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EXERCISES

1. Show that y = x — x ™' is a solution of the differential equa-
tion xy' + y = 2x.

2. Verify that y = sin x cos x — cos x is a solution of the
initial-value problem

y' + (tan x)y = cos’x y(0) = —1

on the interval —7/2 < x < /2.

[3) (a) For what values of r does the function y = ¢’* satisfy the
differential equation 2y"” + y" — y = 0?
(b) If ; and 7, are the values of r that you found in part (a),
show that every member of the family of functions
y = ae"™ + be" is also a solution.

4. (a) For what values of k does the function y = cos kt satisfy
the differential equation 4y” = —25y?
(b) For those values of k, verify that every member of the
family of functions y = A sin kt + B cos kt is also a
solution.

5. Which of the following functions are solutions of the differ-
ential equation y” + 2y’ + y = 0?
(@y=e (b)) y=e™
() y=te™” @ y=rt%"

6. (a) Show that every member of the family of functions

y= Ce*"? is a solution of the differential equation
y' = xy.

(b) Illustrate part (a) by graphing several members of the
family of solutions on a common screen.

(c) Find a solution of the differential equation y" = xy that
satisfies the initial condition y(0) = 5.

(d) Find a solution of the differential equation y’ = xy that
satisfies the initial condition y(1) = 2.

(a) What can you say about a solution of the equation
y' = —y? just by looking at the differential equation?
(b) Verify that all members of the family y = 1/(x + C) are
solutions of the equation in part (a).
(c) Can you think of a solution of the differential equation
y' = —y? that is not a member of the family in part (b)?
(d) Find a solution of the initial-value problem

’ 2

yo= -y y(0) = 0.5

8. (a) What can you say about the graph of a solution of the
equation y’ = xy® when x is close to 0? What if x is
large?

(b) Verify that all members of the family y = (¢ — x?)"'/? are
solutions of the differential equation y' = xy>.

(c) Graph several members of the family of solutions on a
common screen. Do the graphs confirm what you pre-
dicted in part (a)?

(d) Find a solution of the initial-value problem

Y =axy’ y(0) =2

A population is modeled by the differential equation

dpP P
—=12Pl 1 =
dt 4200

(a) For what values of P is the population increasing?
(b) For what values of P is the population decreasing?
(c) What are the equilibrium solutions?

10. A function y(7) satisfies the differential equation

dy 4

—=y* — 6y® + 5y

dt ¥ y y

(a) What are the constant solutions of the equation?
(b) For what values of y is y increasing?

(c) For what values of y is y decreasing?

[I1.] Explain why the functions with the given graphs can’t be
solutions of the differential equation

ay e

o ey — 1)

(a y (b) v
1+ 1+

12. The function with the given graph is a solution of one of the
following differential equations. Decide which is the correct
equation and justify your answer.

P

Ay =1+xy B. y' = —2xy C.y =1-—2xy

[13] Psychologists interested in learning theory study learning
curves. A learning curve is the graph of a function P(z), the
performance of someone learning a skill as a function of the
training time 7. The derivative dP/dt represents the rate at
which performance improves.

(a) When do you think P increases most rapidly? What hap-
pens to dP/dr as t increases? Explain.
(b) If M is the maximum level of performance of which the
learner is capable, explain why the differential equation
dpP

E=k(M—P)

is a reasonable model for learning.

k a positive constant



608 |||| CHAPTER 10 DIFFERENTIAL EQUATIONS

(c) Make a rough sketch of a possible solution of this differen- an object is proportional to the temperature difference

tial equation.

between the object and its surroundings, provided that this
difference is not too large. Write a differential equation that

14. Suppose you have just poured a cup of freshly brewed coffee expresses Newton’s Law of Cooling for this particular situ-
with temperature 95°C in a room where the temperature ation. What is the initial condition? In view of your answer
is 20°C. to part (a), do you think this differential equation is an
(a) When do you think the coffee cools most quickly? What appropriate model for cooling?

happens to the rate of cooling as time goes by? Explain. (c) Make a rough sketch of the graph of the solution of the
(b) Newton’s Law of Cooling states that the rate of cooling of initial-value problem in part (b).
10.2| DIRECTION FIELDS AND EULER’S METHOD
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FIGURE 2
Beginning of the solution curve
through (0, 1)

Unfortunately, it’s impossible to solve most differential equations in the sense of obtain-
ing an explicit formula for the solution. In this section we show that, despite the absence
of an explicit solution, we can still learn a lot about the solution through a graphical
approach (direction fields) or a numerical approach (Euler’s method).

DIRECTION FIELDS

Suppose we are asked to sketch the graph of the solution of the initial-value problem
y=x+ty y(0) =1

We don’t know a formula for the solution, so how can we possibly sketch its graph? Let’s
think about what the differential equation means. The equation y’ = x + y tells us that the
slope at any point (x, y) on the graph (called the solution curve) is equal to the sum of the
x- and y-coordinates of the point (see Figure 1). In particular, because the curve passes
through the point (0, 1), its slope there must be 0 + 1 = 1. So a small portion of the solu-
tion curve near the point (0, 1) looks like a short line segment through (0, 1) with slope 1.
(See Figure 2.)

As a guide to sketching the rest of the curve, let’s draw short line segments at a num-
ber of points (x, y) with slope x + y. The result is called a direction field and is shown in
Figure 3. For instance, the line segment at the point (1, 2) has slope 1 + 2 = 3. The direc-
tion field allows us to visualize the general shape of the solution curves by indicating the
direction in which the curves proceed at each point.
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Direction field for y'=x+y The solution curve through (0, 1)
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10.2| EXERCISES
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7. Use the direction field labeled II (above) to sketch the graphs
of the solutions that satisfy the given initial conditions.
. ; ; G e
2. A direction field for the differential equation y" = x sin y is (@) y(0) =1 (b) y(0) =2 (©) y(0) = —1

shown.
(a) Sketch the graphs of the solutions that satisfy the given
initial conditions.
M yO) =1 @) y0=2 i) y0)=m Wi EgEe e

8. Use the direction field labeled IV (above) to sketch the graphs
of the solutions that satisfy the given initial conditions.

(iv) y(0) =4 (v) y(0) =5 9-10 Sketch a direction field for the differential equation. Then

(b) Find all the equilibrium solutions use it to sketch three solution curves.

9.y =1+y 10. y' = x> — y?
¥
ML LR e gl . L 11-14 Sketch the direction field of the differential equation.
141777 7=F~SNNNN0N0A0 Then use it to sketch a solution curve that passes through the
1177772 gE~SNNN NN . R
P kAR E PR NN A N given point.
/S S S S s — — — 4+ — — ~ N~ NN NN\
e e r=y-2x (1 12. y =1-2xy, (0,0
S R, S o o g e B s o o B o @y Y % (1,0) Y . ©,0)
\\\\\\\*"L’///////
VANNNNNSp o s @y'=y+xy, 0, 1) 14. y' =x — xy, (1,0)
NN NN NN
Y XN NNENSmmm LS
\NANNANNNSNST 2777 701 11
N\N\NN~NF ez 10 . .
AR b el 1, 0 B 15-16 Use a computer algebra system to draw a direction field
e e for the given differential equation. Get a printout and sketch on it
-3 =2 -1 0 1 2 3. & the solution curve that passes through (0, 1). Then use the CAS to

draw the solution curve and compare it with your sketch.

15. y' =y sin 2x 16. y' = sin(x + y)

3-6 Match the differential equation with its direction field

(dbeled E-LV). Give easons. for your answer. 17. Use a computer algebra system to draw a direction field for

Bly=2-y 4. y=x2 -y the differential equation y’ = y* — 4y. Get a printout and



sketch on it solutions that satisfy the initial condition
v(0) = c for various values of c¢. For what values of ¢ does
lim,—. y(#) exist? What are the possible values for this limit?

