the center of a sphere of radius r_2 . Find the volume of the ring-shaped solid that remains.
 - (b) Express the volume in part (a) in terms of the height *h* of the ring. Notice that the volume depends only on *h*, not on r₁ or r₂.

29–32 Evaluate the iterated integral by converting to polar coordinates.

29.
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sin(x^{2} + y^{2}) \, dy \, dx$$
30.
$$\int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{0} x^{2} y \, dx \, dy$$
31.
$$\int_{0}^{1} \int_{y}^{\sqrt{2-y^{2}}} (x + y) \, dx \, dy$$
32.
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2} + y^{2}} \, dy \, dx$$

- **33.** A swimming pool is circular with a 10-meter diameter. The depth is constant along east-west lines and increases linearly from 1 m at the south end to 2 m at the north end. Find the volume of water in the pool.
- **34.** An agricultural sprinkler distributes water in a circular pattern of radius 50 m. It supplies water to a depth of e^{-r} meters per hour at a distance of *r* meters from the sprinkler.
 - (a) If $0 < R \le 100$, what is the total amount of water supplied per hour to the region inside the circle of radius *R* centered at the sprinkler?
 - (b) Determine an expression for the average amount of water per hour per square meter supplied to the region inside the circle of radius *R*.
- **35.** Use polar coordinates to combine the sum

$$\int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} xy \, dy \, dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xy \, dy \, dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xy \, dy \, dx$$

into one double integral. Then evaluate the double integral.

36. (a) We define the improper integral (over the entire plane \mathbb{R}^2)

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dy dx$$
$$= \lim_{a \to \infty} \iint_{D_a} e^{-(x^2 + y^2)} dA$$

where D_a is the disk with radius *a* and center the origin. Show that

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}\,dA=\pi$$

(b) An equivalent definition of the improper integral in part (a) is

$$\iint_{\mathbb{R}^{2}} e^{-(x^{2}+y^{2})} dA = \lim_{a \to \infty} \iint_{S_{a}} e^{-(x^{2}+y^{2})} dA$$

where S_a is the square with vertices $(\pm a, \pm a)$. Use this to show that

$$\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \pi$$

(c) Deduce that

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

(d) By making the change of variable $t = \sqrt{2} x$, show that

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi}$$

(This is a fundamental result for probability and statistics.)

37. Use the result of Exercise 36 part (c) to evaluate the following integrals.

(a)
$$\int_0^\infty x^2 e^{-x^2} dx$$
 (b) $\int_0^\infty \sqrt{x} e^{-x} dx$

EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as having diameter 4.0 cm and length 6.0 cm. In fact, the diameters *X* are normally distributed with mean 4.0 cm and standard deviation 0.01 cm while the lengths *Y* are normally distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that *X* and *Y* are independent, write the joint density function and graph it. Find the probability that a bearing randomly chosen from the production line has either length or diameter that differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y are normally distributed with $\mu_1 = 4.0$, $\mu_2 = 6.0$, and $\sigma_1 = \sigma_2 = 0.01$. So the individual density functions for X and Y are

$$f_1(x) = \frac{1}{0.01\sqrt{2\pi}} e^{-(x-4)^2/0.0002} \qquad f_2(y) = \frac{1}{0.01\sqrt{2\pi}} e^{-(y-6)^2/0.0002}$$

Since X and Y are independent, the joint density function is the product:

$$f(x, y) = f_1(x)f_2(y) = \frac{1}{0.0002\pi} e^{-(x-4)^2/0.0002} e^{-(y-6)^2/0.0002}$$
$$= \frac{5000}{\pi} e^{-5000[(x-4)^2 + (y-6)^2]}$$

A graph of this function is shown in Figure 9.

Let's first calculate the probability that both X and Y differ from their means by less than 0.02 cm. Using a calculator or computer to estimate the integral, we have

$$P(3.98 < X < 4.02, 5.98 < Y < 6.02) = \int_{3.98}^{4.02} \int_{5.98}^{6.02} f(x, y) \, dy \, dx$$
$$= \frac{5000}{\pi} \int_{3.98}^{4.02} \int_{5.98}^{6.02} e^{-5000[(x-4)^2 + (y-6)^2]} \, dy \, dx$$
$$\approx 0.91$$

Then the probability that either X or Y differs from its mean by more than 0.02 cm is approximately

$$1 - 0.91 = 0.09$$

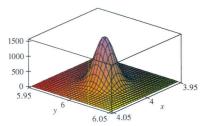
16.5 EXERCISES

- **1.** Electric charge is distributed over the rectangle $1 \le x \le 3$, $0 \le y \le 2$ so that the charge density at (x, y) is $\sigma(x, y) = 2xy + y^2$ (measured in coulombs per square meter). Find the total charge on the rectangle.
- Electric charge is distributed over the disk x² + y² ≤ 4 so that the charge density at (x, y) is σ(x, y) = x + y + x² + y² (measured in coulombs per square meter). Find the total charge on the disk.

3–10 Find the mass and center of mass of the lamina that occupies the region *D* and has the given density function ρ .

3.
$$D = \{(x, y) \mid 0 \le x \le 2, -1 \le y \le 1\}; \ \rho(x, y) = xy^2$$

- **4.** $D = \{(x, y) \mid 0 \le x \le a, 0 \le y \le b\}; \ \rho(x, y) = cxy$
- **5.** *D* is the triangular region with vertices (0, 0), (2, 1), (0, 3); $\rho(x, y) = x + y$
- b D is the triangular region enclosed by the lines x = 0, y = x, and 2x + y = 6; ρ(x, y) = x²
- **7.** *D* is bounded by $y = e^x$, y = 0, x = 0, and x = 1; $\rho(x, y) = y$
- 8. D is bounded by $y = \sqrt{x}$, y = 0, and x = 1; $\rho(x, y) = x$
- **9.** $D = \{(x, y) \mid 0 \le y \le \sin(\pi x/L), 0 \le x \le L\}; \ \rho(x, y) = y$
- **10.** *D* is bounded by the parabolas $y = x^2$ and $x = y^2$; $\rho(x, y) = \sqrt{x}$



- **II.** A lamina occupies the part of the disk $x^2 + y^2 \le 1$ in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the *x*-axis.
- **12.** Find the center of mass of the lamina in Exercise 11 if the density at any point is proportional to the square of its distance from the origin.
- 13. The boundary of a lamina consists of the semicircles $y = \sqrt{1 x^2}$ and $y = \sqrt{4 x^2}$ together with the portions of the *x*-axis that join them. Find the center of mass of the lamina if the density at any point is proportional to its distance from the origin.
- **14.** Find the center of mass of the lamina in Exercise 13 if the density at any point is inversely proportional to its distance from the origin.
- **15.** Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length *a* if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse.
- 16. A lamina occupies the region inside the circle $x^2 + y^2 = 2y$ but outside the circle $x^2 + y^2 = 1$. Find the center of mass if the density at any point is inversely proportional to its distance from the origin.
- **17.** Find the moments of inertia I_x , I_y , I_0 for the lamina of Exercise 7.
- **18.** Find the moments of inertia I_x , I_y , I_0 for the lamina of Exercise 12.
- **19.** Find the moments of inertia I_x , I_y , I_0 for the lamina of Exercise 15.
- **20.** Consider a square fan blade with sides of length 2 and the lower left corner placed at the origin. If the density of the blade is $\rho(x, y) = 1 + 0.1x$, is it more difficult to rotate the blade about the *x*-axis or the *y*-axis?
- **(** Δ **S21–22** Use a computer algebra system to find the mass, center of mass, and moments of inertia of the lamina that occupies the region *D* and has the given density function.

