13.1 EXERCISES

- 1. Suppose you start at the origin, move along the *x*-axis a distance of 4 units in the positive direction, and then move downward a distance of 3 units. What are the coordinates of your position?
- 2. Sketch the points (0, 5, 2), (4, 0, −1), (2, 4, 6), and (1, −1, 2) on a single set of coordinate axes.
- **3.** Which of the points P(6, 2, 3), Q(-5, -1, 4), and R(0, 3, 8) is closest to the *xz*-plane? Which point lies in the *yz*-plane?
- **4.** What are the projections of the point (2, 3, 5) on the *xy*-, *yz*-, and *xz*-planes? Draw a rectangular box with the origin and (2, 3, 5) as opposite vertices and with its faces parallel to the coordinate planes. Label all vertices of the box. Find the length of the diagonal of the box.
- **5.** Describe and sketch the surface in \mathbb{R}^3 represented by the equation x + y = 2.
- (a) What does the equation x = 4 represent in ℝ²? What does it represent in ℝ³? Illustrate with sketches.
 - (b) What does the equation y = 3 represent in R³? What does z = 5 represent? What does the pair of equations y = 3, z = 5 represent? In other words, describe the set of points (x, y, z) such that y = 3 and z = 5. Illustrate with a sketch.

7–8 Find the lengths of the sides of the triangle *PQR*. Is it a right triangle? Is it an isosceles triangle?

7. P(3, -2, -3), Q(7, 0, 1), R(1, 2, 1)

- **8.** P(2, -1, 0), Q(4, 1, 1), R(4, -5, 4)
- 9. Determine whether the points lie on straight line.
 (a) A(2, 4, 2), B(3, 7, -2), C(1, 3, 3)
 (b) D(0, -5, 5), E(1, -2, 4), F(3, 4, 2)
- **10.** Find the distance from (3, 7, -5) to each of the following.

(a) The xy-plane	(b) The yz-plane

- (c) The xz-plane(d) The x-axis(e) The y-axis(f) The z-axis
- **II.** Find an equation of the sphere with center (0, 1, -1) and
- radius 4. What is the intersection of this sphere with the *yz*-plane?
- 12. Find an equation of the sphere with center (2, -6, 4) and radius 5. Describe its intersection with each of the coordinate planes.
- **13.** Find an equation of the sphere that passes through the point (4, 3, -1) and has center (3, 8, 1).
- 14. Find an equation of the sphere that passes through the origin and whose center is (1, 2, 3).

15–18 Show that the equation represents a sphere, and find its center and radius.

- **15.** $x^{2} + y^{2} + z^{2} 6x + 4y 2z = 11$ **16.** $x^{2} + y^{2} + z^{2} = 4x - 2y$ **17.** $x^{2} + y^{2} + z^{2} = x + y + z$ **18.** $4x^{2} + 4y^{2} + 4z^{2} - 8x + 16y = 1$
- **19.** (a) Prove that the midpoint of the line segment from $P_1(x_1, y_1, z_1)$ to $P_2(x_2, y_2, z_2)$ is

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

- (b) Find the lengths of the medians of the triangle with vertices A(1, 2, 3), B(-2, 0, 5), and C(4, 1, 5).
- **20.** Find an equation of a sphere if one of its diameters has endpoints (2, 1, 4) and (4, 3, 10).
- 21. Find equations of the spheres with center (2, -3, 6) that touch (a) the *xy*-plane, (b) the *yz*-plane, (c) the *xz*-plane.
- **22.** Find an equation of the largest sphere with center (5, 4, 9) that is contained in the first octant.

23–32 Describe in words the region of \mathbb{R}^3 represented by the equation or inequality.

23. $y = -4$	24. $x = 10$
25. $x > 3$	26. <i>y</i> ≥ 0
$27. 0 \le z \le 6$	28. $z^2 = 1$
29. $x^2 + y^2 + z^2 \le 3$	30. $x = z$
31. $x^2 + z^2 \le 9$	32. $x^2 + y^2 + z^2 > 2z$

- 33-36 Write inequalities to describe the region.
- **33.** The region between the *yz*-plane and the vertical plane x = 5
- **34.** The solid cylinder that lies on or below the plane z = 8 and on or above the disk in the *xy*-plane with center the origin and radius 2
- **35.** The region consisting of all points between (but not on) the spheres of radius r and R centered at the origin, where r < R
- **36.** The solid upper hemisphere of the sphere of radius 2 centered at the origin

37. The figure shows a line L_1 in space and a second line L_2 , which is the projection of L_1 on the *xy*-plane. (In other

words, the points on L_2 are directly beneath, or above, the points on L_1 .)

- (a) Find the coordinates of the point P on the line L_1 .
- (b) Locate on the diagram the points A, B, and C, where the line L₁ intersects the xy-plane, the yz-plane, and the xz-plane, respectively.
- **38.** Consider the points *P* such that the distance from *P* to A(-1, 5, 3) is twice the distance from *P* to B(6, 2, -2). Show that the set of all such points is a sphere, and find its center and radius.
- **39.** Find an equation of the set of all points equidistant from the points A(-1, 5, 3) and B(6, 2, -2). Describe the set.
- **40.** Find the volume of the solid that lies inside both of the spheres

$$x^2 + y^2 + z^2 + 4x - 2y + 4z + 5 = 0$$

 $x^2 + y^2 + z^2 = 4$

and

13.2 VECTORS

FIGURE I Equivalent vectors

FIGURE 2

The term **vector** is used by scientists to indicate a quantity (such as displacement or velocity or force) that has both magnitude and direction. A vector is often represented by an arrow or a directed line segment. The length of the arrow represents the magnitude of the vector and the arrow points in the direction of the vector. We denote a vector by printing a letter in boldface (**v**) or by putting an arrow above the letter (\vec{v}).

For instance, suppose a particle moves along a line segment from point A to point B. The corresponding **displacement vector v**, shown in Figure 1, has **initial point** A (the tail) and **terminal point** B (the tip) and we indicate this by writing $\mathbf{v} = \overrightarrow{AB}$. Notice that the vector $\mathbf{u} = \overrightarrow{CD}$ has the same length and the same direction as \mathbf{v} even though it is in a different position. We say that \mathbf{u} and \mathbf{v} are **equivalent** (or **equal**) and we write $\mathbf{u} = \mathbf{v}$. The **zero vector**, denoted by **0**, has length 0. It is the only vector with no specific direction.

COMBINING VECTORS

Suppose a particle moves from A to B, so its displacement vector is \overrightarrow{AB} . Then the particle changes direction and moves from B to C, with displacement vector \overrightarrow{BC} as in Figure 2. The combined effect of these displacements is that the particle has moved from A to C. The resulting displacement vector \overrightarrow{AC} is called the *sum* of \overrightarrow{AB} and \overrightarrow{BC} and we write

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

In general, if we start with vectors \mathbf{u} and \mathbf{v} , we first move \mathbf{v} so that its tail coincides with the tip of \mathbf{u} and define the sum of \mathbf{u} and \mathbf{v} as follows.

DEFINITION OF VECTOR ADDITION If **u** and **v** are vectors positioned so the initial point of **v** is at the terminal point of **u**, then the **sum u** + **v** is the vector from the initial point of **u** to the terminal point of **v**.

13.2 EXERCISES

- Are the following quantities vectors or scalars? Explain.
 (a) The cost of a theater ticket
 - (b) The current in a river
 - (c) The initial flight path from Houston to Dallas
 - (d) The population of the world
- What is the relationship between the point (4, 7) and the vector (4, 7)? Illustrate with a sketch.
- **3.** Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.

5. Copy the vectors in the figure and use them to draw the following vectors.

6. Copy the vectors in the figure and use them to draw the following vectors.

(a) a + b	(b) a – b
(c) 2 a	(d) $-\frac{1}{2}$ b
(e) $2a + b$	(f) b – 3 a

7–12 Find a vector **a** with representation given by the directed line segment \overrightarrow{AB} . Draw \overrightarrow{AB} and the equivalent representation starting at the origin.

7. A(2, 3), B(-2, 1) **8.** A(-2, -2), B(5, 3)

9. <i>A</i> (−1, 3),	<i>B</i> (2, 2)	10. $A(2, 1), B(0, 6)$
II. <i>A</i> (0, 3, 1),	B(2, 3, -1)	12. $A(4, 0, -2), B(4, 2, 1)$

13–16 Find the sum of the given vectors and illustrate geometrically.