Make a rough sketch of a direction field for the autonomous

differential equation y’ = f(y), where the graph of f is as
shown. How does the limiting behavior of solutions depend
on the value of y(0)?

fo)

_2\/—1 0 1\/2 y

(a) Use Euler’s method with each of the following step sizes

20.

to estimate the value of y(0.4), where y is the solution of
the initial-value problem y’ =y, y(0) = 1.
(i) h=04 (i) h=02 (iii) A = 0.1

(b) We know that the exact solution of the initial-value
problem in part (a) is y = e”. Draw, as accurately as you
can, the graph of y = ¢*, 0 < x < 0.4, together with the
Euler approximations using the step sizes in part (a).
(Your sketches should resemble Figures 12, 13, and 14.)
Use your sketches to decide whether your estimates in
part (a) are underestimates or overestimates.

(¢) The error in Euler’s method is the difference between
the exact value and the approximate value. Find the errors
made in part (a) in using Euler’s method to estimate the
true value of y(0.4), namely ¢"*. What happens to the
error each time the step size is halved?

A direction field for a differential equation is shown. Draw,
with a ruler, the graphs of the Euler approximations to the
solution curve that passes through the origin. Use step sizes
h = 1and h = 0.5. Will the Euler estimates be under-
estimates or overestimates? Explain.
Y
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Use Euler’s method with step size 0.5 to compute the approx-

imate y-values yi, y», y3, and y4 of the solution of the initial-
value problem y’ =y — 2x, y(1) = 0.

SECTION 10.2 DIRECTION FILEDS AND EULER’S METHOD

22.

i 61s

Use Euler’s method with step size 0.2 to estimate y(1), where
v(x) is the solution of the initial-value problem y' = 1 — xy,
y(0) =0.

23] Use Euler’s method with step size 0.1 to estimate y(0.3),

24.

25.

(A5 26.

27.

where y(x) is the solution of the initial-value problem
y=y+xyy0)=1

(a) Use Euler’s method with step size 0.2 to estimate y(1.4),
where y(x) is the solution of the initial-value problem
y =x— xy, y(1) = 0.

(b) Repeat part (a) with step size 0.1.

(a) Program a calculator or computer to use Euler’s method
to compute y(1), where y(x) is the solution of the initial-
value problem

dy

— + 3x%y = 6x? y(0) =3
dx
G h=1 (i) h=0.1
(iii) = = 0.01 (iv) h = 0.001

(b) Verify thaty =2 + e is the exact solution of the
differential equation.

(c) Find the errors in using Euler’s method to compute y(1)
with the step sizes in part (a). What happens to the error
when the step size is divided by 10?

(a) Program your computer algebra system, using Euler’s
method with step size 0.01, to calculate y(2), where y
is the solution of the initial-value problem

y(0) =1

(b) Check your work by using the CAS to draw the solution
curve.

y/:x37y3

The figure shows a circuit containing an electromotive force,
a capacitor with a capacitance of C farads (F), and a resistor
with a resistance of R ohms ({2). The voltage drop across the
capacitor is Q/C, where Q is the charge (in coulombs), so in
this case Kirchhoff’s Law gives

RI + %= E(1)

But I = dQ/dt, so we have

dQ 1
R— +—=0=E(
o T2 EW
Suppose the resistance is 5 (), the capacitance is 0.05 F, and a
battery gives a constant voltage of 60 V.
(a) Draw a direction field for this differential equation.
(b) What is the limiting value of the charge?

G
1
11

®
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(c) Is there an equilibrium solution?

at a rate of 1°C per minute when its temperature is 70°C.

(d) If the initial charge is Q(0) = 0 C, use the direction field to (a) What does the differential equation become in this case?

sketch the solution curve.

(e) If the initial charge is Q(0) = 0 C, use Euler’s method with
step size 0.1 to estimate the charge after half a second.

(b) Sketch a direction field and use it to sketch the solution
curve for the initial-value problem. What is the limiting
value of the temperature?

28. In Exercise 14 in Section 10.1 we considered a 95°C cup of cof- (c) Use Euler’s method with step size & = 2 minutes to
fee in a 20°C room. Suppose it is known that the coffee cools estimate the temperature of the coffee after 10 minutes.
10.3| SEPARABLE EQUATIONS

= The technique for solving separable differen-
tial equations was first used by James Bernoulli
(in 1690) in solving a problem about pendulums
and by Leibniz (in a letter to Huygens in 1691).
John Bernoulli explained the general method in a
paper published in 1694.

We have looked at first-order differential equations from a geometric point of view (direc-
tion fields) and from a numerical point of view (Euler’s method). What about the symbolic
point of view? It would be nice to have an explicit formula for a solution of a differential
equation. Unfortunately, that is not always possible. But in this section we examine a cer-
tain type of differential equation that can be solved explicitly.

A separable equation is a first-order differential equation in which the expression for
dy/dx can be factored as a function of x times a function of y. In other words, it can be
written in the form

dy

i g(x)f(y)

The name separable comes from the fact that the expression on the right side can be “sep-
arated” into a function of x and a function of y. Equivalently, if f(y) # 0, we could write

dy _ 90
0] dx  h(y)

where h(y) = 1/f(y). To solve this equation we rewrite it in the differential form
h(y) dy = g(x) dx

so that all y’s are on one side of the equation and all x’s are on the other side. Then we inte-
grate both sides of the equation:

@ [ 1 dy = [ g(x) dx

Equation 2 defines y implicitly as a function of x. In some cases we may be able to solve
for y in terms of x.
We use the Chain Rule to justify this procedure: If & and g satisfy (2), then

- (_1' ) d.v) - (J‘ e dx>

d . d
SO ™ (J h(y) dY>'L% = g(x)
and h(y) % =g(x)

Thus Equation 1 is satisfied.
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10.3| EXERCISES

I

1-10 Solve the differential equation.

dy 2 dy €2X
L ===y 2. —=—
dx dx 4y’
3. (x*+ Dy =xy 4. y' =y’sinx
d 1+
5 (1 + tany)y = x>+ 1 6.—11:7\/;
ar 1+ u
g @ __ te 8 dy _ e’sin’f
Cdr oyt y? " df  ysecH
du dz
9. —=2+2u+it+i — + =
dt u u dt € 0

11-18 Find the solution of the differential equation that satisfies
the given initial condition.

d "
2=y, ym =0
dx
dy y COS X
2. 2222 S0 =1
dx 1+y% y(0)

13. xcosx = (2y + )y, y(0)=0

dpP

14. — =/Pt, P(1)=2
dt

du 2t + sec’t
a0 MO=3
16. xy' +y=y%4 y()=-1

17. ytanx=a + y, y(#/3) =a, 0<x< m/2

dL
18. — =kL*Int, L(1) = —1
= i, L(1)

19. Find an equation of the curve that passes through the point
(0, 1) and whose slope at (x, y) is xy.

20. Find the function f such that f'(x) = f(x)(1 — f(x)) and
£0) =5

21. Solve the differential equation y’ = x + y by making the
change of variable u = x + y.

22. Solve the differential equation xy’ = y + xe*’* by making the
change of variable v = y/x.

23. (a) Solve the differential equation y’ = 2x+/1 — y2.
(b) Solve the initial-value problem y" = 2x+/1 — y?,
v(0) = 0, and graph the solution.
(c) Does the initial-value problem y’ = 2x+/1 — y?,
v(0) = 2, have a solution? Explain.

24. Solve the equation ¢y’ + cos x = 0 and graph several
members of the family of solutions. How does the solution
curve change as the constant C varies?

[25] Solve the initial-value problem y' = (sin x)/sin ,
y(0) = /2, and graph the solution (if your CAS does
implicit plots).

26. Solve the equation y' = x+/x* + 1/(ye”) and graph several
members of the family of solutions (if your CAS does
implicit plots). How does the solution curve change as the
constant C varies?

27-28

(a) Use a computer algebra system to draw a direction field
for the differential equation. Get a printout and use it to
sketch some solution curves without solving the differential
equation.

(b) Solve the differential equation.

(c) Use the CAS to draw several members of the family of solu-
tions obtained in part (b). Compare with the curves from
part (a).