21.
$$D = \{(x, y) \mid 0 \le y \le \sin x, \ 0 \le x \le \pi\}; \ \rho(x, y) = xy$$

- **22.** D is enclosed by the cardioid $r = 1 + \cos \theta$; $\rho(x, y) = \sqrt{x^2 + y^2}$
- **(45)** 23–26 A lamina with constant density $\rho(x, y) = \rho$ occupies the given region. Find the moments of inertia I_x and I_y and the radii of gyration $\overline{\overline{x}}$ and $\overline{\overline{y}}$.
 - **23.** The rectangle $0 \le x \le b, 0 \le y \le h$
 - **24.** The triangle with vertices (0, 0), (b, 0), and (0, h)
 - **25.** The part of the disk $x^2 + y^2 \le a^2$ in the first quadrant
 - **26.** The region under the curve $y = \sin x$ from x = 0 to $x = \pi$

27. The joint density function for a pair of random variables *X* and *Y* is

$$f(x, y) = \begin{cases} Cx(1+y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the value of the constant C.
- (b) Find $P(X \le 1, Y \le 1)$.
- (c) Find $P(X + Y \le 1)$.
- 28. (a) Verify that

(b)

$$f(x, y) = \begin{cases} 4xy & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

is a joint density function.

- (b) If X and Y are random variables whose joint density function is the function f in part (a), find
 - (i) $P(X \ge \frac{1}{2})$ (ii) $P(X \ge \frac{1}{2}, Y \le \frac{1}{2})$
- (c) Find the expected values of *X* and *Y*.
- **29.** Suppose *X* and *Y* are random variables with joint density function

$$f(x, y) = \begin{cases} 0.1e^{-(0.5x+0.2y)} & \text{if } x \ge 0, \ y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

(a) Verify that f is indeed a joint density function.

- (i) $P(Y \ge 1)$ (ii) $P(X \le 2, Y \le 4)$
- (c) Find the expected values of X and Y.
- **30.** (a) A lamp has two bulbs of a type with an average lifetime of 1000 hours. Assuming that we can model the probability of failure of these bulbs by an exponential density function with mean $\mu = 1000$, find the probability that both of the lamp's bulbs fail within 1000 hours.
 - (b) Another lamp has just one bulb of the same type as in part (a). If one bulb burns out and is replaced by a bulb of the same type, find the probability that the two bulbs fail within a total of 1000 hours.
- **(AS) 31.** Suppose that *X* and *Y* are independent random variables, where *X* is normally distributed with mean 45 and standard deviation 0.5 and *Y* is normally distributed with mean 20 and standard deviation 0.1.
 - (a) Find $P(40 \le X \le 50, 20 \le Y \le 25)$.
 - (b) Find $P(4(X 45)^2 + 100(Y 20)^2 \le 2)$.
 - **32.** Xavier and Yolanda both have classes that end at noon and they agree to meet every day after class. They arrive at the coffee shop independently. Xavier's arrival time is *X* and Yolanda's arrival time is *Y*, where *X* and *Y* are measured in minutes after noon. The individual density functions are

$$f_1(x) = \begin{cases} e^{-x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases} \quad f_2(y) = \begin{cases} \frac{1}{50}y & \text{if } 0 \le y \le 10\\ 0 & \text{otherwise} \end{cases}$$

(Xavier arrives sometime after noon and is more likely to arrive promptly than late. Yolanda always arrives by 12:10 PM and is more likely to arrive late than promptly.) After Yolanda arrives, she'll wait for up to half an hour for Xavier, but he won't wait for her. Find the probability that they meet. **33.** When studying the spread of an epidemic, we assume that the probability that an infected individual will spread the disease to an uninfected individual is a function of the distance between them. Consider a circular city of radius 10 km in which the population is uniformly distributed. For an uninfected individual at a fixed point $A(x_0, y_0)$, assume that the probability function is given by

$$f(P) = \frac{1}{20} [20 - d(P, A)]$$

where d(P, A) denotes the distance between P and A.

- (a) Suppose the exposure of a person to the disease is the sum of the probabilities of catching the disease from all members of the population. Assume that the infected people are uniformly distributed throughout the city, with *k* infected individuals per square kilometer. Find a double integral that represents the exposure of a person residing at *A*.
- (b) Evaluate the integral for the case in which *A* is the center of the city and for the case in which *A* is located on the edge of the city. Where would you prefer to live?

16.6 TRIPLE INTEGRALS

Just as we defined single integrals for functions of one variable and double integrals for functions of two variables, so we can define triple integrals for functions of three variables. Let's first deal with the simplest case where f is defined on a rectangular box:

$$\blacksquare \qquad B = \{(x, y, z) \mid a \le x \le b, \ c \le y \le d, \ r \le z \le s\}$$

The first step is to divide *B* into sub-boxes. We do this by dividing the interval [a, b] into *l* subintervals $[x_{i-1}, x_i]$ of equal width Δx , dividing [c, d] into *m* subintervals of width Δy , and dividing [r, s] into *n* subintervals of width Δz . The planes through the endpoints of these subintervals parallel to the coordinate planes divide the box *B* into *lmn* sub-boxes

$$B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k]$$

which are shown in Figure 1. Each sub-box has volume $\Delta V = \Delta x \Delta y \Delta z$. Then we form the **triple Riemann sum**

2
$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V$$

where the sample point $(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*)$ is in B_{ijk} . By analogy with the definition of a double integral (16.1.5), we define the triple integral as the limit of the triple Riemann sums in (2).

3 DEFINITION The triple integral of f over the box B is

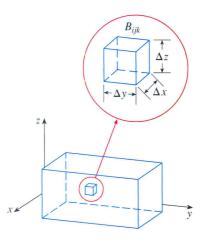
$$\iiint_{B} f(x, y, z) \, dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \, \Delta V$$

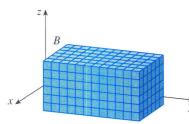
if this limit exists.

Again, the triple integral always exists if f is continuous. We can choose the sample point to be any point in the sub-box, but if we choose it to be the point (x_i, y_j, z_k) we get a simpler-looking expression for the triple integral:

$$\iiint\limits_B f(x, y, z) \, dV = \lim_{l, m, n \to \infty} \sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n f(x_i, y_j, z_k) \, \Delta V$$

Just as for double integrals, the practical method for evaluating triple integrals is to express them as iterated integrals as follows.





16.6 EXERCISES

- 1. Evaluate the integral in Example 1, integrating first with respect to *y*, then *z*, and then *x*.
- **2.** Evaluate the integral $\iiint_{E} (xz y^{3}) dV$, where

 $E = \{ (x, y, z) \mid -1 \le x \le 1, \ 0 \le y \le 2, \ 0 \le z \le 1 \}$

using three different orders of integration.

3–8 Evaluate the iterated integral.