13.	$\langle -1,4\rangle$,	$\langle 6, -2 \rangle$	14.	$\langle -2, -1 \rangle$,	$\langle 5,7 \rangle$
15.	$\langle 0, 1, 2 \rangle$,	$\langle 0, 0, -3 \rangle$	16.	$\langle -1, 0, 2 \rangle$,	$\langle 0, 4, 0 \rangle$

17–20 Find $a + b$, $2a + 3b$, $ a $, and $ a - b $.
17. $a = \langle 5, -12 \rangle$, $b = \langle -3, -6 \rangle$
18. $a = 4i + j$, $b = i - 2j$
19. $a = i + 2j - 3k$, $b = -2i - j + 5k$
20. $a = 2i - 4j + 4k$, $b = 2j - k$

21–23 Find a unit vector that has the same direction as the given vector.

21. -3i + 7j **22.** $\langle -4, 2, 4 \rangle$ **23.** 8i - j + 4k

- **24.** Find a vector that has the same direction as $\langle -2, 4, 2 \rangle$ but has length 6.
- **25.** If v lies in the first quadrant and makes an angle $\pi/3$ with the positive x-axis and |v| = 4, find v in component form.
- **26.** If a child pulls a sled through the snow on a level path with a force of 50 N exerted at an angle of 38° above the horizontal, find the horizontal and vertical components of the force.
- **27.** A quarterback throws a football with angle of elevation 40° and speed 20 m/s. Find the horizontal and vertical components of the velocity vector.

28–29 Find the magnitude of the resultant force and the angle it makes with the positive *x*-axis.

30. The magnitude of a velocity vector is called *speed*. Suppose that a wind is blowing from the direction N45°W at a speed of 50 km/h. (This means that the direction from which the wind blows is 45° west of the northerly direction.) A pilot is steering

a plane in the direction N60°E at an airspeed (speed in still air) of 250 km/h. The *true course*, or *track*, of the plane is the direction of the resultant of the velocity vectors of the plane and the wind. The *ground speed* of the plane is the magnitude of the resultant. Find the true course and the ground speed of the plane.

- **31.** A woman walks due west on the deck of a ship at 5 km/h. The ship is moving north at a speed of 35 km/h. Find the speed and direction of the woman relative to the surface of the water.
- 32. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg. The ropes, fastened at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each wire and the magnitude of each tension.

- **33.** A clothesline is tied between two poles, 8 m apart. The line is quite taut and has negligible sag. When a wet shirt with a mass of 0.8 kg is hung at the middle of the line, the midpoint is pulled down 8 cm. Find the tension in each half of the clothesline.
- **34.** The tension **T** at each end of the chain has magnitude 25 N. What is the weight of the chain?

- **35.** Find the unit vectors that are parallel to the tangent line to the parabola $y = x^2$ at the point (2, 4).
- **36.** (a) Find the unit vectors that are parallel to the tangent line to the curve $y = 2 \sin x$ at the point $(\pi/6, 1)$.
 - (b) Find the unit vectors that are perpendicular to the tangent line.
 - (c) Sketch the curve y = 2 sin x and the vectors in parts (a) and (b), all starting at (π/6, 1).
- **37.** If A, B, and C are the vertices of a triangle, find $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$.
- **38.** Let *C* be the point on the line segment *AB* that is twice as far from *B* as it is from *A*. If $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$, and $\mathbf{c} = \overrightarrow{OC}$, show that $\mathbf{c} = \frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$.

- **39.** (a) Draw the vectors $\mathbf{a} = \langle 3, 2 \rangle$, $\mathbf{b} = \langle 2, -1 \rangle$, and $\mathbf{c} = \langle 7, 1 \rangle$.
 - (b) Show, by means of a sketch, that there are scalars s and t such that $\mathbf{c} = s\mathbf{a} + t\mathbf{b}$.
 - (c) Use the sketch to estimate the values of s and t.
 - (d) Find the exact values of s and t.
- 40. Suppose that a and b are nonzero vectors that are not parallel and c is any vector in the plane determined by a and b. Give a geometric argument to show that c can be written as c = sa + tb for suitable scalars s and t. Then give an argument using components.
- **41.** If $\mathbf{r} = \langle x, y, z \rangle$ and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, describe the set of all points (x, y, z) such that $|\mathbf{r} \mathbf{r}_0| = 1$.
- **42.** If $\mathbf{r} = \langle x, y \rangle$, $\mathbf{r}_1 = \langle x_1, y_1 \rangle$, and $\mathbf{r}_2 = \langle x_2, y_2 \rangle$, describe the set of all points (x, y) such that $|\mathbf{r} \mathbf{r}_1| + |\mathbf{r} \mathbf{r}_2| = k$, where $k > |\mathbf{r}_1 \mathbf{r}_2|$.
- **43.** Figure 16 gives a geometric demonstration of Property 2 of vectors. Use components to give an algebraic proof of this fact for the case n = 2.
- **44.** Prove Property 5 of vectors algebraically for the case n = 3. Then use similar triangles to give a geometric proof.
- **45.** Use vectors to prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and half its length.
- 46. Suppose the three coordinate planes are all mirrored and a light ray given by the vector a = ⟨a₁, a₂, a₃⟩ first strikes the *xz*-plane, as shown in the figure. Use the fact that the angle of incidence equals the angle of reflection to show that the direction of the reflected ray is given by b = ⟨a₁, -a₂, a₃⟩. Deduce that, after being reflected by all three mutually perpendicular mirrors, the resulting ray is parallel to the initial ray. (American space scientists used this principle, together with laser beams and an array of corner mirrors on the moon, to calculate very precisely the distance from the earth to the moon.)

Thus the work done by a constant force **F** is the dot product $\mathbf{F} \cdot \mathbf{D}$, where **D** is the displacement vector.

FIGURE 7

EXAMPLE 7 A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N. The handle of the wagon is held at an angle of 35° above the horizontal. Find the work done by the force.

SOLUTION If F and D are the force and displacement vectors, as pictured in Figure 7, then the work done is

$$W = \mathbf{F} \cdot \mathbf{D} = |\mathbf{F}| |\mathbf{D}| \cos 35^{\circ}$$

= (70)(100) cos 35° ≈ 5734 N·m = 5734 J

EXAMPLE 8 A force is given by a vector $\mathbf{F} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ and moves a particle from the point P(2, 1, 0) to the point Q(4, 6, 2). Find the work done.

SOLUTION The displacement vector is $\mathbf{D} = \overrightarrow{PQ} = \langle 2, 5, 2 \rangle$, so by Equation 12, the work done is

$$W = \mathbf{F} \cdot \mathbf{D} = \langle 3, 4, 5 \rangle \cdot \langle 2, 5, 2 \rangle$$
$$= 6 + 20 + 10 = 36$$

If the unit of length is meters and the magnitude of the force is measured in newtons, then the work done is 36 joules.

13.3 EXERCISES

I. Which of the following expressions are meaningful? Which are meaningless? Explain. (\mathbf{h}) $(\mathbf{a} \cdot \mathbf{h})$ (a) (a)b)

(a) $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$	(D) $(\mathbf{a} \cdot \mathbf{b})\mathbf{c}$		
(c) $ \mathbf{a} (\mathbf{b} \cdot \mathbf{c})$	(d) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$		
(e) $\mathbf{a} \cdot \mathbf{b} + \mathbf{c}$	(f) $ \mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$		

2. Find the dot product of two vectors if their lengths are 6 and $\frac{1}{3}$ and the angle between them is $\pi/4$.

3–10 Find **a** • **b**.

3.
$$\mathbf{a} = \langle -2, \frac{1}{3} \rangle$$
, $\mathbf{b} = \langle -5, 12 \rangle$
4. $\mathbf{a} = \langle \frac{1}{2}, 4 \rangle$, $\mathbf{b} = \langle -8, -3 \rangle$
5. $\mathbf{a} = \langle 5, 0, -2 \rangle$, $\mathbf{b} = \langle 3, -1, 10 \rangle$
6. $\mathbf{a} = \langle s, 2s, 3s \rangle$, $\mathbf{b} = \langle t, -t, 5t \rangle$
7. $\mathbf{a} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 5\mathbf{i} + 9\mathbf{k}$
8. $\mathbf{a} = 4\mathbf{j} - 3\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$
9. $|\mathbf{a}| = 6$, $|\mathbf{b}| = 5$, the angle between \mathbf{a} and \mathbf{b} is $2\pi/3$
10. $|\mathbf{a}| = 3$, $|\mathbf{b}| = \sqrt{6}$, the angle between \mathbf{a} and \mathbf{b} is 45°

b is $2\pi/3$

II-12 If **u** is a unit vector, find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$. 11. 12.

13. (a) Show that $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$. (b) Show that $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$.

14. A street vendor sells a hamburgers, b hot dogs, and c drinks on a given day. He charges \$2 for a hamburger, \$1.50 for a hot dog, and \$1 for a drink. If $\mathbf{A} = \langle a, b, c \rangle$ and $\mathbf{P} = \langle 2, 1.5, 1 \rangle$, what is the meaning of the dot product $\mathbf{A} \cdot \mathbf{P}$?

