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ABSTRACT� A �skewing� method is shown to e�ectively reduce the order of bias

of locally parametric estimators� and at the same time retain positivity properties�

The technique involves �rst calculating the usual locally parametric approximation

in the neighbourhood of a point x� that is a short distance from the place x where

the we wish to estimate the density� and then evaluating this approximation at x�

By way of comparison� the usual locally parametric approach takes x� � x� In our

construction� x��x depends in a very simple way on the bandwidth and the kernel�

and not at all on the unknown density� Using skewing in this simple form reduces

the order of bias from the square to the cube of bandwidth� and taking the average

of two estimators computed in this way further reduces bias� to the fourth power

of bandwidth� On the other hand� variance increases only by at most a moderate

constant factor�
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�� INTRODUCTION

There is a wide variety of high�order methods for reducing the bias of kernel�

type density estimators� Jones and Signorini ������ have reviewed the class of

techniques that have bias of order h�� where h denotes bandwidth� and showed

that most are of one or other of six basic types� classical fourth�order kernel meth�

ods �e�g� Bartlett ��	
�� �nonnegativisation� of fourth�order kernel methods �e�g�

Terrell and Scott ������ multiplicative bias correction methods �e�g� Jones� Linton

and Nielsen ������ nonparametric transformation methods �e�g� Ruppert and Cline

������ variable bandwidth methods �e�g� Abramson ���
�� and variable location

methods �e�g� Samiuddin and el�Sayyad ������

The approach of Samiuddin and el�Sayyad ������ involves shifting the location

of each data value by an amount proportional to the square of bandwidth� and

recomputing the density estimate for the shifted data� Since the amount of shift

depends on the unknown density �and its derivative� as well as on the datum and

the bandwidth� computation of a pilot density estimator is required� In the present

paper we suggest an entirely di�erent shifting technique that does not require a pilot

estimator� The new approach is closely allied to contemporary� locally parametric

methods �e�g� Hjort and Jones ���	�� It may also be regarded as an application to

density estimation of �skewing� methods suggested in the context of nonparametric

regression by Choi and Hall ������� A potential advantage of the skewing approach

is that it may be applied to a great many curve estimation problems� for example

to generalised linear models� the Cox proportional likelihood model� and nonpara�

metric estimation of survival functions� as well as to more conventional problems in

nonparametric density estimation and regression�

Skewing methods involve calculating a nonparametric curve estimator in a

traditional way by locally weighting in a region that is symmetrically placed on

either side of the point x of interest� and then computing the �nal estimator in a

skew way� at a point that is slightly to one side or the other of x� If the extent

of o�set is chosen appropriately �it depends only on the kernel and bandwidth��

skewing reduces the order of bias� but incurs only a moderate increase in variance�

By averaging two skewed estimators one can reduce bias from O�h�� to O�h��� still

at the expense of only a constant�factor in�ation of variance� In this paper we show



�

that skewing may be used with general two�parameter locally parametric methods

for density estimation� including methods based on a local likelihood or on local

least�squares�

Importantly� skewed estimators are guaranteed to be nonnegative� since they

are convex combinations of evaluations of nonnegative functions g��� �� determined

by a parameter vector �� Therefore� skewing reproduces the bias�reduction e�ect of

high�order density estimation without risking the occurrence of negative estimates�

As a simple example of the method of skewing� let �fclass be the classical kernel

density estimator constructed using the Standard Normal kernel and bandwidth

h� Then� using the skewing method for a local likelihood construction from an

exponential model� we obtain the estimators �f� and �f� given by

�f��x� � �fclass�x� h� exp
h
�
� �

�
�

�
�� h � �fclass�

��x� h� �fclass�x� h���
��i

� �����

where the � and � signs are chosen respectively� The following results are true�

�a� both �f� and �f� have bias of size h	 as estimators of f � �b� the estimator

�f � �
� � �f� � �f�� has bias of size h�� and �c� each of �f�� �f�� �f has variance of size