3.
$$\int_{0}^{1} \int_{0}^{z} \int_{0}^{x+z} 6xz \, dy \, dx \, dz$$

4.
$$\int_{0}^{1} \int_{x}^{2x} \int_{0}^{y} 2xyz \, dz \, dy \, dx$$

5.
$$\int_{0}^{3} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} ze^{y} \, dx \, dz \, dy$$

6.
$$\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} ze^{-y^{2}} \, dx \, dy \, dz$$

7.
$$\int_{0}^{\pi/2} \int_{0}^{y} \int_{0}^{x} \cos(x + y + z) \, dz \, dx \, dy$$

8.
$$\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \int_{0}^{xz} x^{2} \sin y \, dy \, dz \, dx$$

- **9–18** Evaluate the triple integral.
- 9. $\iiint_E 2x \, dV$, where $E = \{(x, y, z) \mid 0 \le y \le 2, \ 0 \le x \le \sqrt{4 - y^2}, \ 0 \le z \le y\}$
- **10.** $\iiint_E yz \cos(x^5) \, dV$, where $E = \{(x, y, z) \mid 0 \le x \le 1, \ 0 \le y \le x, \ x \le z \le 2x\}$
- **II.** $\iiint_E 6xy \, dV$, where *E* lies under the plane z = 1 + x + yand above the region in the *xy*-plane bounded by the curves $y = \sqrt{x}$, y = 0, and x = 1
- 12. $\iiint_E y \, dV$, where *E* is bounded by the planes x = 0, y = 0, z = 0, and 2x + 2y + z = 4
- 13. $\iiint_E x^2 e^y dV$, where *E* is bounded by the parabolic cylinder $z = 1 y^2$ and the planes z = 0, x = 1, and x = -1
- 14. $\iiint_E xy \, dV$, where *E* is bounded by the parabolic cylinders $y = x^2$ and $x = y^2$ and the planes z = 0 and z = x + y
- **15.** $\iiint_T x^2 dV$, where *T* is the solid tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1)
- **16.** $\iiint_T xyz \, dV$, where *T* is the solid tetrahedron with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), and (1, 0, 1)
- 17. $\iiint_E x \, dV$, where *E* is bounded by the paraboloid $x = 4y^2 + 4z^2$ and the plane x = 4
- **18.** $\iiint_E z \, dV$, where *E* is bounded by the cylinder $y^2 + z^2 = 9$ and the planes x = 0, y = 3x, and z = 0 in the first octant
- **19–22** Use a triple integral to find the volume of the given solid.
- **19.** The tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4

- **20.** The solid bounded by the elliptic cylinder $4x^2 + z^2 = 4$ and the planes y = 0 and y = z + 2
- **21.** The solid enclosed by the cylinder $x = y^2$ and the planes z = 0 and x + z = 1
- **22.** The solid enclosed by the paraboloid $x = y^2 + z^2$ and the plane x = 16
- (a) Express the volume of the wedge in the first octant that is cut from the cylinder y² + z² = 1 by the planes y = x and x = 1 as a triple integral.
- (b) Use either the Table of Integrals (on Reference Pages 6–10) or a computer algebra system to find the exact value of the triple integral in part (a).
 - **24.** (a) In the **Midpoint Rule for triple integrals** we use a triple Riemann sum to approximate a triple integral over a box *B*, where f(x, y, z) is evaluated at the center $(\bar{x}_i, \bar{y}_j, \bar{z}_k)$ of the box B_{ijk} . Use the Midpoint Rule to estimate $\iiint_B \sqrt{x^2 + y^2 + z^2} \, dV$, where *B* is the cube defined by $0 \le x \le 4, \ 0 \le y \le 4, \ 0 \le z \le 4$. Divide *B* into eight cubes of equal size.
 - (b) Use a computer algebra system to approximate the integral in part (a) correct to the nearest integer. Compare with the answer to part (a).

25–26 Use the Midpoint Rule for triple integrals (Exercise 24) to estimate the value of the integral. Divide B into eight sub-boxes of equal size.

25.
$$\iiint_{B} \frac{1}{\ln(1 + x + y + z)} dV$$
, where

$$B = \{(x, y, z) \mid 0 \le x \le 4, \ 0 \le y \le 8, \ 0 \le z \le 4\}$$

CAS

26.
$$\iiint_B \sin(xy^2z^3) \, dV$$
, where
 $B = \{(x, y, z) \mid 0 \le x \le 4, \ 0 \le y \le 2, \ 0 \le z \le 1\}$

27–28 Sketch the solid whose volume is given by the iterated integral.

27.
$$\int_0^1 \int_0^{1-x} \int_0^{2-2z} dy \, dz \, dx$$
 28.
$$\int_0^2 \int_0^{2-y} \int_0^{4-y^2} dx \, dz \, dy$$

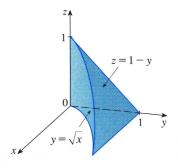
29–32 Express the integral $\iiint_E f(x, y, z) dV$ as an iterated integral in six different ways, where *E* is the solid bounded by the given surfaces.

29.
$$y = 4 - x^2 - 4z^2$$
, $y = 0$
30. $y^2 + z^2 = 9$, $x = -2$, $x = 2$
31. $y = x^2$, $z = 0$, $y + 2z = 4$
32. $x = 2$, $y = 2$, $z = 0$, $x + y - 2z = 2$

33. The figure shows the region of integration for the integral

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dz \, dy \, dx$$

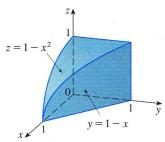
Rewrite this integral as an equivalent iterated integral in the five other orders.



34. The figure shows the region of integration for the integral

$$\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dy \, dz \, dx$$

Rewrite this integral as an equivalent iterated integral in the five other orders.



35–36 Write five other iterated integrals that are equal to the given iterated integral.

35.
$$\int_{0}^{1} \int_{y}^{1} \int_{0}^{y} f(x, y, z) dz dx dy$$

36.
$$\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) dz dy dx$$

37–40 Find the mass and center of mass of the solid *E* with the given density function ρ .

- **37.** *E* is the solid of Exercise 11; $\rho(x, y, z) = 2$
- **38.** *E* is bounded by the parabolic cylinder $z = 1 y^2$ and the planes x + z = 1, x = 0, and z = 0; $\rho(x, y, z) = 4$
- **39.** *E* is the cube given by $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$; $\rho(x, y, z) = x^2 + y^2 + z^2$

- **40.** E is the tetrahedron bounded by the planes x = 0, y = 0, z = 0, x + y + z = 1; $\rho(x, y, z) = y$
- **41–44** Assume that the solid has constant density *k*.
- **41.** Find the moments of inertia for a cube with side length *L* if one vertex is located at the origin and three edges lie along the coordinate axes.
- **42.** Find the moments of inertia for a rectangular brick with dimensions *a*, *b*, and *c* and mass *M* if the center of the brick is situated at the origin and the edges are parallel to the coordinate axes.
- 43. Find the moment of inertia about the *z*-axis of the solid cylinder x² + y² ≤ a², 0 ≤ z ≤ h.
- **44.** Find the moment of inertia about the *z*-axis of the solid cone $\sqrt{x^2 + y^2} \le z \le h$.

45–46 Set up, but do not evaluate, integral expressions for (a) the mass, (b) the center of mass, and (c) the moment of inertia about the *z*-axis.

- **45.** The solid of Exercise 21; $\rho(x, y, z) = \sqrt{x^2 + y^2}$
- **46.** The hemisphere $x^2 + y^2 + z^2 \le 1$, $z \ge 0$; $\rho(x, y, z) = \sqrt{x^2 + y^2 + z^2}$
- 47. Let E be the solid in the first octant bounded by the cylinder x² + y² = 1 and the planes y = z, x = 0, and z = 0 with the density function ρ(x, y, z) = 1 + x + y + z. Use a computer algebra system to find the exact values of the following quantities for E.
 - (a) The mass
 - (b) The center of mass
 - (c) The moment of inertia about the z-axis
- **(45) 48.** If *E* is the solid of Exercise 18 with density function

 $\rho(x, y, z) = x^2 + y^2$, find the following quantities, correct to three decimal places.