27. y' = 1)y 28. y' = xYy

4 29-32 Find the orthogonal trajectories of the family of curves.
Use a graphing device to draw several members of each family on
a common screen.

29. x? + 2y? = k? 30. y? = kx’

k
=— 32. y=
@y X Y 1 + kx

33. Solve the initial-value problem in Exercise 27 in Section 10.2
to find an expression for the charge at time . Find the limit-
ing value of the charge.

34. In Exercise 28 in Section 10.2 we discussed a differential
equation that models the temperature of a 95°C cup of coffee
in a 20°C room. Solve the differential equation to find an
expression for the temperature of the coffee at time ?.

[35) In Exercise 13 in Section 10.1 we formulated a model for
learning in the form of the differential equation

dP
— = kM- P
it )

where P(t) measures the performance of someone learning a
skill after a training time ¢, M is the maximum level of per-
formance, and & is a positive constant. Solve this differential
equation to find an expression for P(¢). What is the limit of
this expression?



36.

37.

38.

In an elementary chemical reaction, single molecules of

two reactants A and B form a molecule of the product C:
A + B — C. The law of mass action states that the rate

of reaction is proportional to the product of the concen-

trations of A and B:

4ic]

= k[AIE]

(See Example 4 in Section 3.7.) Thus, if the initial concentra-
tions are [A] = a moles/L and [B] = b moles/L and we
write x = [C], then we have

dx
i k(a — x)(b — x)
(a) Assuming that a # b, find x as a function of ¢. Use the
fact that the initial concentration of C is 0.
(b) Find x(z) assuming that a = b. How does this expres-
sion for x(7) simplify if it is known that [C] = 3a after
20 seconds?

In contrast to the situation of Exercise 36, experiments show
that the reaction H> + Br, — 2HBr satisfies the rate law

d[HBr]

= k[H:][Br.]

and so for this reaction the differential equation becomes

. ka — x)(b — x)"/?
dt
where x = [HBr] and a and b are the initial concentrations of
hydrogen and bromine.
(a) Find x as a function of 7 in the case where a = b. Use the
fact that x(0) = 0.
(b) If @ > b, find t as a function of x. [Hinr: In performing
the integration, make the substitution u = /b — x.

A sphere with radius 1 m has temperature 15°C. It lies inside
a concentric sphere with radius 2 m and temperature 25°C.
The temperature 7'(r) at a distance r from the common center
of the spheres satisfies the differential equation

T 24T
dr? r o dr

If we let S = dT/dr, then S satisfies a first-order differential
equation. Solve it to find an expression for the temperature
T (r) between the spheres.

[39.] A glucose solution is administered intravenously into the

bloodstream at a constant rate . As the glucose is added, it is
converted into other substances and removed from the blood-
stream at a rate that is proportional to the concentration at
that time. Thus a model for the concentration C = C(¢) of the
glucose solution in the bloodstream is

where £ is a positive constant.

40.

41.

42.

43.

44.

SECTION 10.3 SEPARABLE EQUATIONS [||| 623

(a) Suppose that the concentration at time ¢ = 0 is Cy. Deter-
mine the concentration at any time 7 by solving the differ-
ential equation.

(b) Assuming that Cy < r/k, find lim,_.. C(¢) and interpret
your answer.

A certain small country has $10 billion in paper currency

in circulation, and each day $50 million comes into the

country’s banks. The government decides to introduce new

currency by having the banks replace old bills with new ones

whenever old currency comes into the banks. Let x = x(7)

denote the amount of new currency in circulation at time ¢,

with x(0) = 0.

(a) Formulate a mathematical model in the form of an
initial-value problem that represents the “flow” of the
new currency into circulation.

(b) Solve the initial-value problem found in part (a).

(c) How long will it take for the new bills to account for 90%
of the currency in circulation?

A tank contains 1000 L of brine with 15 kg of dissolved salt.
Pure water enters the tank at a rate of 10 L/min. The solution
is kept thoroughly mixed and drains from the tank at the same
rate. How much salt is in the tank (a) after r minutes and

(b) after 20 minutes?

The air in a room with volume 180 m* contains 0.15% carbon
dioxide initially. Fresher air with only 0.05% carbon dioxide
flows into the room at a rate of 2 m*/min and the mixed air
flows out at the same rate. Find the percentage of carbon
dioxide in the room as a function of time. What happens in
the long run?

A vat with 2000 L of beer contains 4% alcohol (by volume).
Beer with 6% alcohol is pumped into the vat at a rate of

20 L/min and the mixture is pumped out at the same rate.
What is the percentage of alcohol after an hour?

A tank contains 1000 L of pure water. Brine that contains
0.05 kg of salt per liter of water enters the tank at a rate of

5 L/min. Brine that contains 0.04 kg of salt per liter of water
enters the tank at a rate of 10 L/min. The solution is kept
thoroughly mixed and drains from the tank at a rate of

15 L/min. How much salt is in the tank (a) after / minutes
and (b) after one hour?

When a raindrop falls, it increases in size and so its mass at

46.

time ¢ is a function of 7, m(z). The rate of growth of the mass
is km(r) for some positive constant k. When we apply New-
ton’s Law of Motion to the raindrop, we get (mv)" = gm,
where v is the velocity of the raindrop (directed downward)
and g is the acceleration due to gravity. The terminal velocity
of the raindrop is lim,_... »(¢). Find an expression for the ter-
minal velocity in terms of g and k.

An object of mass m is moving horizontally through a
medium which resists the motion with a force that is a func-
tion of the velocity; that is,

d’s dv

ar - "ar =10

m
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47.

[llI’ CHAPTER 10 DIFFERENTIAL EQUATIONS

where v = v(7) and s = s(7) represent the velocity and

position of the object at time ¢, respectively. For example,

think of a boat moving through the water.

(a) Suppose that the resisting force is proportional to the
velocity, that is, f(v) = —kw, k a positive constant.

(This model is appropriate for small values of ».) Let

v(0) = vy and s(0) = so be the initial values of v and s.
Determine » and s at any time 7. What is the total distance
that the object travels from time 1 = 0?

(b) For larger values of v a better model is obtained by sup-
posing that the resisting force is proportional to the square
of the velocity, that is, f(v) = —kv? k > 0. (This model
was first proposed by Newton.) Let v, and s, be the initial
values of v and s. Determine » and s at any time 7. What is
the total distance that the object travels in this case?

Let A(z) be the area of a tissue culture at time 7 and let M be
the final area of the tissue when growth is complete. Most
cell divisions occur on the periphery of the tissue and the
number of cells on the periphery is proportional to v/A(7). So
a reasonable model for the growth of tissue is obtained by
assuming that the rate of growth of the area is jointly propor-
tional to /A(7) and M — A(?).
(a) Formulate a differential equation and use it to show that
the tissue grows fastest when A(r) = _%M.
(b) Solve the differential equation to find an expression
for A(7). Use a computer algebra system to perform the
integration.

48. According to Newton’s Law of Universal Gravitation, the

gravitational force on an object of mass m that has been pro-
jected vertically upward from the earth’s surface is

. mgR*
(x + R)?

where x = x(7) is the object’s distance above the surface
at time 7, R is the earth’s radius, and g is the acceleration
due to gravity. Also, by Newton’s Second Law,

F = ma = m(dv/dt) and so

av mgR?

mdt= (x + R)?

(a) Suppose a rocket is fired vertically upward with an initial
velocity vo. Let /2 be the maximum height above the sur-
face reached by the object. Show that

2gRh
Vo= A |——
R+ h

[Hint: By the Chain Rule, m (dv/dt) = mv (dv/dx).]

(b) Calculate v, = limj_.. vo. This limit is called the escape
velocity for the earth.

(c) Use R = 6370 km and g = 9.8 m/s to calculate v, in
kilometers per second.

D HOW FAST DOES A TANK DRAIN?

If water (or other liquid) drains from a tank, we expect that the flow will be greatest at first (when

the water depth is greatest) and will gradually decrease as the water level decreases. But we need
a more precise mathematical description of how the flow decreases in order to answer the kinds
of questions that engineers ask: How long does it take for a tank to drain completely? How much
water should a tank hold in order to guarantee a certain minimum water pressure for a sprinkler

system?