15-20 Find the angle between the vectors. (First find an exact expression and then approximate to the nearest degree.)

15.
$$\mathbf{a} = \langle -8, 6 \rangle$$
, $\mathbf{b} = \langle \sqrt{7}, 3 \rangle$
16. $\mathbf{a} = \langle \sqrt{3}, 1 \rangle$, $\mathbf{b} = \langle 0, 5 \rangle$

21–22 Find, correct to the nearest degree, the three angles of the triangle with the given vertices.

21. A(1, 0), B(3, 6), C(-1, 4)

22. D(0, 1, 1), E(-2, 4, 3), F(1, 2, -1)

23–24 Determine whether the given vectors are orthogonal, parallel, or neither.

- **23.** (a) $\mathbf{a} = \langle -5, 3, 7 \rangle$, $\mathbf{b} = \langle 6, -8, 2 \rangle$ (b) $\mathbf{a} = \langle 4, 6 \rangle$, $\mathbf{b} = \langle -3, 2 \rangle$ (c) $\mathbf{a} = -\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$, $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ (d) $\mathbf{a} = 2\mathbf{i} + 6\mathbf{j} - 4\mathbf{k}$, $\mathbf{b} = -3\mathbf{i} - 9\mathbf{j} + 6\mathbf{k}$
- 24. (a) $\mathbf{u} = \langle -3, 9, 6 \rangle$, $\mathbf{v} = \langle 4, -12, -8 \rangle$ (b) $\mathbf{u} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $\mathbf{v} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$ (c) $\mathbf{u} = \langle a, b, c \rangle$, $\mathbf{v} = \langle -b, a, 0 \rangle$
- **25.** Use vectors to decide whether the triangle with vertices P(1, -3, -2), Q(2, 0, -4), and R(6, -2, -5) is right-angled.
- **26.** For what values of b are the vectors $\langle -6, b, 2 \rangle$ and $\langle b, b^2, b \rangle$ orthogonal?
- **27.** Find a unit vector that is orthogonal to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{i} + \mathbf{k}$.
- **28.** Find two unit vectors that make an angle of 60° with $\mathbf{v} = \langle 3, 4 \rangle$.

29–33 Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.)

29.	$\langle 3, 4, 5 \rangle$		30.	$\langle 1, -2, -1 \rangle$
31.	2 i + 3 j -	6 k	32.	$2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$
33.	$\langle c, c, c \rangle$,	where $c > 0$		

34. If a vector has direction angles $\alpha = \pi/4$ and $\beta = \pi/3$, find the third direction angle γ .

35–40 Find the scalar and vector projections of **b** onto **a**.

35.
$$\mathbf{a} = \langle 3, -4 \rangle$$
, $\mathbf{b} = \langle 5, 0 \rangle$
36. $\mathbf{a} = \langle 1, 2 \rangle$, $\mathbf{b} = \langle -4, 1 \rangle$

37.
$$\mathbf{a} = \langle 3, 6, -2 \rangle$$
, $\mathbf{b} = \langle 1, 2, 3 \rangle$

38.
$$\mathbf{a} = \langle -2, 3, -6 \rangle, \quad \mathbf{b} = \langle 5, -1, 4 \rangle$$

39. a = 2i - j + 4k, $b = j + \frac{1}{2}k$ **40.** a = i + j + k, b = i - j + k

- **41.** Show that the vector orth_a $\mathbf{b} = \mathbf{b} \text{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to **a**. (It is called an **orthogonal projection** of **b**.)
- **42.** For the vectors in Exercise 36, find orth_a **b** and illustrate by drawing the vectors **a**, **b**, proj_a **b**, and orth_a **b**.
- **43.** If $\mathbf{a} = \langle 3, 0, -1 \rangle$, find a vector **b** such that comp_a $\mathbf{b} = 2$.
- **44.** Suppose that **a** and **b** are nonzero vectors.
 - (a) Under what circumstances is $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \operatorname{comp}_{\mathbf{b}} \mathbf{a}$?
 - (b) Under what circumstances is $\text{proj}_{\mathbf{a}} \mathbf{b} = \text{proj}_{\mathbf{b}} \mathbf{a}$?
- 45. Find the work done by a force F = 8i 6j + 9k that moves an object from the point (0, 10, 8) to the point (6, 12, 20) along a straight line. The distance is measured in meters and the force in newtons.
- **46.** A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 N. How much work is done by the truck in pulling the car 1 km?
- **47.** A woman exerts a horizontal force of 140 N on a crate as she pushes it up a ramp that is 4 m long and inclined at an angle of 20° above the horizontal. Find the work done on the box.
- Find the work done by a force of 100 N acting in the direction N50°W in moving an object 5 m due west.
- **49.** Use a scalar projection to show that the distance from a point $P_1(x_1, y_1)$ to the line ax + by + c = 0 is

$$\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}$$

Use this formula to find the distance from the point (-2, 3) to the line 3x - 4y + 5 = 0.

- **50.** If $\mathbf{r} = \langle x, y, z \rangle$, $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, show that the vector equation $(\mathbf{r} \mathbf{a}) \cdot (\mathbf{r} \mathbf{b}) = 0$ represents a sphere, and find its center and radius.
- **51.** Find the angle between a diagonal of a cube and one of its edges.
- **52.** Find the angle between a diagonal of a cube and a diagonal of one of its faces.
- 53. A molecule of methane, CH₄, is structured with the four hydrogen atoms at the vertices of a regular tetrahedron and the carbon atom at the centroid. The *bond angle* is the angle formed by the H—C—H combination; it is the angle between the lines that join the carbon atom to two of the hydrogen atoms. Show that the bond angle is about 109.5°. [*Hint:* Take the vertices of the tetrahedron to be the points (1, 0, 0), (0, 1, 0),

(0, 0, 1), and (1, 1, 1) as shown in the figure. Then the centroid is $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.]

- 54. If $\mathbf{c} = |\mathbf{a}| \mathbf{b} + |\mathbf{b}| \mathbf{a}$, where \mathbf{a} , \mathbf{b} , and \mathbf{c} are all nonzero vectors, show that \mathbf{c} bisects the angle between \mathbf{a} and \mathbf{b} .
- 55. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).
- **56.** Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.

57. Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

$$|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}| |\mathbf{b}|$$

58. The Triangle Inequality for vectors is

$$|\mathbf{a} + \mathbf{b}| \leq |\mathbf{a}| + |\mathbf{b}|$$

- (a) Give a geometric interpretation of the Triangle Inequality.
- (b) Use the Cauchy-Schwarz Inequality from Exercise 57 to prove the Triangle Inequality. [*Hint*: Use the fact that | **a** + **b** |² = (**a** + **b**) · (**a** + **b**) and use Property 3 of the dot product.]
- 59. The Parallelogram Law states that

$$|\mathbf{a} + \mathbf{b}|^2 + |\mathbf{a} - \mathbf{b}|^2 = 2|\mathbf{a}|^2 + 2|\mathbf{b}|^2$$

- (a) Give a geometric interpretation of the Parallelogram Law.
- (b) Prove the Parallelogram Law. (See the hint in Exercise 58.)
- 60. Show that if u + v and u v are orthogonal, then the vectors u and v must have the same length.

13.4 THE CROSS PRODUCT

The **cross product** $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} , unlike the dot product, is a vector. For this reason it is also called the **vector product**. Note that $\mathbf{a} \times \mathbf{b}$ is defined only when \mathbf{a} and \mathbf{b} are *three-dimensional* vectors.

I DEFINITION If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **cross product** of **a** and **b** is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

This may seem like a strange way of defining a product. The reason for the particular form of Definition 1 is that the cross product defined in this way has many useful properties, as we will soon see. In particular, we will show that the vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b} .

In order to make Definition 1 easier to remember, we use the notation of determinants. A **determinant of order 2** is defined by

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
$$\begin{vmatrix} 2 & 1 \\ -6 & 4 \end{vmatrix} = 2(4) - 1(-6) = 14$$

For example,

Ĩ.

A **determinant of order 3** can be defined in terms of second-order determinants as follows:

2
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

ī.

torque vector is

$$|\boldsymbol{\tau}| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| \sin \theta$$

where θ is the angle between the position and force vectors. Observe that the only component of **F** that can cause a rotation is the one perpendicular to **r**, that is, $|\mathbf{F}| \sin \theta$. The magnitude of the torque is equal to the area of the parallelogram determined by **r** and **F**.

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

$$|\boldsymbol{\tau}| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| \sin 75^\circ = (0.25)(40) \sin 75^\circ$$

= 10 sin 75° ≈ 9.66 N·m

If the bolt is right-threaded, then the torque vector itself is

$$\boldsymbol{\tau} = |\boldsymbol{\tau}| \mathbf{n} \approx 9.66 \, \mathbf{n}$$

where **n** is a unit vector directed down into the page.