- (a) The mass
- (b) The center of mass
- (c) The moment of inertia about the *z*-axis
- 49. The joint density function for random variables X, Y, and Z is f(x, y, z) = Cxyz if 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2, and f(x, y, z) = 0 otherwise.
 (a) Find the value of the constant C.
 - (b) Find $P(X \le 1, Y \le 1, Z \le 1)$.
 - (c) Find $P(X + Y + Z \le 1)$.
- 50. Suppose X, Y, and Z are random variables with joint density function f(x, y, z) = Ce^{-(0.5x+0.2y+0.1z)} if x ≥ 0, y ≥ 0, z ≥ 0, and f(x, y, z) = 0 otherwise.
 (a) Find the value of the constant C.
 (b) Find P(X ≤ 1, Y ≤ 1).
 (c) Find P(X ≤ 1, Y ≤ 1, Z ≤ 1).

DISCOVERY PROJECT

51–52 The average value of a function f(x, y, z) over a solid region E is defined to be

$$f_{\text{ave}} = \frac{1}{V(E)} \iiint_E f(x, y, z) \, dV$$

where V(E) is the volume of *E*. For instance, if ρ is a density function, then ρ_{ave} is the average density of *E*.

- **51.** Find the average value of the function f(x, y, z) = xyz over the cube with side length L that lies in the first octant with one vertex at the origin and edges parallel to the coordinate axes.
- **52.** Find the average value of the function $f(x, y, z) = x^2z + y^2z$ over the region enclosed by the paraboloid $z = 1 x^2 y^2$ and the plane z = 0.
- 53. Find the region *E* for which the triple integral

$$\iiint_{E} (1 - x^2 - 2y^2 - 3z^2) \, dV$$

is a maximum.

VOLUMES OF HYPERSPHERES

In this project we find formulas for the volume enclosed by a hypersphere in *n*-dimensional space.

- 1. Use a double integral and trigonometric substitution, together with Formula 64 in the Table of Integrals, to find the area of a circle with radius *r*.
- 2. Use a triple integral and trigonometric substitution to find the volume of a sphere with radius *r*.
- 3. Use a quadruple integral to find the hypervolume enclosed by the hypersphere $x^2 + y^2 + z^2 + w^2 = r^2$ in \mathbb{R}^4 . (Use only trigonometric substitution and the reduction formulas for $\int \sin^n x \, dx$ or $\int \cos^n x \, dx$.)
- Use an *n*-tuple integral to find the volume enclosed by a hypersphere of radius *r* in *n*-dimensional space Rⁿ. [*Hint:* The formulas are different for *n* even and *n* odd.]



TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

In plane geometry the polar coordinate system is used to give a convenient description of certain curves and regions. (See Section 11.3.) Figure 1 enables us to recall the connection between polar and Cartesian coordinates. If the point *P* has Cartesian coordinates (x, y) and polar coordinates (r, θ) , then, from the figure,

$$x = r \cos \theta \qquad y = r \sin \theta$$
$$r^{2} = x^{2} + y^{2} \qquad \tan \theta = \frac{y}{x}$$

FIGURE I

In three dimensions there is a coordinate system, called *cylindrical coordinates*, that is similar to polar coordinates and gives convenient descriptions of some commonly occurring surfaces and solids. As we will see, some triple integrals are much easier to evaluate in cylindrical coordinates.

16.7 EXERCISES

I-2 Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.

I. (a) $(2, \pi/4, 1)$	(b) $(4, -\pi/3, 5)$
2. (a) (1, π, e)	(b) $(1, 3\pi/2, 2)$

3–4 Change from rectangular to cylindrical coordinates.

3. (a) (1, −1, 4)	(b) $\left(-1, -\sqrt{3}, 2\right)$
4. (a) $(2\sqrt{3}, 2, -1)$	(b) (4, −3, 2)

5–6 Describe in words the surface whose equation is given.

5. $\theta = \pi/4$ **6.** r = 5

7-8 Identify the surface whose equation is given.

7. $z = 4 - r^2$ **8.** $2r^2 + z^2 = 1$

9–10 Write the equations in cylindrical coordinates.

9. (a)
$$z = x^2 + y^2$$
(b) $x^2 + y^2 = 2y$ 10. (a) $3x + 2y + z = 6$ (b) $-x^2 - y^2 + z^2 = 1$

11-12 Sketch the solid described by the given inequalities.

- II. $0 \le r \le 2$, $-\pi/2 \le \theta \le \pi/2$, $0 \le z \le 1$
- $12. \ 0 \le \theta \le \pi/2, \quad r \le z \le 2$
- 13. A cylindrical shell is 20 cm long, with inner radius 6 cm and outer radius 7 cm. Write inequalities that describe the shell in an appropriate coordinate system. Explain how you have positioned the coordinate system with respect to the shell.
- **14.** Use a graphing device to draw the solid enclosed by the paraboloids $z = x^2 + y^2$ and $z = 5 x^2 y^2$.

15–16 Sketch the solid whose volume is given by the integral and evaluate the integral.

15.
$$\int_0^4 \int_0^{2\pi} \int_r^4 r \, dz \, d\theta \, dr$$
 16.
$$\int_0^{\pi/2} \int_0^2 \int_0^{9-r^2} r \, dz \, dr \, d\theta$$

- 17-26 Use cylindrical coordinates.
- **17.** Evaluate $\iiint_E \sqrt{x^2 + y^2} \, dV$, where *E* is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4.
- **18.** Evaluate $\iiint_E (x^3 + xy^2) dV$, where *E* is the solid in the first octant that lies beneath the paraboloid $z = 1 x^2 y^2$.
- 19. Evaluate $\iiint_E y \, dV$, where *E* is the solid that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, above the *xy*-plane, and below the plane z = x + 2.

- **20.** Evaluate $\iiint_E x \, dV$, where *E* is enclosed by the planes z = 0 and z = x + y + 5 and by the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.
- **21.** Evaluate $\iiint_E x^2 dV$, where *E* is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z^2 = 4x^2 + 4y^2$.
- 22. Find the volume of the solid that lies within both the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 4$.
- **23.** (a) Find the volume of the region *E* bounded by the paraboloids $z = x^2 + y^2$ and $z = 36 3x^2 3y^2$.
 - (b) Find the centroid of *E* (the center of mass in the case where the density is constant).
- **24.** (a) Find the volume of the solid that the cylinder $r = a \cos \theta$ cuts out of the sphere of radius *a* centered at the origin.
 - (b) Illustrate the solid of part (a) by graphing the sphere and the cylinder on the same screen.
- **25.** Find the mass and center of mass of the solid *S* bounded by the paraboloid $z = 4x^2 + 4y^2$ and the plane z = a (a > 0) if *S* has constant density *K*.
- **26.** Find the mass of a ball *B* given by $x^2 + y^2 + z^2 \le a^2$ if the density at any point is proportional to its distance from the *z*-axis.

27–28 Evaluate the integral by changing to cylindrical coordinates.

27.
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \, dz \, dx \, dy$$

28.
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} \, dz \, dy \, dx$$

AM

- **29.** When studying the formation of mountain ranges, geologists estimate the amount of work required to lift a mountain from sea level. Consider a mountain that is essentially in the shape of a right circular cone. Suppose that the weight density of the material in the vicinity of a point *P* is g(P) and the height is h(P).
 - (a) Find a definite integral that represents the total work done in forming the mountain.
 - (b) Assume that Mount Fuji in Japan is in the shape of a right circular cone with radius 19,000 m, height 3800 m, and density a constant 3200 kg/m³. How much work was done in forming Mount Fuji if the land was initially at sea level?

16.8 EXERCISES

1–2 Plot the point whose spherical coordinates are given. Then find the rectangular coordinates of the point.

I. (a) (1, 0, 0)	(b) (2, $\pi/3$, $\pi/4$)
2. (a) (5, π , $\pi/2$)	(b) $(4, 3\pi/4, \pi/3)$

3-4 Change from rectangular to spherical coordinates.