Let A(r) and V(z) be the height and volume of water in a tank at time 7. If water drains through a
hole with area a at the bottom of the tank, then Torricelli’s Law says that

(1]

N T

where g is the acceleration due to gravity. So the rate at which water flows from the tank is propor-
tional to the square root of the water height.

I. (a) Suppose the tank is cylindrical with height 2 m and radius 1 m and the hole is circular
with radius 2 cm. If we take g = 10 m/s?, show that A satisfies the differential equation

% = —0.0004 /20h

(b) Solve this equation to find the height of the water at time ¢, assuming the tank is full at

time r = 0.

(c) How long will it take for the water to drain completely?
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|10.4| EXERCISES

[1.] Suppose that a population develops according to the logistic
equation
dp
— = 0.05P — 0.0005P?
dt
where ¢ is measured in weeks.
(a) What is the carrying capacity? What is the value of k?
(b) A direction field for this equation is shown. Where are
the slopes close to 0? Where are they largest? Which
solutions are increasing? Which solutions are decreasing?

P
1[0% S S 8 % N N XN N &% K N 0%
N R RN R R R ORN NN Y
b B Ne B B By B Ry g By By B, Xy
T U R
00 — — — — — — — — — — — —
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4 e e e —
4 e e e
04 — — & e e
A e e e e -
4 e —
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e o e g R S R e B B @S S
= g =
t t
0 20 40 60 !

(c) Use the direction field to sketch solutions for initial popu-
lations of 20, 40, 60, 80, 120, and 140. What do these
solutions have in common? How do they differ? Which
solutions have inflection points? At what population
levels do they occur?

(d) What are the equilibrium solutions? How are the other
solutions related to these solutions?

A 2. Suppose that a population grows according to a logistic
model with carrying capacity 6000 and k£ = 0.0015 per year.
(a) Write the logistic differential equation for these data.

(b) Draw a direction field (either by hand or with a computer
algebra system). What does it tell you about the solution
curves?

(c) Use the direction field to sketch the solution curves for
initial populations of 1000, 2000, 4000, and 8000. What
can you say about the concavity of these curves? What is
the significance of the inflection points?

(d) Program a calculator or computer to use Euler’s method
with step size & = 1 to estimate the population after
50 years if the initial population is 1000.

(e) If the initial population is 1000, write a formula for the
population after ¢ years. Use it to find the population after
50 years and compare with your estimate in part (d).

(f) Graph the solution in part (¢) and compare with the solu-
tion curve you sketched in part (c).

[3.] The Pacific halibut fishery has been modeled by the differen-

tial equation
dy y
a7 < K>

where y(1) is the biomass (the total mass of the members of
the population) in kilograms at time ¢ (measured in years), the
carrying capacity is estimated to be K = 8 X 107 kg, and

k = 0.71 per year.

(a) If y(0) = 2 X 107 kg, find the biomass a year later.

(b) How long will it take for the biomass to reach 4 X 107 kg?

. The table gives the number of yeast cells in a new laboratory

culture.
Time (hours) Yeast cells Time (hours) Yeast cells
0 18 10 509
2 39 12 597
4 80 14 640
6 171 16 664
8 336 18 672

(a) Plot the data and use the plot to estimate the carrying
capacity for the yeast population.

(b) Use the data to estimate the initial relative growth rate.

(c) Find both an exponential model and a logistic model for
these data.

(d) Compare the predicted values with the observed values,
both in a table and with graphs. Comment on how well
your models fit the data.

(e) Use your logistic model to estimate the number of yeast
cells after 7 hours.

. The population of the world was about 5.3 billion in 1990.

Birth rates in the 1990s ranged from 35 to 40 million per year
and death rates ranged from 15 to 20 million per year. Let’s
assume that the carrying capacity for world population is

100 billion.

(a) Write the logistic differential equation for these data.
(Because the initial population is small compared to the
carrying capacity, you can take k to be an estimate of the
initial relative growth rate.)

(b) Use the logistic model to estimate the world population in
the year 2000 and compare with the actual population of
6.1 billion.

(c) Use the logistic model to predict the world population in
the years 2100 and 2500.

(d) What are your predictions if the carrying capacity is
50 billion?

. (a) Make a guess as to the carrying capacity for the US

population. Use it and the fact that the population was
250 million in 1990 to formulate a logistic model for the
US population.

(b) Determine the value of k in your model by using the
fact that the population in 2000 was 275 million.

(¢) Use your model to predict the US population in the years
2100 and 2200.
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(d) Use your model to predict the year in which the US popu-
lation will exceed 350 million.

[7.] One model for the spread of a rumor is that the rate of spread
is proportional to the product of the fraction y of the popula-
tion who have heard the rumor and the fraction who have not
heard the rumor.

(a) Write a differential equation that is satisfied by y.

(b) Solve the differential equation.

(c) A small town has 1000 inhabitants. At 8 Am, 80 people
have heard a rumor. By noon half the town has heard it.
At what time will 90% of the population have heard the
rumor?

8. Biologists stocked a lake with 400 fish and estimated the
carrying capacity (the maximal population for the fish of that
species in that lake) to be 10,000. The number of fish tripled
in the first year.

(a) Assuming that the size of the fish population satisfies the
logistic equation, find an expression for the size of the
population after ¢ years.

(b) How long will it take for the population to increase
to 50007

[9.] (a) Show that if P satisfies the logistic equation (4), then

e, P 2P
—=kPl1-—])1-=
dr K K

(b) Deduce that a population grows fastest when it reaches
half its carrying capacity.

10. For a fixed value of K (say K = 10), the family of logistic
functions given by Equation 7 depends on the initial value P
and the proportionality constant k. Graph several members of
this family. How does the graph change when P, varies? How
does it change when k varies?

1. The table gives the midyear population of Japan, in
thousands, from 1960 to 2005.

Year Population Year Population
1960 94,092 1985 120,754
1965 98,883 1990 123,537
1970 104,345 1995 125,341
1975 111,573 2000 126,700
1980 116,807 2005 127,417

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the
models. [Hint: Subtract 94,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 94,000 to get your final model. It might be helpful to
choose t = 0 to correspond to 1960 or 1980.]
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12. The table gives the midyear population of Spain, in

thousands, from 1955 to 2000.

Year Population Year Population
1955 29,319 1980 37,488
1960 30,641 1985 38,535
1965 32,085 1990 39,351
1970 33,876 1995 39,750
1975 35,564 2000 40,016

Use a graphing calculator to fit both an exponential function
and a logistic function to these data. Graph the data points
and both functions, and comment on the accuracy of the
models. [Hint: Subtract 29,000 from each of the population
figures. Then, after obtaining a model from your calculator,
add 29,000 to get your final model. It might be helpful to
choose ¢ = 0 to correspond to 1955 or 1975.]

13. Consider a population P = P(r) with constant relative birth
and death rates « and 3, respectively, and a constant emigra-
tion rate m, where «, 3, and m are positive constants. Assume
that @ > B. Then the rate of change of the population at time
t is modeled by the differential equation

dP
— =kP—m

ur where k = o — B

(a) Find the solution of this equation that satisfies the initial
condition P(Q) = P,.

(b) What condition on m will lead to an exponential expan-
sion of the population?

(c) What condition on m will result in a constant population?
A population decline?

(d) In 1847, the population of Ireland was about 8 million
and the difference between the relative birth and death
rates was 1.6% of the population. Because of the potato
famine in the 1840s and 1850s, about 210,000 inhabitants
per year emigrated from Ireland. Was the population
expanding or declining at that time?

Let ¢ be a positive number. A differential equation of the
form
dy

_=k T+¢
a7

where k is a positive constant, is called a doomsday equation

because the exponent in the expression ky'** is larger than

the exponent 1 for natural growth.

(a) Determine the solution that satisfies the initial condition
y(0) = yo.

(b) Show that there is a finite time ¢t = T (doomsday) such
that lim,—7-y(r) = .