FIGURE 5

I-7 Find the cross product $\mathbf{a} \times \mathbf{b}$ and verify that it is orthogonal to both \mathbf{a} and \mathbf{b} .

- 1. $\mathbf{a} = \langle 1, 2, 0 \rangle$, $\mathbf{b} = \langle 0, 3, 1 \rangle$ 2. $\mathbf{a} = \langle 5, 1, 4 \rangle$, $\mathbf{b} = \langle -1, 0, 2 \rangle$ 3. $\mathbf{a} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = -\mathbf{i} + 5\mathbf{k}$ 4. $\mathbf{a} = \mathbf{j} + 7\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k}$ 5. $\mathbf{a} = \mathbf{i} - \mathbf{j} - \mathbf{k}$, $\mathbf{b} = \frac{1}{2}\mathbf{i} + \mathbf{j} + \frac{1}{2}\mathbf{k}$ 6. $\mathbf{a} = \mathbf{i} + e^{t}\mathbf{j} + e^{-t}\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + e^{t}\mathbf{j} - e^{-t}\mathbf{k}$ 7. $\mathbf{a} = \langle t, t^{2}, t^{3} \rangle$, $\mathbf{b} = \langle 1, 2t, 3t^{2} \rangle$
- 8. If a = i 2k and b = j + k, find a × b. Sketch a, b, and a × b as vectors starting at the origin.

9–12 Find the vector, not with determinants, but by using properties of cross products.

9. $(\mathbf{i} \times \mathbf{j}) \times \mathbf{k}$	10. ${\bf k} \times ({\bf i} - 2{\bf j})$
11. $(\mathbf{j} - \mathbf{k}) \times (\mathbf{k} - \mathbf{i})$	12. $(i + j) \times (i - j)$

13. State whether each expression is meaningful. If not, explain why. If so, state whether it is a vector or a scalar.

(a) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$	(b) $\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})$
(c) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$	(d) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$
(e) $(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$	(f) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$

14–15 Find $|\mathbf{u} \times \mathbf{v}|$ and determine whether $\mathbf{u} \times \mathbf{v}$ is directed into the page or out of the page.

- 16. The figure shows a vector a in the xy-plane and a vector b in the direction of k. Their lengths are |a| = 3 and |b| = 2.
 (a) Find |a × b|.
 - (b) Use the right-hand rule to decide whether the components of **a** × **b** are positive, negative, or 0.

- **17.** If $\mathbf{a} = \langle 1, 2, 1 \rangle$ and $\mathbf{b} = \langle 0, 1, 3 \rangle$, find $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$.
- **18.** If $\mathbf{a} = \langle 3, 1, 2 \rangle$, $\mathbf{b} = \langle -1, 1, 0 \rangle$, and $\mathbf{c} = \langle 0, 0, -4 \rangle$, show that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$.
- **19.** Find two unit vectors orthogonal to both (1, -1, 1) and (0, 4, 4).

- **20.** Find two unit vectors orthogonal to both $\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $2\mathbf{i} + \mathbf{k}$.
- **21.** Show that $\mathbf{0} \times \mathbf{a} = \mathbf{0} = \mathbf{a} \times \mathbf{0}$ for any vector \mathbf{a} in V_3 .
- **22.** Show that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$ for all vectors \mathbf{a} and \mathbf{b} in V_3 .
- 23. Prove Property 1 of Theorem 8.
- 24. Prove Property 2 of Theorem 8.
- **25.** Prove Property 3 of Theorem 8.
- 26. Prove Property 4 of Theorem 8.
- **27.** Find the area of the parallelogram with vertices A(-2, 1), B(0, 4), C(4, 2), and D(2, -1).
- **28.** Find the area of the parallelogram with vertices *K*(1, 2, 3), *L*(1, 3, 6), *M*(3, 8, 6), and *N*(3, 7, 3).

29–32 (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R, and (b) find the area of triangle PQR.

29. P(1, 0, 0), Q(0, 2, 0), R(0, 0, 3)**30.** P(2, 1, 5), Q(-1, 3, 4), R(3, 0, 6)**31.** P(0, -2, 0), Q(4, 1, -2), R(5, 3, 1)**32.** P(-1, 3, 1), Q(0, 5, 2), R(4, 3, -1)

33–34 Find the volume of the parallelepiped determined by the vectors **a**, **b**, and **c**.

33. $\mathbf{a} = \langle 6, 3, -1 \rangle$, $\mathbf{b} = \langle 0, 1, 2 \rangle$, $\mathbf{c} = \langle 4, -2, 5 \rangle$ **34.** $\mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{c} = -\mathbf{i} + \mathbf{j} + \mathbf{k}$

35–36 Find the volume of the parallelepiped with adjacent edges *PQ*, *PR*, and *PS*.

35. P(2, 0, -1), Q(4, 1, 0), R(3, -1, 1), S(2, -2, 2)

- **36.** P(3, 0, 1), Q(-1, 2, 5), R(5, 1, -1), S(0, 4, 2)
- **37.** Use the scalar triple product to verify that the vectors $\mathbf{u} = \mathbf{i} + 5\mathbf{j} 2\mathbf{k}$, $\mathbf{v} = 3\mathbf{i} \mathbf{j}$, and $\mathbf{w} = 5\mathbf{i} + 9\mathbf{j} 4\mathbf{k}$ are coplanar.
- **38.** Use the scalar triple product to determine whether the points A(1, 3, 2), B(3, -1, 6), C(5, 2, 0), and D(3, 6, -4) lie in the same plane.
- **39.** A bicycle pedal is pushed by a foot with a 60-N force as shown. The shaft of the pedal is 18 cm long. Find the magnitude of the torque about *P*.

40. Find the magnitude of the torque about *P* if a 240-N force is applied as shown.

- 41. A wrench 30 cm long lies along the positive y-axis and grips a bolt at the origin. A force is applied in the direction (0, 3, -4) at the end of the wrench. Find the magnitude of the force needed to supply 100 N⋅m of torque to the bolt.
- **42.** Let $\mathbf{v} = 5\mathbf{j}$ and let \mathbf{u} be a vector with length 3 that starts at the origin and rotates in the *xy*-plane. Find the maximum and minimum values of the length of the vector $\mathbf{u} \times \mathbf{v}$. In what direction does $\mathbf{u} \times \mathbf{v}$ point?
- (a) Let P be a point not on the line L that passes through the points Q and R. Show that the distance d from the point P to the line L is

$$d = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}$$

where $\mathbf{a} = \vec{QR}$ and $\mathbf{b} = \vec{QP}$.

- (b) Use the formula in part (a) to find the distance from the point P(1, 1, 1) to the line through Q(0, 6, 8) and R(-1, 4, 7).
- 44. (a) Let P be a point not on the plane that passes through the points Q, R, and S. Show that the distance d from P to the plane is

$$d = \frac{|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|}{|\mathbf{a} \times \mathbf{b}|}$$

where $\mathbf{a} = \overrightarrow{QR}$, $\mathbf{b} = \overrightarrow{QS}$, and $\mathbf{c} = \overrightarrow{QP}$.

(b) Use the formula in part (a) to find the distance from the point P(2, 1, 4) to the plane through the points Q(1, 0, 0), R(0, 2, 0), and S(0, 0, 3).

45. Prove that $(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2(\mathbf{a} \times \mathbf{b})$.

46. Prove Property 6 of Theorem 8, that is,

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

47. Use Exercise 46 to prove that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$$

48. Prove that

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = \begin{vmatrix} \mathbf{a} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{a} \cdot \mathbf{d} & \mathbf{b} \cdot \mathbf{d} \end{vmatrix}$$

49. Suppose that $\mathbf{a} \neq \mathbf{0}$.

(a) If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$, does it follow that $\mathbf{b} = \mathbf{c}$?

(b) If $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b} = \mathbf{c}$?

(c) If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$ and $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b} = \mathbf{c}$?

50. If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are noncoplanar vectors, let

DISCOVERY

PROJECT

0

$$\mathbf{k}_{1} = \frac{\mathbf{v}_{2} \times \mathbf{v}_{3}}{\mathbf{v}_{1} \cdot (\mathbf{v}_{2} \times \mathbf{v}_{3})} \qquad \mathbf{k}_{2} = \frac{\mathbf{v}_{3} \times \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot (\mathbf{v}_{2} \times \mathbf{v}_{3})}$$
$$\mathbf{k}_{3} = \frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{\mathbf{v}_{1} \cdot (\mathbf{v}_{2} \times \mathbf{v}_{3})}$$

(These vectors occur in the study of crystallography. Vectors of the form $n_1\mathbf{v}_1 + n_2\mathbf{v}_2 + n_3\mathbf{v}_3$, where each n_i is an integer, form a *lattice* for a crystal. Vectors written similarly in terms of \mathbf{k}_1 , \mathbf{k}_2 , and \mathbf{k}_3 form the *reciprocal lattice*.)