�nh���� By way of comparison� �fclass itself has variance of size �nh��� but larger

bias� of size h��

These improvements in performance are available for general kernels and gen�

eral approaches to locally parametric estimation� for example those based on either

local likelihood or local least squares� They allow mean squared error to be reduced

from order n����� in the case of standard kernel or locally parametric methods� to

order n�
��� for �f and analogous estimators�

Local parametric methods in statistics have a particularly long history� if one

includes among them local linear and local polynomial techniques in nonparametric

regression� In this context the review paper of Hastie and Loader ����
�� and

monographs of Wand and Jones ������ and Fan and Gijbels ����	�� should be

particularly mentioned� The recent surge of interest in locally parametric �tting

for density and regression estimation is largely motivated by work of Copas �������

Fan� Farmen and Gijbels ����	�� Hjort and Jones ����	� and Loader ����	�� which

in turn prompted the present paper� In our presentation and discussion we have

followed the development of Hjort and Jones� which applies in a particularly broad
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setting� High�order methods in curve estimation include work of Ruppert and Wand

������� in the context of local high�order polynomial modelling in regression� as well

as contributions by Hjort and Jones ����	� and Loader ����	� to high�order local

log�polynomial modelling in density estimation�

Section 
 will outline the methodology of skewing in the context of general

locally parametric methods for density estimation� Details of technical arguments

which justify the claims made there will be deferred to Section �� Numerical prop�

erties of skewing for locally parametric density estimation will be illustrated in

Section 
�

�� METHODOLOGY

���� Locally parametric methods� Let X�� � � � � Xn denote a random sample from

a distribution with density f � which we wish to estimate� We follow the general

prescription of Hjort and Jones ����	� for locally parametric methods� based on

two�parameter �ts� Let g��� �� be a family of two�parameter functions� indexed by

� � ������ �����T � which we wish to �t to data in a neighbourhood of x� Hjort and

Jones suggest �rst de�ning the parameter estimator �� � ���x� as the solution in �

of the equation

n��
nX

i��

Kh�x�Xi� vj�x�Xi� ���

Z
Kh�x� t� vj�x� t� �� g�t� �� dt � � � �
���

where Kh�t� � h��K�t�h�� K is the kernel function �here taken to be either the

Standard Normal density or a symmetric� nonnegative� compactly supported den�

sity�� h is the bandwidth� vj�x� t� �� for j � �� 
 is a generalised two�parameter

score function� See �
��� below for a �population version� of �
���� Hjort and Jones

����	�� noting similar methods suggested by Copas ������ and Loader ����	�� take

their estimator of f to be �f�x� � gfx� ���x�g� Note that �f need not integrate to one�

One of the very attractive features of Hjort and Jones� approach is its consider�

able generality� obtained partly through general interpretation of the score function�

For example� taking

vj�x� t� �� �
�
�����j�

�
log g�t� �� or vj�x� t� �� �

�
�����j�

�
g�t� �� �
�
�

we obtain a local likelihood estimator or a local least�squares estimator� respectively�

As these examples suggest� it is typically true that the dependence of vj�x� t� �� on

x is degenerate�
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Hjort and Jones argue that in this general setting� variance and bias admit the

following asymptotic approximations�

var f �f�x�g � �nh����� f�x� � o
�

�nh���
�
� �
�
�

Ef �f�x�g � f�x� � gfx� ���x�g � f�x� � O
�

�nh���
�

� �
���h

�
�
f ���x�� g��fx� ���x�g

�
� O

�
h� � �nh���

�
� �
���

as h � � and nh � �� where �� �
R
K�� �� �

R
t�K�t� dt� g�j��x� �� �or g with

j dashes� denotes ����x�j g�x� ��� and ���y� � ���y� h� is the solution in � of the

equation Z
Kh�y � t� vj�y� t� �� ff�t�� g�t� ��g dt � � for j � �� 
 � �
���

We assume that� for each y and all su�ciently small h� ���y� exists and is unique�

When we intend h � � in ���y�� we write it as ���y� ��� in all other cases� h is

nonzero� Other regularity conditions for �
�
� and �
��� will be discussed in Section


�
� They allow regular mathematical expectations to be used� rather than simply

expectations in the limiting distribution of �f�x��

���� Skewing� Following standard practice in local curve �tting� Hjort and Jones

�and others working on locally parametric methods� compute �f symmetrically� That

is� they weight data on either side of x in a symmetric way� and calculate �f at

the �centre� of the weights� Skewing involves using symmetric weights at an o��

centre point x�� but nevertheless calculating the estimator at x� Thus� we replace