(c) An especially prolific breed of rabbits has the growth term
ky "', If 2 such rabbits breed initially and the warren has
16 rabbits after three months, then when is doomsday?
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[I5] Let’s modify the logistic differential equation of Example 1

as follows:
d—P—OOSP 1 S 15
dt ’ 1000

(a) Suppose P(z) represents a fish population at time ¢,
where ¢ is measured in weeks. Explain the meaning of the
term —15.

(b) Draw a direction field for this differential equation.

(c) What are the equilibrium solutions?

(d) Use the direction field to sketch several solution curves.
Describe what happens to the fish population for various
initial populations.

LCAs] (e) Solve this differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial populations 200 and 300. Graph the solutions
and compare with your sketches in part (d).

(As] 16. Consider the differential equation

P _oosp(1- L) -
a 1000) €

as a model for a fish population, where # is measured in

weeks and ¢ is a constant.

(a) Use a CAS to draw direction fields for various values
of c.

(b) From your direction fields in part (a), determine the
values of ¢ for which there is at least one equilibrium
solution. For what values of ¢ does the fish population
always die out?

(c) Use the differential equation to prove what you dis-
covered graphically in part (b).

(d) What would you recommend for a limit to the weekly
catch of this fish population?

[17.] There is considerable evidence to support the theory that for
some species there is a minimum population m such that the
species will become extinct if the size of the population falls
below m. This condition can be incorporated into the logistic
equation by introducing the factor (1 — m/P). Thus the mod-
ified logistic model is given by the differential equation

dpP P m
—=rl1-=)|1-=

(a) Use the differential equation to show that any solution is
increasing if m < P < K and decreasing if 0 < P < m.

(b) For the case where k£ = 0.08, K = 1000, and m = 200,
draw a direction field and use it to sketch several solu-
tion curves. Describe what happens to the population for
various initial populations. What are the equilibrium
solutions?

(c) Solve the differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use
the initial population Py.

20.

]
K]

21.

(d) Use the solution in part (c) to show that if Py < m, then
the species will become extinct. [Hint: Show that the
numerator in your expression for P(t) is O for some value
of 1.]

. Another model for a growth function for a limited population

is given by the Gompertz function, which is a solution of
the differential equation

where c is a constant and K is the carrying capacity.

(a) Solve this differential equation.

(b) Compute lim,_... P(t).

(c) Graph the Gompertz growth function for K = 1000,

Py = 100, and ¢ = 0.05, and compare it with the logistic
function in Example 2. What are the similarities? What
are the differences?

(d) We know from Exercise 9 that the logistic function grows
fastest when P = K/2. Use the Gompertz differential
equation to show that the Gompertz function grows fastest
when P = K/e.

. In a seasonal-growth model, a periodic function of time is

introduced to account for seasonal variations in the rate of
growth. Such variations could, for example, be caused by
seasonal changes in the availability of food.

(a) Find the solution of the seasonal-growth model

dP
— = kP cos(rt — ¢)

P(0) =P
. © =P,

where k, r, and ¢ are positive constants.

(b) By graphing the solution for several values of k, r, and ¢,
explain how the values of k, r, and ¢ affect the solution.
What can you say about lim,... P(t)?

Suppose we alter the differential equation in Exercise 19 as
follows:

dpP ,
—— = kP cos*(rt — ¢)

P(0) = P,
I (0) = Po

(a) Solve this differential equation with the help of a table of
integrals or a CAS.

(b) Graph the solution for several values of k, r, and ¢. How
do the values of k, r, and ¢ affect the solution? What can
you say about lim,_... P(¢) in this case?

Graphs of logistic functions (Figures 2 and 3) look suspi-
ciously similar to the graph of the hyperbolic tangent function
(Figure 3 in Section 7.7). Explain the similarity by showing
that the logistic function given by Equation 7 can be written
as

P(t) = k|1 + tanh(3k(t — 0))]

where ¢ = (In A)/k. Thus the logistic function is really just
a shifted hyperbolic tangent.
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m Figure 5 shows how the current in Example 4

approaches its limiting value.
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m Figure 6 shows the graph of the current
when the battery is replaced by a generator.
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Since 1(0) = 0, we have 5 + C =0, so C = —5 and

I(1) = 5(1 — %)

(b) After 1 second the current is

I(1)=5(1 —e?)=475A

(c) The limiting value of the current is given by

limI(z) = lim5(1 —e)=5-5
1—x 1—x

1—%

lime?=5-0=5

EXAMPLE 5 Suppose that the resistance and inductance remain as in Example 4
but, instead of the battery, we use a generator that produces a variable voltage of
E(r) = 60 sin 30t volts. Find 1(¢).

SOLUTION This time the differential equation becomes

dl
45 + 121 = 60 sin 30¢ or

The same integrating factor e*' gives

Using Formula 98 in the Table of Integrals, we have

3 = J 15¢% sin 30t dr = 15

e3r

909

I = 3 (sin 307 — 10 cos 30r) + Ce ™

Since 1(0) = 0, we get

SO

50
—mp ~C=0

(1) = 73 (sin 307 — 10 cos 307) + e

dl

— + 3] = 15 sin 30¢
dt

d dl

E(e‘*’]) = e‘”; + 3¢ = 15¢* sin 307

(3sin 307 — 30cos 307) + C

1-4 Determine whether the differential equation is linear.

Ly + e’y =x%?

.x)) +lnx—x*y=0

2. y + sinx = x%’

4. xy + Jx = e’y

5-14 Solve the differential equation.
[5]y" + 2y = 2¢*

)

7. xy' —2y=x

Blxy +y=vx

6. vy =x+ 5y
8. x’y' + 2xy = cos’x

10. y' + y = sin(e”)

d' 2
1. sinx—) + (cos x)y = sin(x?)
dx
13 (1+r)du+ 1+ t>0
. — t+u= ,
dt

dr
14. tInt— + r=te'
dt

dy
12. x—— — 4y = x%"*
dx l

15-20 Solve the initial-value problem.

I5. y +y=x+e', y(00=0



d 5
wrj+n=ﬁr>aym=o

d .
17. & — 2 = 3%, w(0)=5

18.

dt

2xy' +y=6x, x>0, y4) =20

xy' =y 4+ x*sinx, y(m) =0

20.

x2+1) & +3x(y—1)=0, y(0) =2
dx

21-22 Solve the differential equation and use a graphing cal-
culator or computer to graph several members of the family of
solutions. How does the solution curve change as C varies?

21 xy' + 2y =¢"

22. y' + (cos x)y = cos x

23.

A Bernoulli differential equation (named after James
Bernoulli) is of the form

Dy Py = 0@)y"
dx

Observe that, if n = 0 or 1, the Bernoulli equation is linear.

For other values of 7, show that the substitution u = y'™"

transforms the Bernoulli equation into the linear equation
du

— + (1 =nPxu=(—n0kx)
dx

24-25 Use the method of Exercise 23 to solve the differential

equation.
, 2 PE] 2 y?
M. 5y +y=—x’ By +=y="
X x°
26. Solve the second-order equation xy” + 2y’ = 12x? by

27.

28.

29.

making the substitution u = y'.

In the circuit shown in Figure 4, a battery supplies a constant
voltage of 40V, the inductance is 2 H, the resistance is 10 (),
and 1(0) = 0.

(a) Find I(7).

(b) Find the current after 0.1 s.

In the circuit shown in Figure 4, a generator supplies a volt-

age of E(r) = 40 sin 607 volts, the inductance is 1 H, the

resistance is 20 ), and 7(0) = 1 A.

(a) Find 1(1).

(b) Find the current after 0.1 s.

(c) Use a graphing device to draw the graph of the current
function.

The figure shows a circuit containing an electromotive force,
a capacitor with a capacitance of C farads (F), and a resistor
with a resistance of R ohms (£2). The voltage drop across the
capacitor is Q/C, where Q is the charge (in coulombs), so in

30.