(a) Show that \mathbf{k}_i is perpendicular to \mathbf{v}_i if $i \neq j$.

(b) Show that
$$\mathbf{k}_i \cdot \mathbf{v}_i = 1$$
 for $i = 1, 2, 3$.

(c) Show that
$$\mathbf{k}_1 \cdot (\mathbf{k}_2 \times \mathbf{k}_3) = \frac{1}{\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)}$$

THE GEOMETRY OF A TETRAHEDRON

A tetrahedron is a solid with four vertices, P, Q, R, and S, and four triangular faces as shown in the figure.

1. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 be vectors with lengths equal to the areas of the faces opposite the vertices *P*, *Q*, *R*, and *S*, respectively, and directions perpendicular to the respective faces and pointing outward. Show that

$$\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 = \mathbf{0}$$

- **2.** The volume V of a tetrahedron is one-third the distance from a vertex to the opposite face, times the area of that face.
 - (a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices *P*, *Q*, *R*, and *S*.
 - (b) Find the volume of the tetrahedron whose vertices are P(1, 1, 1), Q(1, 2, 3), R(1, 1, 2), and S(3, −1, 2).
- **3.** Suppose the tetrahedron in the figure has a trirectangular vertex *S*. (This means that the three angles at *S* are all right angles.) Let *A*, *B*, and *C* be the areas of the three faces that meet at *S*, and let *D* be the area of the opposite face *PQR*. Using the result of Problem 1, or otherwise, show that

$$D^2 = A^2 + B^2 + C$$

(This is a three-dimensional version of the Pythagorean Theorem.)

13.5 EQUATIONS OF LINES AND PLANES

A line in the *xy*-plane is determined when a point on the line and the direction of the line (its slope or angle of inclination) are given. The equation of the line can then be written using the point-slope form.

Likewise, a line *L* in three-dimensional space is determined when we know a point $P_0(x_0, y_0, z_0)$ on *L* and the direction of *L*. In three dimensions the direction of a line is conveniently described by a vector, so we let **v** be a vector parallel to *L*. Let P(x, y, z) be an arbitrary point on *L* and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and *P* (that is, they have representations $\overrightarrow{OP_0}$ and \overrightarrow{OP}). If **a** is the vector with representation $\overrightarrow{P_0P}$, as in Figure 1, then the Triangle Law for vector addition gives $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}$. But, since **a** and **v** are parallel vectors, there is a scalar *t* such that $\mathbf{a} = t\mathbf{v}$. Thus

1

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

13.5 EXERCISES

- I. Determine whether each statement is true or false.
 - (a) Two lines parallel to a third line are parallel.
 - (b) Two lines perpendicular to a third line are parallel.
 - (c) Two planes parallel to a third plane are parallel.
 - (d) Two planes perpendicular to a third plane are parallel.
 - (e) Two lines parallel to a plane are parallel.
 - (f) Two lines perpendicular to a plane are parallel.
 - (g) Two planes parallel to a line are parallel.
 - (h) Two planes perpendicular to a line are parallel.
 - (i) Two planes either intersect or are parallel.
 - (j) Two lines either intersect or are parallel.
 - (k) A plane and a line either intersect or are parallel.
- **2–5** Find a vector equation and parametric equations for the line.
- 2. The line through the point (1, 0, -3) and parallel to the vector 2i 4j + 5k
- The line through the point (-2, 4, 10) and parallel to the vector (3, 1, -8)
- 4. The line through the point (0, 14, -10) and parallel to the line x = -1 + 2t, y = 6 3t, z = 3 + 9t
- **5.** The line through the point (1, 0, 6) and perpendicular to the plane x + 3y + z = 5

6–12 Find parametric equations and symmetric equations for the line.

- **6.** The line through the origin and the point (1, 2, 3)
- 7. The line through the points (1, 3, 2) and (-4, 3, 0)
- 8. The line through the points (6, 1, -3) and (2, 4, 5)
- **9.** The line through the points $(0, \frac{1}{2}, 1)$ and (2, 1, -3)
- 10. The line through (2, 1, 0) and perpendicular to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$
- **II.** The line through (1, -1, 1) and parallel to the line $x + 2 = \frac{1}{2}y = z 3$
- 12. The line of intersection of the planes x + y + z = 1and x + z = 0
- **13.** Is the line through (-4, -6, 1) and (-2, 0, -3) parallel to the line through (10, 18, 4) and (5, 3, 14)?
- 14. Is the line through (4, 1, -1) and (2, 5, 3) perpendicular to the line through (-3, 2, 0) and (5, 1, 4)?
- (a) Find symmetric equations for the line that passes through the point (1, -5, 6) and is parallel to the vector (-1, 2, -3).
 - (b) Find the points in which the required line in part (a) intersects the coordinate planes.

- **16.** (a) Find parametric equations for the line through (2, 4, 6) that is perpendicular to the plane x y + 3z = 7.
 - (b) In what points does this line intersect the coordinate planes?
- **17.** Find a vector equation for the line segment from (2, -1, 4) to (4, 6, 1).
- **18.** Find parametric equations for the line segment from (10, 3, 1) to (5, 6, -3).

19–22 Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the point of intersection.

 $\begin{array}{rcl} \textbf{[9]} \ L_1: \ x = -6t, \ y = 1 + 9t, \ z = -3t \\ L_2: \ x = 1 + 2s, \ y = 4 - 3s, \ z = s \end{array}$ $\begin{array}{rcl} \textbf{20.} \ L_1: \ x = 1 + 2t, \ y = 3t, \ z = 2 - t \\ L_2: \ x = -1 + s, \ y = 4 + s, \ z = 1 + 3s \end{array}$ $\begin{array}{rcl} \textbf{21.} \ L_1: \ \frac{x}{1} = \frac{y - 1}{2} = \frac{z - 2}{3} \\ L_2: \ \frac{x - 3}{-4} = \frac{y - 2}{-3} = \frac{z - 1}{2} \end{array}$ $\begin{array}{rcl} \textbf{22.} \ L_1: \ \frac{x - 1}{2} = \frac{y - 3}{2} = \frac{z - 2}{-1} \\ L_2: \ \frac{x - 2}{-1} = \frac{y - 6}{-1} = \frac{z + 2}{3} \end{array}$

23–38 Find an equation of the plane.

- **23.** The plane through the point (6, 3, 2) and perpendicular to the vector $\langle -2, 1, 5 \rangle$
- **24.** The plane through the point (4, 0, -3) and with normal vector $\mathbf{j} + 2\mathbf{k}$
- **25.** The plane through the point (1, -1, 1) and with normal vector $\mathbf{i} + \mathbf{j} \mathbf{k}$
- **26.** The plane through the point (-2, 8, 10) and perpendicular to the line x = 1 + t, y = 2t, z = 4 3t
- **27.** The plane through the origin and parallel to the plane 2x y + 3z = 1
- **28.** The plane through the point (-1, 6, -5) and parallel to the plane x + y + z + 2 = 0
- **29.** The plane through the point (4, -2, 3) and parallel to the plane 3x 7z = 12
- **30.** The plane that contains the line x = 3 + 2t, y = t, z = 8 t and is parallel to the plane 2x + 4y + 8z = 17
- **31.** The plane through the points (0, 1, 1), (1, 0, 1), and (1, 1, 0)
- **32.** The plane through the origin and the points (2, -4, 6) and (5, 1, 3)

- **33.** The plane through the points (3, -1, 2), (8, 2, 4), and (-1, -2, -3)
- **34.** The plane that passes through the point (1, 2, 3) and contains the line x = 3t, y = 1 + t, z = 2 t
- **35.** The plane that passes through the point (6, 0, -2) and contains the line x = 4 2t, y = 3 + 5t, z = 7 + 4t
- **36.** The plane that passes through the point (1, -1, 1) and contains the line with symmetric equations x = 2y = 3z
- **37.** The plane that passes through the point (-1, 2, 1) and contains the line of intersection of the planes x + y z = 2 and 2x y + 3z = 1
- **38.** The plane that passes through the line of intersection of the planes x z = 1 and y + 2z = 3 and is perpendicular to the plane x + y 2z = 1

39–42 Use intercepts to help sketch the plane.

39.	2x +	5y + z = 10	40.	3x + y + 2z = 6
41.	6 <i>x</i> –	3y + 4z = 6	42.	6x + 5y - 3z = 15

43-45 Find the point at which the line intersects the given plane.