3. (a) $(1, \sqrt{3}, 2\sqrt{3})$	(b) $(0, -1, -1)$
4. (a) $(1, 1, \sqrt{2})$	(b) $\left(-\sqrt{3}, -3, -2\right)$

5–6 Describe in words the surface whose equation is given.

5. $\phi = \pi/3$ **6.** $\rho = 3$

7–8 Identify the surface whose equation is given.

7. $\rho = \sin \theta \sin \phi$ **8.** $\rho^2 (\sin^2 \phi \sin^2 \theta + \cos^2 \phi) = 9$

9–10 Write the equation in spherical coordinates.

9. (a) $z^2 = x^2$	$+ y^{2}$	(b) $x^2 + z^2 = 9$	
10. (a) $x^2 - 2x$	$+y^2 + z^2 = 0$	(b) $x + 2y + 3z = 1$	

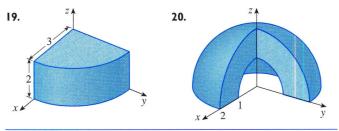
11–14 Sketch the solid described by the given inequalities.

11. $\rho \le 2$, $0 \le \phi \le \pi/2$, $0 \le \theta \le \pi/2$ **12.** $2 \le \rho \le 3$, $\pi/2 \le \phi \le \pi$ **13.** $\rho \le 1$, $3\pi/4 \le \phi \le \pi$ **14.** $\rho \le 2$, $\rho \le \csc \phi$

- **15.** A solid lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$. Write a description of the solid in terms of inequalities involving spherical coordinates.
- 16. (a) Find inequalities that describe a hollow ball with diameter 30 cm and thickness 0.5 cm. Explain how you have positioned the coordinate system that you have chosen.
 - (b) Suppose the ball is cut in half. Write inequalities that describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral and evaluate the integral.

17. $\int_{0}^{\pi/6} \int_{0}^{\pi/2} \int_{0}^{3} \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$ **18.** $\int_{0}^{2\pi} \int_{\pi/2}^{\pi} \int_{1}^{2} \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$ **19–20** Set up the triple integral of an arbitrary continuous function f(x, y, z) in cylindrical or spherical coordinates over the solid shown.



21-34 Use spherical coordinates.

- **21.** Evaluate $\iiint_B (x^2 + y^2 + z^2)^2 dV$, where *B* is the ball with center the origin and radius 5.
- **22.** Evaluate $\iiint_H (9 x^2 y^2) dV$, where *H* is the solid hemisphere $x^2 + y^2 + z^2 \le 9, z \ge 0$.
- **23.** Evaluate $\iiint_E z \, dV$, where *E* lies between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant.
- **24.** Evaluate $\iiint_E e^{\sqrt{x^2+y^2+z^2}} dV$, where *E* is enclosed by the sphere $x^2 + y^2 + z^2 = 9$ in the first octant.
- **25.** Evaluate $\iiint_E x^2 dV$, where *E* is bounded by the *xz*-plane and the hemispheres $y = \sqrt{9 x^2 z^2}$ and $y = \sqrt{16 x^2 z^2}$.
- **26.** Evaluate $\iiint_E xyz \, dV$, where *E* lies between the spheres $\rho = 2$ and $\rho = 4$ and above the cone $\phi = \pi/3$.
- **27.** Find the volume of the part of the ball $\rho \le a$ that lies between the cones $\phi = \pi/6$ and $\phi = \pi/3$.
- **28.** Find the average distance from a point in a ball of radius *a* to its center.
- **29.** (a) Find the volume of the solid that lies above the cone $\phi = \pi/3$ and below the sphere $\rho = 4 \cos \phi$.
 - (b) Find the centroid of the solid in part (a).
- **30.** Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the *xy*-plane, and below the cone $z = \sqrt{x^2 + y^2}$.
- 31. Find the centroid of the solid in Exercise 25.
- 32. Let H be a solid hemisphere of radius a whose density at any point is proportional to its distance from the center of the base.(a) Find the mass of H.
 - (b) Find the center of mass of H.
 - (c) Find the moment of inertia of H about its axis.
- **33.** (a) Find the centroid of a solid homogeneous hemisphere of radius *a*.
 - (b) Find the moment of inertia of the solid in part (a) about a diameter of its base.

34. Find the mass and center of mass of a solid hemisphere of radius *a* if the density at any point is proportional to its distance from the base.

35–38 Use cylindrical or spherical coordinates, whichever seems more appropriate.

- **35.** Find the volume and centroid of the solid *E* that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.
- 36. Find the volume of the smaller wedge cut from a sphere of radius *a* by two planes that intersect along a diameter at an angle of π/6.
- **(AS)** 37. Evaluate $\iiint_E z \, dV$, where *E* lies above the paraboloid $z = x^2 + y^2$ and below the plane z = 2y. Use either the Table of Integrals (on Reference Pages 6–10) or a computer algebra system to evaluate the integral.
- **38.** (a) Find the volume enclosed by the torus $\rho = \sin \phi$. (b) Use a computer to draw the torus.

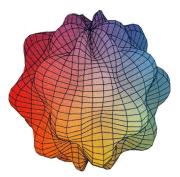
39–40 Evaluate the integral by changing to spherical coordinates.

39. $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}-y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} xy \, dz \, dy \, dx$ **40.** $\int_{-a}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}} (x^{2}z + y^{2}z + z^{3}) \, dz \, dx \, dy$

41. Use a graphing device to draw a silo consisting of a cylinder with radius 3 and height 10 surmounted by a hemisphere.

42. The latitude and longitude of a point *P* in the Northern Hemisphere are related to spherical coordinates ρ , θ , ϕ as follows. We take the origin to be the center of the earth and the positive *z*-axis to pass through the North Pole. The positive *x*-axis passes through the point where the prime meridian (the meridian through Greenwich, England) intersects the equator. Then the latitude of *P* is $\alpha = 90^\circ - \phi^\circ$ and the longitude is $\beta = 360^\circ - \theta^\circ$. Find the great-circle distance from Los Angeles (lat. 34.06° N, long. 118.25° W) to Montréal (lat. 45.50° N, long. 73.60° W). Take the radius of the earth to be 6370 km. (A *great circle* is the circle of intersection of a sphere and a plane through the center of the sphere.)

(Δ5) 43. The surfaces ρ = 1 + ¹/₅ sin mθ sin nφ have been used as models for tumors. The "bumpy sphere" with m = 6 and n = 5 is shown. Use a computer algebra system to find the volume it encloses.



44. Show that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^2 + y^2 + z^2} \, e^{-(x^2 + y^2 + z^2)} \, dx \, dy \, dz = 2\pi$$

(The improper triple integral is defined as the limit of a triple integral over a solid sphere as the radius of the sphere increases indefinitely.)

45. (a) Use cylindrical coordinates to show that the volume of the solid bounded above by the sphere r² + z² = a² and below by the cone z = r cot φ₀ (or φ = φ₀), where 0 < φ₀ < π/2, is

$$V = \frac{2\pi a^3}{3} \left(1 - \cos\phi_0\right)$$

(b) Deduce that the volume of the spherical wedge given by $\rho_1 \le \rho \le \rho_2$, $\theta_1 \le \theta \le \theta_2$, $\phi_1 \le \phi \le \phi_2$ is

$$\Delta V = \frac{\rho_2^3 - \rho_1^3}{3} (\cos \phi_1 - \cos \phi_2)(\theta_2 - \theta_1)$$

(c) Use the Mean Value Theorem to show that the volume in part (b) can be written as

$$\Delta V = \tilde{\rho}^2 \sin \tilde{\phi} \, \Delta \rho \, \Delta \theta \, \Delta \phi$$

where $\tilde{\rho}$ lies between ρ_1 and ρ_2 , $\bar{\phi}$ lies between ϕ_1 and ϕ_2 , $\Delta \rho = \rho_2 - \rho_1$, $\Delta \theta = \theta_2 - \theta_1$, and $\Delta \phi = \phi_2 - \phi_1$.