SECTION 10.5 LINEAR EQUATIONS ||| 643

this case Kirchhoff’s Law gives

RI + %= E(1)

But I = dQ/dt (see Example 3 in Section 3.7), so we have

d

r2 1
dt C
Suppose the resistance is 5 (), the capacitance is 0.05 F, a
battery gives a constant voltage of 60 V, and the initial charge

is Q(0) = 0 C. Find the charge and the current at time 7.
C

® R

—0

Q= E()

In the circuit of Exercise 29, R = 2 Q, C = 0.01 F, Q(0) = 0,
and E(¢) = 10 sin 60¢. Find the charge and the current at time 7.

B1.] Let P() be the performance level of someone learning a skill

32.

as a function of the training time 7. The graph of P is called a
learning curve. In Exercise 13 in Section 10.1 we proposed
the differential equation

dap

— = k[M — P(¢

o M (0]
as a reasonable model for learning, where k is a positive con-
stant. Solve it as a linear differential equation and use your
solution to graph the learning curve.

Two new workers were hired for an assembly line. Jim pro-
cessed 25 units during the first hour and 45 units during the
second hour. Mark processed 35 units during the first hour
and 50 units the second hour. Using the model of Exercise 31
and assuming that P(0) = 0, estimate the maximum number
of units per hour that each worker is capable of processing.

[33] In Section 10.3 we looked at mixing problems in which the

34.

volume of fluid remained constant and saw that such prob-
lems give rise to separable equations. (See Example 6 in that
section.) If the rates of flow into and out of the system are
different, then the volume is not constant and the resulting
differential equation is linear but not separable.

A tank contains 100 L of water. A solution with a salt con-
centration of 0.4 kg/L is added at a rate of 5 L/min. The
solution is kept mixed and is drained from the tank at a rate
of 3 L/min. If y() is the amount of salt (in kilograms) after
t minutes, show that y satisfies the differential equation

By W
dt 100 + 2t

Solve this equation and find the concentration after
20 minutes.

A tank with a capacity of 400 L is full of a mixture of water
and chlorine with a concentration of 0.05 g of chlorine per
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liter. In order to reduce the concentration of chlorine, fresh
water is pumped into the tank at a rate of 4 L/s. The mixture is
kept stirred and is pumped out at a rate of 10 L/s. Find the
amount of chlorine in the tank as a function of time.

An object with mass m is dropped from rest and we assume
that the air resistance is proportional to the speed of the object.
If 5(z) is the distance dropped after ¢ seconds, then the speed is
v = s'(¢) and the acceleration is a = v'(¢). If g is the accelera-
tion due to gravity, then the downward force on the object is
mg — cv, where c is a positive constant, and Newton’s Second
Law gives

dv

m—=mg — Ccv
dt d

10.6

36.

(a) Solve this as a linear equation to show that

m
v = —g(l _ e—u/m)
c

(b) What is the limiting velocity?
(c) Find the distance the object has fallen after 7 seconds.

If we ignore air resistance, we can conclude that heavier
objects fall no faster than lighter objects. But if we take air
resistance into account, our conclusion changes. Use the
expression for the velocity of a falling object in Exercise 35(a)
to find dv/dm and show that heavier objects do fall faster than
lighter ones.

PREDATOR-PREY SYSTEMS

We have looked at a variety of models for the growth of a single species that lives alone in
an environment. In this section we consider more realistic models that take into account
the interaction of two species in the same habitat. We will see that these models take the
form of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food
supply and the second species, called the predator, feeds on the prey. Examples of prey and
predators include rabbits and wolves in an isolated forest, food fish and sharks, aphids and
ladybugs, and bacteria and amoebas. Our model will have two dependent variables and
both are functions of time. We let R() be the number of prey (using R for rabbits) and W(z)
be the number of predators (with W for wolves) at time .

In the absence of predators, the ample food supply would support exponential growth

of the prey, that is,

R _
dt

kR where k is a positive constant

In the absence of prey, we assume that the predator population would decline at a rate pro-

portional to itself, that is,

dw
— = —rW

where r is a positive constant

With both species present, however, we assume that the principal cause of death among the
prey is being eaten by a predator, and the birth and survival rates of the predators depend
on their available food supply, namely, the prey. We also assume that the two species
encounter each other at a rate that is proportional to both populations and is therefore pro-
portional to the product RW. (The more there are of either population, the more encoun-
ters there are likely to be.) A system of two differential equations that incorporates these

assumptions is as follows:

W represents the predator.

R represents the prey.

aw
m —tsz—aRW —Et_=_rw+bRW

where k, r, a, and b are positive constants. Notice that the term —aRW decreases the nat-
ural growth rate of the prey and the term bRW increases the natural growth rate of the

predators.
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FIGURE 6

Relative abundance of hare and lynx
from Hudson’s Bay Company records

10.6

EXERCISES

An important part of the modeling process, as we discussed in Section 1.2, is to inter-
pret our mathematical conclusions as real-world predictions and to test the predictions
against real data. The Hudson’s Bay Company, which started trading in animal furs in
Canada in 1670, has kept records that date back to the 1840s. Figure 6 shows graphs of the
number of pelts of the snowshoe hare and its predator, the Canada lynx, traded by the com-
pany over a 90-year period. You can see that the coupled oscillations in the hare and lynx
populations predicted by the Lotka-Volterra model do actually occur and the period of
these cycles is roughly 10 years.
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Although the relatively simple Lotka-Volterra model has had some success in explain-
ing and predicting coupled populations, more sophisticated models have also been pro-
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence
of predators, the prey grow according to a logistic model with carrying capacity K. Then
the Lotka- Volterra equations (1) are replaced by the system of differential equations

dR R dw
— =kR|1—— ] — aRW — = —rW + bRW
dt K dt
This model is investigated in Exercises 9 and 10.

Models have also been proposed to describe and predict population levels of two

species that compete for the same resources or cooperate for mutual benefit. Such models
are explored in Exercise 2.

[1.] For each predator-prey system, determine which of the vari-

2. Each system of differential equations is a model for two

ables, x or y, represents the prey population and which repre-
sents the predator population. Is the growth of the prey
restricted just by the predators or by other factors as well? Do
the predators feed only on the prey or do they have additional
food sources? Explain.

d
(a) 7’; = —0.05x + 0.0001xy

dy
— = 0.1y — 0.005
dt ; @

d. 2
(b) 7’; — 0.2x — 0.0002x> — 0.006xy
dy

o —0.015y + 0.00008xy

species that either compete for the same resources or cooperate
for mutual benefit (flowering plants and insect pollinators, for
instance). Decide whether each system describes competition
or cooperation and explain why it is a reasonable model. (Ask
yourself what effect an increase in one species has on the
growth rate of the other.)

d
(a) d—: = 0.12x — 0.0006x + 0.00001xy

% = 0.08x + 0.00004xy

d
(b) d—: = 0.15x — 0.0002x> — 0.0006xy

% — 0.2y — 0.00008y2 — 0.0002xy



3-4 A phase trajectory is shown for populations of rabbits (R)

and foxes (F).

(a) Describe how each population changes as time goes by.

(b) Use your description to make a rough sketch of the graphs of
R and F as functions of time.

B] F
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0 400 800 1200 1600 2000 R

160 T =0
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species 1

species 2

5-6 Graphs of populations of two species are shown. Use them
to sketch the corresponding phase trajectory.

[5] »

species 1

species 2

In Example 1(b) we showed that the rabbit and wolf popula-
tions satisfy the differential equation
dW _ —0.02W + 0.00002RW
dR 0.08R — 0.001RW

By solving this separable differential equation, show that

R().()Z W0,0S

i 2. .001W
eOOOOO ReDOOI

=

where C is a constant.

It is impossible to solve this equation for W as an explicit
function of R (or vice versa). If you have a computer algebra
system that graphs implicitly defined curves, use this equation
and your CAS to draw the solution curve that passes through
the point (1000, 40) and compare with Figure 3.

8. Populations of aphids and ladybugs are modeled by the

equations
dA
— = 2A — 0.01AL
dt
dL
o —0.5L + 0.0001AL

(a) Find the equilibrium solutions and explain their
significance.