43. x = 1 + t, y = 2t, z = 3t; x + y + z = 1 **44.** x = 5, y = 4 - t, z = 2t; 2x - y + z = 5**45.** x = y - 1 = 2z; 4x - y + 3z = 8

- **46.** Where does the line through (1, 0, 1) and (4, -2, 2) intersect the plane x + y + z = 6?
- **47.** Find direction numbers for the line of intersection of the planes x + y + z = 1 and x + z = 0.
- **48.** Find the cosine of the angle between the planes x + y + z = 0and x + 2y + 3z = 1.

49–54 Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.

49. x + 4y - 3z = 1, -3x + 6y + 7z = 0 **50.** 2z = 4y - x, 3x - 12y + 6z = 1 **51.** x + y + z = 1, x - y + z = 1 **52.** 2x - 3y + 4z = 5, x + 6y + 4z = 3 **53.** x = 4y - 2z, 8y = 1 + 2x + 4z**54.** x + 2y + 2z = 1, 2x - y + 2z = 1

55–56 (a) Find parametric equations for the line of intersection of the planes and (b) find the angle between the planes.

55. x + y + z = 1, x + 2y + 2z = 1**56.** 3x - 2y + z = 1, 2x + y - 3z = 3 **57–58** Find symmetric equations for the line of intersection of the planes.

57. 5x - 2y - 2z = 1, 4x + y + z = 6**58.** z = 2x - y - 5, z = 4x + 3y - 5

- **59.** Find an equation for the plane consisting of all points that are equidistant from the points (1, 0, -2) and (3, 4, 0).
- **60.** Find an equation for the plane consisting of all points that are equidistant from the points (2, 5, 5) and (-6, 3, 1).
- **61.** Find an equation of the plane with *x*-intercept *a*, *y*-intercept *b*, and *z*-intercept *c*.
- 62. (a) Find the point at which the given lines intersect:

$$\mathbf{r} = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$$
$$\mathbf{r} = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle$$

(b) Find an equation of the plane that contains these lines.

- **63.** Find parametric equations for the line through the point (0, 1, 2) that is parallel to the plane x + y + z = 2 and perpendicular to the line x = 1 + t, y = 1 t, z = 2t.
- 64. Find parametric equations for the line through the point (0, 1, 2) that is perpendicular to the line x = 1 + t, y = 1 t, z = 2t and intersects this line.
- **65.** Which of the following four planes are parallel? Are any of them identical?

 $P_1: 4x - 2y + 6z = 3 \qquad P_2: 4x - 2y - 2z = 6$ $P_3: -6x + 3y - 9z = 5 \qquad P_4: z = 2x - y - 3$

66. Which of the following four lines are parallel? Are any of them identical?

 $L_{1}: x = 1 + t, \quad y = t, \quad z = 2 - 5t$ $L_{2}: x + 1 = y - 2 = 1 - z$ $L_{3}: x = 1 + t, \quad y = 4 + t, \quad z = 1 - t$ $L_{4}: \mathbf{r} = \langle 2, 1, -3 \rangle + t \langle 2, 2, -10 \rangle$

67–68 Use the formula in Exercise 43 in Section 13.4 to find the distance from the point to the given line.

67. (4, 1, -2); x = 1 + t, y = 3 - 2t, z = 4 - 3t**68.** (0, 1, 3); x = 2t, y = 6 - 2t, z = 3 + t

69–70 Find the distance from the point to the given plane.

69. $(1, -2, 4), \quad 3x + 2y + 6z = 5$

70. (-6, 3, 5), x - 2y - 4z = 8

71–72 Find the distance between the given parallel planes.

71. 2x - 3y + z = 4, 4x - 6y + 2z = 3

72. 6z = 4y - 2x, 9z = 1 - 3x + 6y

LABORATORY

PROJECT

73. Show that the distance between the parallel planes $ax + by + cz + d_1 = 0$ and $ax + by + cz + d_2 = 0$ is

$$D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$$

- 74. Find equations of the planes that are parallel to the plane x + 2y 2z = 1 and two units away from it.
- **75.** Show that the lines with symmetric equations x = y = z and x + 1 = y/2 = z/3 are skew, and find the distance between these lines.

- 76. Find the distance between the skew lines with parametric equations x = 1 + t, y = 1 + 6t, z = 2t, and x = 1 + 2s, y = 5 + 15s, z = -2 + 6s.
- **77.** If a, b, and c are not all 0, show that the equation ax + by + cz + d = 0 represents a plane and $\langle a, b, c \rangle$ is a normal vector to the plane.

Hint: Suppose $a \neq 0$ and rewrite the equation in the form

$$a\left(x+\frac{d}{a}\right) + b(y-0) + c(z-0) = 0$$

78. Give a geometric description of each family of planes. (a) x + y + z = c (b) x + y + cz = 1(c) $y \cos \theta + z \sin \theta = 1$

PUTTING 3D IN PERSPECTIVE

Computer graphics programmers face the same challenge as the great painters of the past: how to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a canvas). To create the illusion of perspective, in which closer objects appear larger than those farther away, three-dimensional objects in the computer's memory are projected onto a rectangular screen window from a viewpoint where the eye, or camera, is located. The viewing volume—the portion of space that will be visible—is the region contained by the four planes that pass through the viewpoint and an edge of the screen window. If objects in the scene extend beyond these four planes, they must be truncated before pixel data are sent to the screen. These planes are therefore called *clipping planes*.

- Suppose the screen is represented by a rectangle in the yz-plane with vertices (0, ±400, 0) and (0, ±400, 600), and the camera is placed at (1000, 0, 0). A line L in the scene passes through the points (230, -285, 102) and (860, 105, 264). At what points should L be clipped by the clipping planes?
- **2.** If the clipped line segment is projected on the screen window, identify the resulting line segment.
- **3.** Use parametric equations to plot the edges of the screen window, the clipped line segment, and its projection on the screen window. Then add sight lines connecting the viewpoint to each end of the clipped segments to verify that the projection is correct.
- **4.** A rectangle with vertices (621, -147, 206), (563, 31, 242), (657, -111, 86), and (599, 67, 122) is added to the scene. The line *L* intersects this rectangle. To make the rectangle appear opaque, a programmer can use *hidden line rendering*, which removes portions of objects that are behind other objects. Identify the portion of *L* that should be removed.

13.6

CYLINDERS AND QUADRIC SURFACES

We have already looked at two special types of surfaces: planes (in Section 13.5) and spheres (in Section 13.1). Here we investigate two other types of surfaces: cylinders and quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called **traces** (or cross-sections) of the surface.

APPLICATIONS OF QUADRIC SURFACES

Examples of quadric surfaces can be found in the world around us. In fact, the world itself is a good example. Although the earth is commonly modeled as a sphere, a more accurate model is an ellipsoid because the earth's rotation has caused a flattening at the poles. (See Exercise 47.)

Circular paraboloids, obtained by rotating a parabola about its axis, are used to collect and reflect light, sound, and radio and television signals. In a radio telescope, for instance, signals from distant stars that strike the bowl are reflected to the receiver at the focus and are therefore amplified. (The idea is explained in Problem 16 on page 202.) The same principle applies to microphones and satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids of one sheet for reasons of structural stability. Pairs of hyperboloids are used to transmit rotational motion between skew axes. (The cogs of gears are the generating lines of the hyperboloids. See Exercise 49.)

C Corbis

A satellite dish reflects signals to the focus of a paraboloid.

Nuclear reactors have cooling towers in the shape of hyperboloids.

Hyperboloids produce gear transmission.

13.6 EXERCISES

- (a) What does the equation y = x² represent as a curve in ℝ²?
 (b) What does it represent as a surface in ℝ³?
 - (c) What does the equation $z = y^2$ represent?
- **2.** (a) Sketch the graph of $y = e^x$ as a curve in \mathbb{R}^2 .
 - (b) Sketch the graph of $y = e^x$ as a surface in \mathbb{R}^3 .
 - (c) Describe and sketch the surface $z = e^{y}$.

3–8 Describe and sketch the surface.

3.
$$y^2 + 4z^2 = 4$$
 4. $z = 4 - x^2$

5.	$x - y^2 = 0$	6.	yz = 4
7.	$z = \cos x$	8.	$x^2 - y^2 = 1$

- (a) Find and identify the traces of the quadric surface
 x² + y² z² = 1 and explain why the graph looks like the graph of the hyperboloid of one sheet in Table 1.
 - (b) If we change the equation in part (a) to $x^2 y^2 + z^2 = 1$, how is the graph affected?
 - (c) What if we change the equation in part (a) to $x^2 + y^2 + 2y z^2 = 0$?

- 10. (a) Find and identify the traces of the quadric surface $-x^2 y^2 + z^2 = 1$ and explain why the graph looks like the graph of the hyperboloid of two sheets in Table 1.
 - (b) If the equation in part (a) is changed to $x^2 y^2 z^2 = 1$, what happens to the graph? Sketch the new graph.