16.9 EXERCISES

I–6 Find the Jacobian of the transformation.

1.
$$x = 5u - v$$
, $y = u + 3v$
2. $x = uv$, $y = u/v$
3. $x = \frac{u}{u + v}$, $y = \frac{v}{u - v}$
4. $x = \alpha \sin \beta$, $y = \alpha \cos \beta$
5. $x = uv$, $y = vw$, $z = uw$
6. $x = v + w^2$, $y = w + u^2$, $z = u + v^2$

7-10 Find the image of the set S under the given transformation.

 v^2

7.
$$S = \{(u, v) \mid 0 \le u \le 3, \ 0 \le v \le 2\};$$

 $x = 2u + 3v, \ y = u - v$

- 8. S is the square bounded by the lines u = 0, u = 1, v = 0, v = 1; x = v, $y = u(1 + v^2)$
- 9. S is the triangular region with vertices (0, 0), (1, 1), (0, 1);
 x = u², y = v
- **10.** S is the disk given by $u^2 + v^2 \le 1$; x = au, y = bv

II–I6 Use the given transformation to evaluate the integral.

- **11.** $\iint_R (x 3y) dA$, where *R* is the triangular region with vertices $(0, 0), (2, 1), \text{ and } (1, 2); \quad x = 2u + v, \ y = u + 2v$
- 12. $\iint_{R} (4x + 8y) dA$, where *R* is the parallelogram with vertices (-1, 3), (1, -3), (3, -1), and (1, 5); $x = \frac{1}{4}(u + v), y = \frac{1}{4}(v - 3u)$
- **13.** $\iint_R x^2 dA$, where *R* is the region bounded by the ellipse $9x^2 + 4y^2 = 36$; x = 2u, y = 3v
- 14. $\iint_{R} (x^{2} xy + y^{2}) dA$, where *R* is the region bounded by the ellipse $x^{2} - xy + y^{2} = 2$; $x = \sqrt{2} u - \sqrt{2/3} v$, $y = \sqrt{2} u + \sqrt{2/3} v$
- 15. ∬_R xy dA, where R is the region in the first quadrant bounded by the lines y = x and y = 3x and the hyperbolas xy = 1, xy = 3; x = u/v, y = v

- **16.** $\iint_R y^2 dA$, where *R* is the region bounded by the curves $xy = 1, xy = 2, xy^2 = 1, xy^2 = 2; \quad u = xy, v = xy^2$. Illustrate by using a graphing calculator or computer to draw *R*.
 - 17. (a) Evaluate $\iiint_E dV$, where *E* is the solid enclosed by the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. Use the transformation x = au, y = bv, z = cw.
 - (b) The earth is not a perfect sphere; rotation has resulted in flattening at the poles. So the shape can be approximated by an ellipsoid with a = b = 6378 km and c = 6356 km. Use part (a) to estimate the volume of the earth.
 - **18.** If the solid of Exercise 17(a) has constant density *k*, find its moment of inertia about the *z*-axis.

19–23 Evaluate the integral by making an appropriate change of variables.

- 19. $\iint_{R} \frac{x 2y}{3x y} dA$, where *R* is the parallelogram enclosed by the lines x 2y = 0, x 2y = 4, 3x y = 1, and 3x y = 8
- **20.** $\iint_R (x + y)e^{x^2 y^2} dA$, where *R* is the rectangle enclosed by the lines x y = 0, x y = 2, x + y = 0, and x + y = 3
- **21.** $\iint_{R} \cos\left(\frac{y-x}{y+x}\right) dA$, where *R* is the trapezoidal region with vertices (1, 0), (2, 0), (0, 2), and (0, 1)
- **22.** $\iint_R \sin(9x^2 + 4y^2) dA$, where *R* is the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = 1$
- **23.** $\iint_{R} e^{x+y} dA$, where R is given by the inequality $|x| + |y| \le 1$
- **24.** Let f be continuous on [0, 1] and let R be the triangular region with vertices (0, 0), (1, 0), and (0, 1). Show that

$$\iint\limits_R f(x+y) \, dA = \int_0^1 u f(u) \, du$$

REVIEW

CONCEPT CHECK

- **I.** Suppose *f* is a continuous function defined on a rectangle $R = [a, b] \times [c, d]$.
 - (a) Write an expression for a double Riemann sum of *f*. If *f*(*x*, *y*) ≥ 0, what does the sum represent?
 - (b) Write the definition of $\iint_R f(x, y) dA$ as a limit.
 - (c) What is the geometric interpretation of ∬_R f(x, y) dA if f(x, y) ≥ 0? What if f takes on both positive and negative values?

16

- (d) How do you evaluate $\iint_{R} f(x, y) dA$?
- (e) What does the Midpoint Rule for double integrals say?
- (f) Write an expression for the average value of f.
- **2.** (a) How do you define $\iint_D f(x, y) dA$ if D is a bounded region that is not a rectangle?
 - (b) What is a type I region? How do you evaluate ∬_D f(x, y) dA if D is a type I region?
 - (c) What is a type II region? How do you evaluate $\iint_D f(x, y) dA$ if *D* is a type II region?
 - (d) What properties do double integrals have?
- **3.** How do you change from rectangular coordinates to polar coordinates in a double integral? Why would you want to make the change?
- If a lamina occupies a plane region D and has density function ρ(x, y), write expressions for each of the following in terms of double integrals.
 - (a) The mass
 - (b) The moments about the axes
 - (c) The center of mass
 - (d) The moments of inertia about the axes and the origin
- **5.** Let *f* be a joint density function of a pair of continuous random variables *X* and *Y*.
 - (a) Write a double integral for the probability that *X* lies between *a* and *b* and *Y* lies between *c* and *d*.

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

$$\int_{-1}^{2} \int_{0}^{6} x^{2} \sin(x-y) \, dx \, dy = \int_{0}^{6} \int_{-1}^{2} x^{2} \sin(x-y) \, dy \, dx$$

2.
$$\int_0^1 \int_0^x \sqrt{x + y^2} \, dy \, dx = \int_0^x \int_0^1 \sqrt{x + y^2} \, dx \, dy$$

- **3.** $\int_{1}^{2} \int_{3}^{4} x^{2} e^{y} dy dx = \int_{1}^{2} x^{2} dx \int_{3}^{4} e^{y} dy$
- **4.** $\int_{-1}^{1} \int_{0}^{1} e^{x^{2} + y^{2}} \sin y \, dx \, dy = 0$