(b) Find an expression for dL/dA.

(c) The direction field for the differential equation in part (b)
is shown. Use it to sketch a phase portrait. What do the
phase trajectories have in common?

L
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(d) Suppose that at time ¢t = 0 there are 1000 aphids and (b) Find all the equilibrium solutions and explain their
200 ladybugs. Draw the corresponding phase trajectory significance.
and use it to describe how both populations change. (c) The figure shows the phase trajectory that starts at the
(e) Use part (d) to make rough sketches of the aphid and point (1000, 40). Describe what eventually happens to the
ladybug populations as functions of 7. How are the graphs rabbit and wolf populations.
related to each other? (d) Sketch graphs of the rabbit and wolf populations as func-

9. In Example 1 we used Lotka-Volterra equations to model tions of time.

populations of rabbits and wolves. Let’s modify those

egquafions a3 fallpws: (5] 10. In Exercise 8 we modeled populations of aphids and ladybugs

with a Lotka-Volterra system. Suppose we modify those equa-

dR : ;
== 0.08R(1 — 0.0002R) — 0.001RW tions as follows:
dw dA
— = ~0.02W + 0.00002RW 7~ 2A(1 = 0.00014) — 0.01AL
(a) According to these equations, what happens to the rabbit dL
population in the absence of wolves? F —0.5L + 0.0001AL

w
(a) In the absence of ladybugs, what does the model predict
70+ about the aphids?

(b) Find the equilibrium solutions.

(c) Find an expression for dL/dA.

60+ (d) Use a computer algebra system to draw a direction field
for the differential equation in part (¢). Then use the
direction field to sketch a phase portrait. What do the

507 phase trajectories have in common?
(e) Suppose that at time ¢ = 0 there are 1000 aphids and
a0 200 ladybugs. Draw the corresponding phase trajectory

and use it to describe how both populations change.
(f) Use part (e) to make rough sketches of the aphid and
; , ; , ladybug populations as functions of 7. How are the graphs
800 1000 1200 1400 1600 R related to each other?

L
t

10 | REVIEW
CONCEPT CHECK
I. (a) What is a differential equation? 7. (a) Write a differential equation that expresses the law of
(b) What is the order of a differential equation? natural growth. What does it say in terms of relative
(c) What is an initial condition? growth rate?

. What can you say about the solutions of the equation

. What is a direction field for the differential equation

. Explain how Euler’s method works.

. What is a separable differential equation? How do you solve it?

(b) Under what circumstances is this an appropriate model for
population growth?

y' = x? + y” just by looking at the differential equation? (¢) What are the solutions of this equation?

8. (a) Write the logistic equation.
(b) Under what circumstances is this an appropriate model for
population growth?

Y = F(x))?

9. (a) Write Lotka-Volterra equations to model populations of
food fish (F) and sharks (S§).

. What is a first-order linear differential equation? How do you (b) What do these equations say about each population in the

solve it? absence of the other?
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TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. All solutions of the differential equation y’ = —1 — y* are
decreasing functions.

2. The function f(x) = (In x)/x is a solution of the differential

5. The equation e*y’ = y is linear.
6. The equation y’ + xy = e is linear.

7. If y is the solution of the initial-value problem

1 d
equation x?y’ + xy = 1. d—y =2\1- L y(0) =1
) t 5 ’
3. The equation y’ = x + y is separable.
4. The equation y' = 3y — 2x + 6xy — 1 is separable. then lim,—.y = 5.
EXERCISES
I. (a) A direction field for the differential equation y j
y" = y(y — 2)(y — 4) is shown. Sketch the graphs of the NN & S
solutions that satisfy the given initial conditions. o= v v Vv oy —
1 / N\ \ \ \ \ \ \ N\ / I
1 = — 1 = I / — A\ \ 124 \ N =/ !
(1) )7(0) 0.3 (Il) y(O) 1 i o A N NN 2 VN N #E T
= H s — 1 7 — N\ NN — s I
(1") y(O) 3 . (IV) }(O) 4.3 P 0 4 2 NN NS
(b) If the initial condition is y(0) = ¢, for what values of I L = Rl N =g
| B A - . . . 1 ! 1 / N N~ T / 1 ! 1
¢ is lim,_.. y(¢) finite? What are the equilibrium solutions? A Re M A
—_ 4+ — o
_}3 ) _Q ] _ﬂ/] — 0+ — :r 7 2 / é %
v [ T P A Y
' 1 1 ! e = ~ - / 1 4 1
6 -l— L S R Y A (N N S SR B | 1 1 / /= 1% N — 7/ ! 3 I
1 ' I 1 1 1 1 i i 1 1 1 } I / 7 X X N N & 1 ! I
1 1 ] 1 ] ' [ [ ] ] ' 1 f N 7 = N \ \ N == g N N
EEERIERREER AR SR NN
P I P TR R [ T T = S U S N S |
4_ ————————————— ! / AN \ \ \ \ \ \ N # !
MO OS SNUOTRSSS SN S NN / — \ \ \ \ \ 1 \ \ r—; /
NN AN NN N NN N X NN /N \ \ \ \ \ [l \ \ N/
rrXEIzrET2ERE N Y N
2_5 e
1222222722227 (b) Use Euler’s method with step size 0.1 to estimate y(0.3)
P A G A Y S A P A G . . o el .
ro2200 where y(x) is the solution of the initial-value problem in
OF T ¥ RYFDIITLIFIYT & part (a). Compare with your estimate from part (a).
e s (c) On what lines are the centers of the horizontal line
B EEEEEEE R segments of the direction field in part (a) located? What

2. (a) Sketch a direction field for the differential equation
y' = x/y. Then use it to sketch the four solutions that
satisfy the initial conditions y(0) = 1, y(0) = —1,
y(2) =1, and y(=2) = 1.
(b) Check your work in part (a) by solving the differential
equation explicitly. What type of curve is each solution
curve?

3. (a) A direction field for the differential equation y’ = x* — y?
is shown. Sketch the solution of the initial-value problem

y =x*—y y(0) =1

Use your graph to estimate the value of y(0.3).

happens when a solution curve crosses these lines?

4. (a) Use Euler’s method with step size 0.2 to estimate y(0.4),
where y(x) is the solution of the initial-value problem

v(0) =1

(b) Repeat part (a) with step size 0.1.

(c) Find the exact solution of the differential equation and
compare the value at 0.4 with the approximations in
parts (a) and (b).

y' =2xy®

5-8 Solve the differential equation.

dr

=1—-t+x—tx
dt

5. y = xe ™ — y cosx 6.

7. 2ye’’y’ = 2x + 3x 8. x%y —y=2x% '
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9-I1 Solve the initial-value problem.
dr

9 — F2UF =, 0)=>5
i r=r, r(0)

10. (1 + cosx)y’ = (1 + e¢¥)sinx,
y(1) =2

y(©0)=0

1. xy' —y=xlInx,

12. Solve the initial-value problem y' = 3x%”, y(0) = 1, and

graph the solution.

13-14 Find the orthogonal trajectories of the family of curves.

13. y = ke* 14, y = e~

15. (a) Write the solution of the initial-value problem
dP P
— =01P|1 — — =1
dt < 2000 ) P i

and use it to find the population when 7 = 20.
(b) When does the population reach 1200?

16. (a) The population of the world was 5.28 billion in 1990 and
6.07 billion in 2000. Find an exponential model for these
data and use the model to predict the world population in

the year 2020.

(b) According to the model in part (a), when will the world
population exceed 10 billion?

(c) Use the data in part (a) to find a logistic model for the
population. Assume a carrying capacity of 100 billion.
Then use the logistic model to predict the population in

2020. Compare with your prediction from the exponential

model.

(d) According to the logistic model, when will the world pop-

ulation exceed 10 billion? Compare with your prediction
in part (b).

17. The von Bertalanffy growth model is used to predict the

length L(¢) of a fish over a period of time. If L. is the largest

length for a species, then the hypothesis is that the rate of

growth in length is proportional to L., — L, the length yet to

be achieved.