11–20 Use traces to sketch and identify the surface.

$11. x = y^2 + 4z^2$	$12. \ 9x^2 - y^2 + z^2 = 0$
13. $x^2 = y^2 + 4z^2$	$14. \ 25x^2 + 4y^2 + z^2 = 100$
$15. \ -x^2 + 4y^2 - z^2 = 4$	16. $4x^2 + 9y^2 + z = 0$
$17. \ 36x^2 + y^2 + 36z^2 = 36$	18. $4x^2 - 16y^2 + z^2 = 16$
19. $y = z^2 - x^2$	20. $x = y^2 - z^2$

21–28 Match the equation with its graph (labeled I–VIII). Give reasons for your choices.

21. $x^2 + 4y^2 + 9z^2 = 1$	22. $9x^2 + 4y^2 + z^2 = 1$
23. $x^2 - y^2 + z^2 = 1$	24. $-x^2 + y^2 - z^2 = 1$
25. $y = 2x^2 + z^2$	26. $y^2 = x^2 + 2z^2$
27. $x^2 + 2z^2 = 1$	28. $y = x^2 - z^2$
I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
	IV ZA
V Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	VI z
VII Z Y	VIII

29–36 Reduce the equation to one of the standard forms, classify the surface, and sketch it.

29.
$$z^2 = 4x^2 + 9y^2 + 36$$

30. $x^2 = 2y^2 + 3z^2$
31. $x = 2y^2 + 3z^2$
32. $4x - y^2 + 4z^2 = 0$
33. $4x^2 + y^2 + 4z^2 - 4y - 24z + 36 = 0$
34. $4y^2 + z^2 - x - 16y - 4z + 20 = 0$
35. $x^2 - y^2 + z^2 - 4x - 2y - 2z + 4 = 0$
36. $x^2 - y^2 + z^2 - 2x + 2y + 4z + 2 = 0$

→ 37-40 Use a computer with three-dimensional graphing software to graph the surface. Experiment with viewpoints and with domains for the variables until you get a good view of the surface.

37.	$-4x^2 - y^2 + z^2 = 1$	38.	$x^{2} -$	y^2	-	z = 0
39.	$-4x^2 - y^2 + z^2 = 0$	40.	$x^{2} -$	6 <i>x</i>	+	$4y^2 - z = 0$

- **41.** Sketch the region bounded by the surfaces $z = \sqrt{x^2 + y^2}$ and $x^2 + y^2 = 1$ for $1 \le z \le 2$.
- **42.** Sketch the region bounded by the paraboloids $z = x^2 + y^2$ and $z = 2 x^2 y^2$.
- **43.** Find an equation for the surface obtained by rotating the parabola $y = x^2$ about the *y*-axis.
- 44. Find an equation for the surface obtained by rotating the line x = 3y about the x-axis.
- 45. Find an equation for the surface consisting of all points that are equidistant from the point (-1, 0, 0) and the plane x = 1. Identify the surface.
- **46.** Find an equation for the surface consisting of all points *P* for which the distance from *P* to the *x*-axis is twice the distance from *P* to the *yz*-plane. Identify the surface.
- **47.** Traditionally, the earth's surface has been modeled as a sphere, but the World Geodetic System of 1984 (WGS-84) uses an ellipsoid as a more accurate model. It places the center of the earth at the origin and the north pole on the positive *z*-axis. The distance from the center to the poles is 6356.523 km and the distance to a point on the equator is 6378.137 km.
 - (a) Find an equation of the earth's surface as used by WGS-84.
 - (b) Curves of equal latitude are traces in the planes z = k. What is the shape of these curves?
 - (c) Meridians (curves of equal longitude) are traces in planes of the form y = mx. What is the shape of these meridians?
- **48.** A cooling tower for a nuclear reactor is to be constructed in the shape of a hyperboloid of one sheet (see the photo on page 846). The diameter at the base is 280 m and the minimum

848 |||| CHAPTER 13 VECTORS AND THE GEOMETRY OF SPACE

diameter, 500 m above the base, is 200 m. Find an equation for the tower.

49. Show that if the point (a, b, c) lies on the hyperbolic paraboloid z = y² - x², then the lines with parametric equations x = a + t, y = b + t, z = c + 2(b - a)t and x = a + t, y = b - t, z = c - 2(b + a)t both lie entirely on this paraboloid. (This shows that the hyperbolic paraboloid is what is called a **ruled surface**; that is, it can be generated by the motion of a straight line. In fact, this exercise shows that through each point on the hyperbolic paraboloid there are two

13 REVIEW

CONCEPT CHECK

- I. What is the difference between a vector and a scalar?
- **2.** How do you add two vectors geometrically? How do you add them algebraically?
- **3.** If **a** is a vector and *c* is a scalar, how is *c***a** related to **a** geometrically? How do you find *c***a** algebraically?
- **4.** How do you find the vector from one point to another?
- 5. How do you find the dot product a · b of two vectors if you know their lengths and the angle between them? What if you know their components?
- 6. How are dot products useful?
- Write expressions for the scalar and vector projections of b onto a. Illustrate with diagrams.
- 8. How do you find the cross product a × b of two vectors if you know their lengths and the angle between them? What if you know their components?
- 9. How are cross products useful?
- 10. (a) How do you find the area of the parallelogram determined by a and b?
 - (b) How do you find the volume of the parallelepiped determined by **a**, **b**, and **c**?

generating lines. The only other quadric surfaces that are ruled surfaces are cylinders, cones, and hyperboloids of one sheet.)

- **50.** Show that the curve of intersection of the surfaces $x^2 + 2y^2 z^2 + 3x = 1$ and $2x^2 + 4y^2 2z^2 5y = 0$ lies in a plane.
- F1. Graph the surfaces z = x² + y² and z = 1 y² on a common screen using the domain |x| ≤ 1.2, |y| ≤ 1.2 and observe the curve of intersection of these surfaces. Show that the projection of this curve onto the xy-plane is an ellipse.
 - II. How do you find a vector perpendicular to a plane?
 - 12. How do you find the angle between two intersecting planes?
 - **13.** Write a vector equation, parametric equations, and symmetric equations for a line.
 - 14. Write a vector equation and a scalar equation for a plane.
 - (a) How do you tell if two vectors are parallel?(b) How do you tell if two vectors are perpendicular?
 - (c) How do you tell if two planes are parallel?
 - 16. (a) Describe a method for determining whether three points P, Q, and R lie on the same line.
 - (b) Describe a method for determining whether four points *P*, *Q*, *R*, and *S* lie in the same plane.
 - (a) How do you find the distance from a point to a line?(b) How do you find the distance from a point to a plane?(c) How do you find the distance between two lines?
 - 18. What are the traces of a surface? How do you find them?
 - **19.** Write equations in standard form of the six types of quadric surfaces.

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

- I. For any vectors **u** and **v** in V_3 , $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.
- **2.** For any vectors **u** and **v** in V_3 , $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$.
- **3.** For any vectors **u** and **v** in V_3 , $|\mathbf{u} \times \mathbf{v}| = |\mathbf{v} \times \mathbf{u}|$.
- **4.** For any vectors \mathbf{u} and \mathbf{v} in V_3 and any scalar k, $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$.
- 5. For any vectors \mathbf{u} and \mathbf{v} in V_3 and any scalar k, $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v}$.

- 6. For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V_3 , $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$.
- 7. For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V_3 , $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$.
- 8. For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V_3 , $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.
- **9.** For any vectors **u** and **v** in V_3 , $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0$.
- **10.** For any vectors **u** and **v** in V_3 , $(\mathbf{u} + \mathbf{v}) \times \mathbf{v} = \mathbf{u} \times \mathbf{v}$.

- **II.** The cross product of two unit vectors is a unit vector.
- 12. A linear equation Ax + By + Cz + D = 0 represents a line in space.
- 13. The set of points $\{(x, y, z) | x^2 + y^2 = 1\}$ is a circle.
- **14.** If $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$, then $\mathbf{u} \cdot \mathbf{v} = \langle u_1 v_1, u_2 v_2 \rangle$.
- **15.** If $\mathbf{u} \cdot \mathbf{v} = 0$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
- **16.** If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
- **17.** If $\mathbf{u} \cdot \mathbf{v} = 0$, and $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.
- **18.** If **u** and **v** are in V_3 , then $|\mathbf{u} \cdot \mathbf{v}| \leq |\mathbf{u}| |\mathbf{v}|$.

- EXERCISES
- (a) Find an equation of the sphere that passes through the point (6, -2, 3) and has center (-1, 2, 1).
 - (b) Find the curve in which this sphere intersects the *yz*-plane.
 - (c) Find the center and radius of the sphere

$$x^2 + y^2 + z^2 - 8x + 2y + 6z + 1 = 0$$

2. Copy the vectors in the figure and use them to draw each of the following vectors.

3. If **u** and **v** are the vectors shown in the figure, find $\mathbf{u} \cdot \mathbf{v}$ and $|\mathbf{u} \times \mathbf{v}|$. Is $\mathbf{u} \times \mathbf{v}$ directed into the page or out of it?