- (b) What properties does *f* possess?
- (c) What are the expected values of *X* and *Y*?
- 6. (a) Write the definition of the triple integral of f over a rectangular box B.
 - (b) How do you evaluate $\iiint_B f(x, y, z) dV$?
 - (c) How do you define $\iiint_E f(x, y, z) dV$ if *E* is a bounded solid region that is not a box?
 - (d) What is a type 1 solid region? How do you evaluate ∭_E f(x, y, z) dV if E is such a region?
 - (e) What is a type 2 solid region? How do you evaluate ∭_E f(x, y, z) dV if E is such a region?
 - (f) What is a type 3 solid region? How do you evaluate $\iiint_E f(x, y, z) dV$ if *E* is such a region?
- 7. Suppose a solid object occupies the region *E* and has density function ρ(x, y, z). Write expressions for each of the following.
 (a) The mass
 - (b) The moments about the coordinate planes
 - (c) The coordinates of the center of mass
 - (d) The moments of inertia about the axes
- **8.** (a) How do you change from rectangular coordinates to cylindrical coordinates in a triple integral?
 - (b) How do you change from rectangular coordinates to spherical coordinates in a triple integral?
 - (c) In what situations would you change to cylindrical or spherical coordinates?
- **9.** (a) If a transformation T is given by x = g(u, v),
 - y = h(u, v), what is the Jacobian of T?
 - (b) How do you change variables in a double integral?
 - (c) How do you change variables in a triple integral?
- 5. If D is the disk given by $x^2 + y^2 \le 4$, then

$$\iint_{D} \sqrt{4 - x^2 - y^2} \, dA = \frac{16}{3} \, \pi$$

6.
$$\int_{1}^{4} \int_{0}^{1} \left(x^{2} + \sqrt{y} \right) \sin(x^{2}y^{2}) dx dy \leq 9$$

7. The integral

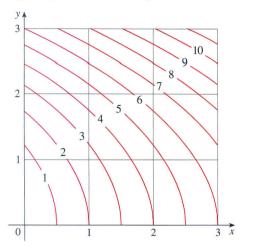
 $\int_0^{2\pi} \int_0^2 \int_r^2 dz \, dr \, d\theta$

represents the volume enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 2.

8. The integral $\iiint_E kr^3 dz dr d\theta$ represents the moment of inertia about the *z*-axis of a solid *E* with constant density *k*.

EXERCISES

1. A contour map is shown for a function f on the square $R = [0, 3] \times [0, 3]$. Use a Riemann sum with nine terms to estimate the value of $\iint_R f(x, y) dA$. Take the sample points to be the upper right corners of the squares.

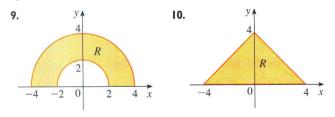


2. Use the Midpoint Rule to estimate the integral in Exercise 1.

3–8 Calculate the iterated integral.

3.
$$\int_{1}^{2} \int_{0}^{2} (y + 2xe^{y}) dx dy$$
4.
$$\int_{0}^{1} \int_{0}^{1} ye^{xy} dx dy$$
5.
$$\int_{0}^{1} \int_{0}^{x} \cos(x^{2}) dy dx$$
6.
$$\int_{0}^{1} \int_{x}^{e^{x}} 3xy^{2} dy dx$$
7.
$$\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} y \sin x dz dy dx$$
8.
$$\int_{0}^{1} \int_{0}^{y} \int_{x}^{1} 6xyz dz dx dy$$

9–10 Write $\iint_R f(x, y) dA$ as an iterated integral, where *R* is the region shown and *f* is an arbitrary continuous function on *R*.



II. Describe the region whose area is given by the integral

$$\int_0^{\pi/2} \int_0^{\sin 2\theta} r \, dr \, d\theta$$

12. Describe the solid whose volume is given by the integral

$$\int_0^{\pi/2} \int_0^{\pi/2} \int_1^2 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

and evaluate the integral.

13–14 Calculate the iterated integral by first reversing the order of integration.

13.
$$\int_0^1 \int_x^1 \cos(y^2) \, dy \, dx$$
 14. $\int_0^1 \int_{\sqrt{y}}^1 \frac{y e^x}{x^3} \, dx \, dy$

- 15–28 Calculate the value of the multiple integral.
- **15.** $\iint_{R} ye^{xy} dA$, where $R = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le 3\}$
- **16.** $\iint_{D} xy \, dA$, where $D = \{(x, y) \mid 0 \le y \le 1, y^2 \le x \le y + 2\}$
- 17. $\iint_{D} \frac{y}{1+x^2} dA,$ where *D* is bounded by $y = \sqrt{x}, y = 0, x = 1$
- **18.** $\iint_{D} \frac{1}{1+x^2} dA$, where *D* is the triangular region with vertices (0, 0), (1, 1), and (0, 1)
- **19.** $\iint_D y \, dA$, where *D* is the region in the first quadrant bounded by the parabolas $x = y^2$ and $x = 8 y^2$
- **20.** $\iint_D y \, dA$, where *D* is the region in the first quadrant that lies above the hyperbola xy = 1 and the line y = x and below the line y = 2
- **21.** $\iint_D (x^2 + y^2)^{3/2} dA$, where *D* is the region in the first quadrant bounded by the lines y = 0 and $y = \sqrt{3}x$ and the circle $x^2 + y^2 = 9$
- **22.** $\iint_D x \, dA$, where *D* is the region in the first quadrant that lies between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$
- **23.** $\iiint_E xy \, dV$, where $E = \{(x, y, z) \mid 0 \le x \le 3, \ 0 \le y \le x, \ 0 \le z \le x + y\}$
- **24.** $\iiint_T xy \, dV$, where *T* is the solid tetrahedron with vertices $(0, 0, 0), (\frac{1}{3}, 0, 0), (0, 1, 0), \text{ and } (0, 0, 1)$
- **25.** $\iiint_E y^2 z^2 dV$, where *E* is bounded by the paraboloid $x = 1 y^2 z^2$ and the plane x = 0
- **26.** $\iiint_E z \, dV$, where *E* is bounded by the planes y = 0, z = 0, x + y = 2 and the cylinder $y^2 + z^2 = 1$ in the first octant
- **27.** $\iiint_E yz \, dV$, where *E* lies above the plane z = 0, below the plane z = y, and inside the cylinder $x^2 + y^2 = 4$
- **28.** $\iiint_H z^3 \sqrt{x^2 + y^2 + z^2} dV$, where *H* is the solid hemisphere that lies above the *xy*-plane and has center the origin and radius 1
- **29–34** Find the volume of the given solid.
- **29.** Under the paraboloid $z = x^2 + 4y^2$ and above the rectangle $R = [0, 2] \times [1, 4]$
- **30.** Under the surface $z = x^2 y$ and above the triangle in the *xy*-plane with vertices (1, 0), (2, 1), and (4, 0)

- **31.** The solid tetrahedron with vertices (0, 0, 0), (0, 0, 1), (0, 2, 0), and (2, 2, 0)
- **32.** Bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 3
- **33.** One of the wedges cut from the cylinder $x^2 + 9y^2 = a^2$ by the planes z = 0 and z = mx
- **34.** Above the paraboloid $z = x^2 + y^2$ and below the half-cone $z = \sqrt{x^2 + y^2}$
- **35.** Consider a lamina that occupies the region *D* bounded by the parabola $x = 1 y^2$ and the coordinate axes in the first quadrant with density function $\rho(x, y) = y$.
 - (a) Find the mass of the lamina.
 - (b) Find the center of mass.
 - (c) Find the moments of inertia and radii of gyration about the *x* and *y*-axes.
- **36.** A lamina occupies the part of the disk $x^2 + y^2 \le a^2$ that lies in the first quadrant.
 - (a) Find the centroid of the lamina.
 - (b) Find the center of mass of the lamina if the density function is $\rho(x, y) = xy^2$.
- **37.** Find the centroid of a right circular cone with height *h* and base radius *a*. (Place the cone so that its base is in the *xy*-plane with center the origin and its axis along the positive *z*-axis.)
- **38.** Find the moment of inertia of the cone in Exercise 37 about its axis (the *z*-axis).
- **39.** Use polar coordinates to evaluate

$$\int_0^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} (x^3 + xy^2) \, dy \, dx$$

40. Use spherical coordinates to evaluate

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2 + y^2 + z^2} \, dz \, dx \, dy$$

- **41.** If *D* is the region bounded by the curves $y = 1 x^2$ and $y = e^x$, find the approximate value of the integral $\iint_D y^2 dA$. (Use a graphing device to estimate the points of intersection of the curves.)
- **(AS)** 42. Find the center of mass of the solid tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 2, 0), (0, 0, 3) and density function $\rho(x, y, z) = x^2 + y^2 + z^2$.
 - **43.** The joint density function for random variables *X* and *Y* is

$$f(x, y) = \begin{cases} C(x + y) & \text{if } 0 \le x \le 3, \ 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the value of the constant C.
- (b) Find $P(X \le 2, Y \ge 1)$.
- (c) Find $P(X + Y \le 1)$.