(a) Formulate and solve a differential equation to find an
expression for L(z).

(b) For the North Sea haddock it has been determined that
L.. = 53 cm, L(0) = 10 c¢m, and the constant of propor-

tionality is 0.2. What does the expression for L(7) become

with these data?

18. A tank contains 100 L of pure water. Brine that contains
0.1 kg of salt per liter enters the tank at a rate of 10 L/min.
The solution is kept thoroughly mixed and drains from the
tank at the same rate. How much salt is in the tank after
6 minutes?

19. One model for the spread of an epidemic is that the rate of
spread is jointly proportional to the number of infected

20.

21.

22.

people and the number of uninfected people. In an isolated
town of 5000 inhabitants, 160 people have a disease at the
beginning of the week and 1200 have it at the end of the
week. How long does it take for 80% of the population to
become infected?

The Brentano-Stevens Law in psychology models the way
that a subject reacts to a stimulus. It states that if R represents
the reaction to an amount S of stimulus, then the relative rates
of increase are proportional:

LR _bdS
R d S dt
where k is a positive constant. Find R as a function of S.

The transport of a substance across a capillary wall in lung
physiology has been modeled by the differential equation

dn_ _R( _h
dt V\k+nh

where A is the hormone concentration in the bloodstream, # is
time, R is the maximum transport rate, V is the volume of the
capillary, and k is a positive constant that measures the affin-
ity between the hormones and the enzymes that assist the
process. Solve this differential equation to find a relationship
between 4 and 7.

Populations of birds and insects are modeled by the equations

d

d—)l‘ — 0.4x — 0.002xy

d

d—f = —0.2y + 0.000008xy

(a) Which of the variables, x or y, represents the bird pop-
ulation and which represents the insect population?
Explain.

(b) Find the equilibrium solutions and explain their
significance.

(c) Find an expression for dy/dx.

(d) The direction field for the differential equation in part (c)
is shown. Use it to sketch the phase trajectory corre-

y
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23.

sponding to initial populations of 100 birds and 40,000
insects. Then use the phase trajectory to describe how
both populations change.

(e) Use part (d) to make rough sketches of the bird and insect
populations as functions of time. How are these graphs
related to each other?

Suppose the model of Exercise 22 is replaced by the
equations

d

d—: = 0.4x(1 — 0.000005x) — 0.002xy
d

d_-r = —0.2y + 0.000008xy

(a) According to these equations, what happens to the insect
population in the absence of birds?

(b) Find the equilibrium solutions and explain their
significance.

(c) The figure shows the phase trajectory that starts with
100 birds and 40,000 insects. Describe what eventually
happens to the bird and insect populations.
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(d) Sketch graphs of the bird and insect populations as func-
tions of time.

Barbara weighs 60 kg and is on a diet of 1600 calories per
day, of which 850 are used automatically by basal metabolism.
She spends about 15 cal/kg/day times her weight doing exer-
cise. If 1 kg of fat contains 10,000 cal and we assume that
the storage of calories in the form of fat is 100% efficient,
formulate a differential equation and solve it to find her
weight as a function of time. Does her weight ultimately
approach an equilibrium weight?

When a flexible cable of uniform density is suspended
between two fixed points and hangs of its own weight, the
shape y = f(x) of the cable must satisfy a differential equa-

tion of the form
d?y dy \?
L —kfr+ [
dx~ dx

where k is a positive constant. Consider the cable shown in

the figure.

(a) Let z = dy/dx in the differential equation. Solve the
resulting first-order differential equation (in z), and then
integrate to find y.

(b) Determine the length of the cable.

7
(=b, h) (b, )
\4 o
Jb 0 ;, X
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PLUS

FIGURE FOR PROBLEM 9

Find all functions f such that f' is continuous and
[F(0)]1? = 100 + jo {{fOF + [f(O1}dt  forall real x

A student forgot the Product Rule for differentiation and made the mistake of thinking
that (fg)' = f'g'. However, he was lucky and got the correct answer. The function f that he

used was f(x) = ¢** and the domain of his problem was the interval ( L 00). What was the
function ¢?

Let f be a function with the property that £(0) = 1, f'(0) = 1, and f(a + b) = f(a)f(b) for
all real numbers a and b. Show that f'(x) = f(x) for all x and deduce that f(x) = e*.

Find all functions f that satisfy the equation

(041 15)-

Find the curve y = f(x) such that f(x) = 0, f(0) = 0, f(1) = 1, and the area under the graph
of f from O to x is proportional to the (n + 1)st power of f(x).

A subtangent is a portion of the x-axis that lies directly beneath the segment of a tangent line
from the point of contact to the x-axis. Find the curves that pass through the point (c, 1) and
whose subtangents all have length c.

A peach pie is removed from the oven at 5:00 pM. At that time it is piping hot, 100°C.
At 5:10 pM its temperature is 80°C; at 5:20 pMm it is 65°C. What is the temperature of the
room?

Snow began to fall during the morning of February 2 and continued steadily into the after-
noon. At noon a snowplow began removing snow from a road at a constant rate. The plow
traveled 6 km from noon to 1 pm but only 3 km from 1 pm to 2 M. When did the snow begin
to fall? [Hints: To get started, let # be the time measured in hours after noon; let x(z) be the
distance traveled by the plow at time #; then the speed of the plow is dx/dr. Let b be the num-
ber of hours before noon that it began to snow. Find an expression for the height of the snow
at time . Then use the given information that the rate of removal R (in m*/h) is constant.]

A dog sees a rabbit running in a straight line across an open field and gives chase. In a rectan-
gular coordinate system (as shown in the figure), assume:
(i) The rabbit is at the origin and the dog is at the point (L, 0) at the instant the dog first
sees the rabbit.
(ii) The rabbit runs up the y-axis and the dog always runs straight for the rabbit.
(iii) The dog runs at the same speed as the rabbit.

(a) Show that the dog’s path is the graph of the function y = f(x), where y satisfies the differ-

ential equation
dZ y dy 2
Fax? ( dx

(b) Determine the solution of the equation in part (a) that satisfies the initial conditions
y =7y" = 0 when x = L. [Hint: Let z = dy/dx in the differential equation and solve the
resulting first-order equation to find z; then integrate z to find y.]

(c) Does the dog ever catch the rabbit?

654



PROBLEMS PLUS

. (a) Suppose that the dog in Problem 9 runs twice as fast as the rabbit. Find a differential

equation for the path of the dog. Then solve it to find the point where the dog catches the
rabbit.

(b) Suppose the dog runs half as fast as the rabbit. How close does the dog get to the rabbit?
What are their positions when they are closest?

. A planning engineer for a new alum plant must present some estimates to his company regard-

ing the capacity of a silo designed to contain bauxite ore until it is processed into alum. The

ore resembles pink talcum powder and is poured from a conveyor at the top of the silo. The

silo is a cylinder 30 m high with a radius of 60 m. The conveyor carries 150077 m%h and the

ore maintains a conical shape whose radius is 1.5 times its height.

(a) If, at a certain time ¢, the pile is 20 m high, how long will it take for the pile to reach the
top of the silo?

(b) Management wants to know how much room will be left in the floor area of the silo when
the pile is 20 m high. How fast is the floor area of the pile growing at that height?

(c) Suppose a loader starts removing the ore at the rate of 50077 m* h when the height of the
pile reaches 27 m. Suppose, also, that the pile continues to maintain its shape. How long
will it take for the pile to reach the top of the silo under these conditions?

. Find the curve that passes through the point (3, 2) and has the property that if the tangent line

is drawn at any point P on the curve, then the part of the tangent line that lies in the first
quadrant is bisected at P.

. Recall that the normal line to a curve at a point P on the curve is the line that passes through

P and is perpendicular to the tangent line at P. Find the curve that passes through the point
(3, 2) and has the property that if the normal line is drawn at any point on the curve, then
the y-intercept of the normal line is always 6.

. Find all curves with the property that if the normal line is drawn at any point P on the curve,

then the part of the normal line between P and the x-axis is bisected by the y-axis.
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