4. Calculate the given quantity if

a = i + j - 2k b = 3i - 2j + k c = j - 5k

- (a) 2a + 3b(b) |b|(c) $a \cdot b$ (d) $a \times b$ (e) $|b \times c|$ (f) $a \cdot (b \times c)$ (g) $c \times c$ (h) $a \times (b \times c)$
- (i) $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$ (j) $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$
- (k) The angle between **a** and **b** (correct to the nearest degree)
- **5.** Find the values of x such that the vectors $\langle 3, 2, x \rangle$ and $\langle 2x, 4, x \rangle$ are orthogonal.
- Find two unit vectors that are orthogonal to both j + 2k and i - 2j + 3k.

7.	Suppose that $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 2$. Find			
	(a) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$	(b) $\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v})$		
	(c) $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{w})$	(d) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}$		

8. Show that if **a**, **b**, and **c** are in V_3 , then

 $(\mathbf{a} \times \mathbf{b}) \cdot [(\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})] = [\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})]^2$

- 9. Find the acute angle between two diagonals of a cube.
- 10. Given the points A(1, 0, 1), B(2, 3, 0), C(-1, 1, 4), and D(0, 3, 2), find the volume of the parallelepiped with adjacent edges *AB*, *AC*, and *AD*.
- (a) Find a vector perpendicular to the plane through the points A(1, 0, 0), B(2, 0, -1), and C(1, 4, 3).
 (b) Find the area of triangle ABC.
- 12. A constant force $\mathbf{F} = 3\mathbf{i} + 5\mathbf{j} + 10\mathbf{k}$ moves an object along the line segment from (1, 0, 2) to (5, 3, 8). Find the work done if the distance is measured in meters and the force in newtons.
- 13. A boat is pulled onto shore using two ropes, as shown in the diagram. If a force of 255 N is needed, find the magnitude of the force in each rope.

14. Find the magnitude of the torque about *P* if a 50-N force is applied as shown.

850 |||| CHAPTER 13 VECTORS AND THE GEOMETRY OF SPACE

15–17 Find parametric equations for the line.

- **15.** The line through (4, -1, 2) and (1, 1, 5)
- 16. The line through (1, 0, -1) and parallel to the line $\frac{1}{3}(x 4) = \frac{1}{2}y = z + 2$
- 17. The line through (-2, 2, 4) and perpendicular to the plane 2x y + 5z = 12
- 18-20 Find an equation of the plane.
- **18.** The plane through (2, 1, 0) and parallel to x + 4y 3z = 1
- **19.** The plane through (3, -1, 1), (4, 0, 2), and (6, 3, 1)
- **20.** The plane through (1, 2, -2) that contains the line x = 2t, y = 3 t, z = 1 + 3t
- 21. Find the point in which the line with parametric equations x = 2 t, y = 1 + 3t, z = 4t intersects the plane 2x y + z = 2.
- 22. Find the distance from the origin to the line x = 1 + t, y = 2 t, z = -1 + 2t.
- **23.** Determine whether the lines given by the symmetric equations

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

and

$$\frac{x+1}{6} = \frac{y-3}{-1} = \frac{z+5}{2}$$

are parallel, skew, or intersecting.

24. (a) Show that the planes x + y - z = 1 and 2x - 3y + 4z = 5 are neither parallel nor perpendicular.

- (b) Find, correct to the nearest degree, the angle between these planes.
- 25. Find an equation of the plane through the line of intersection of the planes x z = 1 and y + 2z = 3 and perpendicular to the plane x + y 2z = 1.
- **26.** (a) Find an equation of the plane that passes through the points A(2, 1, 1), B(-1, -1, 10), and C(1, 3, -4).
 - (b) Find symmetric equations for the line through *B* that is perpendicular to the plane in part (a).
 - (c) A second plane passes through (2, 0, 4) and has normal vector (2, −4, −3). Show that the acute angle between the planes is approximately 43°.
 - (d) Find parametric equations for the line of intersection of the two planes.
- **27.** Find the distance between the planes 3x + y 4z = 2and 3x + y - 4z = 24.
- 28-36 Identify and sketch the graph of each surface.
- **28.** x = 3 **29.** x = z **30.** $y = z^2$ **31.** $x^2 = y^2 + 4z^2$ **32.** 4x - y + 2z = 4 **33.** $-4x^2 + y^2 - 4z^2 = 4$ **34.** $y^2 + z^2 = 1 + x^2$ **35.** $4x^2 + 4y^2 - 8y + z^2 = 0$ **36.** $x = y^2 + z^2 - 2y - 4z + 5$
- **37.** An ellipsoid is created by rotating the ellipse $4x^2 + y^2 = 16$ about the *x*-axis. Find an equation of the ellipsoid.
- **38.** A surface consists of all points *P* such that the distance from *P* to the plane y = 1 is twice the distance from *P* to the point (0, -1, 0). Find an equation for this surface and identify it.

PROBLEMS PLUS

FIGURE FOR PROBLEM I

FIGURE FOR PROBLEM 5

- 1. Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the same radius *r*. The center of one ball is at the center of the cube and it touches the other eight balls. Each of the other eight balls touches three sides of the box. Thus the balls are tightly packed in the box. (See the figure.) Find *r*. (If you have trouble with this problem, read about the problem-solving strategy entitled *Use Analogy* on page 54.)
- 2. Let B be a solid box with length L, width W, and height H. Let S be the set of all points that are a distance at most 1 from some point of B. Express the volume of S in terms of L, W, and H.
- **3.** Let *L* be the line of intersection of the planes cx + y + z = c and x cy + cz = -1, where *c* is a real number.
 - (a) Find symmetric equations for L.
 - (b) As the number c varies, the line L sweeps out a surface S. Find an equation for the curve of intersection of S with the horizontal plane z = t (the trace of S in the plane z = t).
 - (c) Find the volume of the solid bounded by *S* and the planes z = 0 and z = 1.
- **4.** A plane is capable of flying at a speed of 180 km/h in still air. The pilot takes off from an airfield and heads due north according to the plane's compass. After 30 minutes of flight time, the pilot notices that, due to the wind, the plane has actually traveled 80 km at an angle 5° east of north.
 - (a) What is the wind velocity?
 - (b) In what direction should the pilot have headed to reach the intended destination?
- **5.** Suppose a block of mass *m* is placed on an inclined plane, as shown in the figure. The block's descent down the plane is slowed by friction; if θ is not too large, friction will prevent the block from moving at all. The forces acting on the block are the weight **W**, where $|\mathbf{W}| = mg$ (*g* is the acceleration due to gravity); the normal force **N** (the normal component of the reactionary force of the plane on the block), where $|\mathbf{N}| = n$; and the force **F** due to friction, which acts parallel to the inclined plane, opposing the direction of motion. If the block is at rest and θ is increased, $|\mathbf{F}|$ must also increase until ultimately $|\mathbf{F}|$ reaches its maximum, beyond which the block begins to slide. At this angle θ_s , it has been observed that $|\mathbf{F}|$ is proportional to *n*. Thus, when $|\mathbf{F}|$ is maximal, we can say that $|\mathbf{F}| = \mu_s n$, where μ_s is called the *coefficient of static friction* and depends on the materials that are in contact.
 - (a) Observe that $\mathbf{N} + \mathbf{F} + \mathbf{W} = \mathbf{0}$ and deduce that $\mu_s = \tan(\theta_s)$.
 - (b) Suppose that, for $\theta > \theta_s$, an additional outside force **H** is applied to the block, horizontally from the left, and let $|\mathbf{H}| = h$. If *h* is small, the block may still slide down the plane; if *h* is large enough, the block will move up the plane. Let h_{\min} be the smallest value of *h* that allows the block to remain motionless (so that $|\mathbf{F}|$ is maximal).

By choosing the coordinate axes so that \mathbf{F} lies along the *x*-axis, resolve each force into components parallel and perpendicular to the inclined plane and show that

$$h_{\min}\sin\theta + mg\cos\theta = n$$
 and $h_{\min}\cos\theta + \mu_s n = mg\sin\theta$

(c) Show that

 $h_{\min} = mq \tan(\theta - \theta_s)$

Does this equation seem reasonable? Does it make sense for $\theta = \theta_s$? As $\theta \rightarrow 90^\circ$? Explain.

(d) Let h_{max} be the largest value of *h* that allows the block to remain motionless. (In which direction is **F** heading?) Show that

$$h_{\rm max} = mg \tan(\theta + \theta_s)$$

Does this equation seem reasonable? Explain.