- **44.** A lamp has three bulbs, each of a type with average lifetime 800 hours. If we model the probability of failure of the bulbs by an exponential density function with mean 800, find the probability that all three bulbs fail within a total of 1000 hours.
- 45. Rewrite the integral

$$\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x, y, z) \, dz \, dy \, dx$$

as an iterated integral in the order dx dy dz.

46. Give five other iterated integrals that are equal to

$$\int_0^2 \int_0^{y^3} \int_0^{y^2} f(x, y, z) \, dz \, dx \, dy$$

- **47.** Use the transformation u = x y, v = x + y to evaluate $\iint_R (x y)/(x + y) dA$, where *R* is the square with vertices (0, 2), (1, 1), (2, 2), and (1, 3).
- **48.** Use the transformation $x = u^2$, $y = v^2$, $z = w^2$ to find the volume of the region bounded by the surface $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$ and the coordinate planes.
- **49.** Use the change of variables formula and an appropriate transformation to evaluate $\iint_R xy \, dA$, where *R* is the square with vertices (0, 0), (1, 1), (2, 0), and (1, -1).
- **50.** The Mean Value Theorem for double integrals says that if f is a continuous function on a plane region D that is of type I or II, then there exists a point (x_0, y_0) in D such that

$$\iint_{D} f(x, y) \, dA = f(x_0, y_0) A(D)$$

Use the Extreme Value Theorem (15.7.8) and Property 16.3.11 of integrals to prove this theorem. (Use the proof of the single-variable version in Section 6.5 as a guide.)

51. Suppose that *f* is continuous on a disk that contains the point (*a*, *b*). Let D_r be the closed disk with center (*a*, *b*) and radius *r*. Use the Mean Value Theorem for double integrals (see Exercise 50) to show that

$$\lim_{r \to 0} \frac{1}{\pi r^2} \iint_{D_r} f(x, y) \, dA = f(a, b)$$

52. (a) Evaluate $\iint_{D} \frac{1}{(x^2 + y^2)^{n/2}} dA$, where *n* is an integer and *D* is the region bounded by the circles with center the

origin and radii r and R, 0 < r < R.

- (b) For what values of *n* does the integral in part (a) have a limit as $r \rightarrow 0^+$?
- (c) Find $\iiint_E \frac{1}{(x^2 + y^2 + z^2)^{n/2}} dV$, where *E* is the region bounded by the spheres with center the origin and radii *r* and *R*, 0 < r < R.
- (d) For what values of *n* does the integral in part (c) have a limit as $r \rightarrow 0^+$?

I. If [x] denotes the greatest integer in x, evaluate the integral

$$\iint\limits_R [[x + y]] \, dA$$

where $R = \{(x, y) \mid 1 \le x \le 3, 2 \le y \le 5\}.$

2. Evaluate the integral

PLUS

PROBLEMS

$$\int_0^1 \int_0^1 e^{\max\{x^2, y^2\}} \, dy \, dx$$

where max $\{x^2, y^2\}$ means the larger of the numbers x^2 and y^2 .

- 3. Find the average value of the function $f(x) = \int_{x}^{1} \cos(t^2) dt$ on the interval [0, 1].
- 4. If **a**, **b**, and **c** are constant vectors, **r** is the position vector $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and *E* is given by the inequalities $0 \le \mathbf{a} \cdot \mathbf{r} \le \alpha$, $0 \le \mathbf{b} \cdot \mathbf{r} \le \beta$, $0 \le \mathbf{c} \cdot \mathbf{r} \le \gamma$, show that

$$\iiint_E (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r})(\mathbf{c} \cdot \mathbf{r}) \, dV = \frac{(\alpha \beta \gamma)^2}{8|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|}$$

5. The double integral $\int_0^1 \int_0^1 \frac{1}{1-xy} dx dy$ is an improper integral and could be defined as

the limit of double integrals over the rectangle $[0, t] \times [0, t]$ as $t \to 1^-$. But if we expand the integrand as a geometric series, we can express the integral as the sum of an infinite series. Show that

$$\int_0^1 \int_0^1 \frac{1}{1 - xy} \, dx \, dy = \sum_{n=1}^\infty \frac{1}{n^2}$$

6. Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he proved that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

In this problem we ask you to prove this fact by evaluating the double integral in Problem 5. Start by making the change of variables

$$x = \frac{u - v}{\sqrt{2}} \qquad y = \frac{u + v}{\sqrt{2}}$$

This gives a rotation about the origin through the angle $\pi/4$. You will need to sketch the corresponding region in the *uv*-plane.

[*Hint*: If, in evaluating the integral, you encounter either of the expressions $(1 - \sin \theta)/\cos \theta$ or $(\cos \theta)/(1 + \sin \theta)$, you might like to use the identity $\cos \theta = \sin((\pi/2) - \theta)$ and the corresponding identity for $\sin \theta$.]

7. (a) Show that

$$\int_0^1 \int_0^1 \int_0^1 \frac{1}{1 - xyz} \, dx \, dy \, dz = \sum_{n=1}^\infty \frac{1}{n^3}$$

(Nobody has ever been able to find the exact value of the sum of this series.)

PROBLEMS PLUS

(b) Show that

$$\int_0^1 \int_0^1 \int_0^1 \frac{1}{1 + xyz} \, dx \, dy \, dz = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3}$$

Use this equation to evaluate the triple integral correct to two decimal places.

8. Show that

$$\int_0^\infty \frac{\arctan \pi x - \arctan x}{x} \, dx = \frac{\pi}{2} \ln \pi$$

by first expressing the integral as an iterated integral.

9. (a) Show that when Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

is written in cylindrical coordinates, it becomes

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(b) Show that when Laplace's equation is written in spherical coordinates, it becomes

$$\frac{\partial^2 u}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial u}{\partial \rho} + \frac{\cot \phi}{\rho^2} \frac{\partial u}{\partial \phi} + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \phi^2} + \frac{1}{\rho^2 \sin^2 \phi} \frac{\partial^2 u}{\partial \theta^2} = 0$$

10. (a) A lamina has constant density ρ and takes the shape of a disk with center the origin and radius *R*. Use Newton's Law of Gravitation (see Section 14.4) to show that the magnitude of the force of attraction that the lamina exerts on a body with mass *m* located at the point (0, 0, d) on the positive *z*-axis is

$$F = 2\pi Gm\rho d \left(\frac{1}{d} - \frac{1}{\sqrt{R^2 + d^2}} \right)$$

[*Hint:* Divide the disk as in Figure 4 in Section 16.4 and first compute the vertical component of the force exerted by the polar subrectangle R_{ii} .]

(b) Show that the magnitude of the force of attraction of a lamina with density ρ that occupies an entire plane on an object with mass *m* located at a distance *d* from the plane is

$$F = 2\pi Gm\rho$$

Notice that this expression does not depend on d.

II. If f is continuous, show that

$$\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(t) dt dz dy = \frac{1}{2} \int_{0}^{x} (x - t)^{2} f(t) dt$$