�f�x� � gfx� ���x�g by �f�xjx�� � gfx� ���x��g� In the general setting of Section 
���

using this method with x� � x� � x��
���
� h �for either choice of the � and � signs�

produces estimators �f��x� � gfx� ���x��g whose bias is Ofh	 ��nh���g rather than

Ofh� � �nh���g� Using the symmetric convex combination �f � �
�� �f� � �f�� reduces

bias further� to Ofh� � �nh���g� More generally� employing the estimator

�f��x� � �
� � ����
�
� �f�xjx � lh� � �f�xjx� � � �f�xjx� lh�

�
�

where � � � �� and

l � l��� � f�� � 
������
��g��� � �
�	�

also reduces bias to Ofh� � �nh���g� �Note that �f � �f��� Thus� we have

E� �f�� � f � O
�
h	 � �nh���

�
� E� �f� � f � O

�
h� � �nh���

�
�



�

E� �f�� � f � O
�
h� � �nh���

�
� �
���

The variance remains at order �nh��� throughout these manipulations� Indeed�

under regularity conditions implicit in Hjort and Jones ����	� �see for example

�
���� below��

var � �f�� � �nh���
�
�� � ���� �	

�
f � var � �f�� � �nh��� V ��� f � �
���

as h� � and n�� in such a manner that nh��� where �	 �
R
t�K�t�� dt and

V ��� � �
� � ����
��


�� � �
�
�� �

�
	� � �

� Z
K�u� l�K�u� du

� �
�

�
�� � �

�� Z
K�u� l�K�u� l� du

� ��
� � ������

Z
u�
�
K�u�� �K�u� l�K�u� l�

�
du

�
�

Formula �
��� for var � �f�� holds when � � �� so that var � �f� � �nh���V ��� f �

These are the same variances that arise in skewed local linear approximation

in nonparametric regression �Choi and Hall ������ That is to be expected� given

the interpretation of nonparametric density estimation as regression with Poisson�

distributed errors� The size of V ���� for � � � � �� is discussed at length by Choi

and Hall� Those authors show that� depending on choice of K and �� V ��� can

actually be smaller than ��� although for most values of � it is larger� up to 
��

larger in the case of the Normal kernel�

To treat the particular case where g�y� �� � ���� expf�y�x� ����g� �rst de�ne �

to be the moment generating function corresponding to the density K� put Ak�x� �

n��
P

i Kh�x�Xi� �Xi�x�k and note that A� � �fclass �the classical kernel density

estimator�� and let vj be given by the �rst formula in �
�
�� Then ������ ����� are the

solutions of the equations A� � ����� ��h������ and A��A� � h���h���������h�������

and

�f�xjx�� � A��x
���

�
h������x��

���
exp

�
�x� x�� ������x��

�
�

When K is the Standard Normal kernel we have ��t� � exp�t��
� and ����� �

� �fclass�
�� �fclass� and so for each constant c�

�f�xjx� ch� � �fclass�x� ch� exp
h
�
� c

�� �
�

�
c�h � �fclass�

��x� ch� �fclass�x� ch���
��i

�

�
���
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from which the estimators �f�� �f� and �f � �f� may be immediately constructed�

Taking c � � in �
��� gives the local log�linear density estimator of Hjort and Jones

����	� and Loader ����	��

Hjort and Jones comment that in this example� when c � � the parameter esti�

mate ����� is �only somewhat silently present�� That cannot be said of the case c �� �

in which we are interested� Those authors also argue that ����� might be computed

separately from ������ using a larger bandwidth� Following that prescription here

would destroy the bias�reduction properties of estimators constructed by skewing�

While the estimator at �
��� was derived in the special case of the Standard

Normal kernel� it is appropriate much more generally� Indeed� taking �fclass to

be a general kernel estimator computed using a kernel with �� � � �where� here

and in the remainder of this paragraph� �j is interpreted for the kernel used to

compute �fclass�� and putting c � ��� the estimator �f��x� � �f�xjx � ch� �with

the right�hand side given by �
���� satis�es E� �f�� � f � Ofh	 � �nh���g and

var � �f�� � �nh������ � �	� f � This is the analogue of �
��� and �
��� �taken there

for �f�� in the case of �f�� These results may be derived after little more than

Taylor expansion� Likewise� the versions of �
��� and �
���� for linear combinations

of estimators such as �f� and giving rise to analogues of �f and �f�� may be derived�

Similarly� versions of �
��� that arise for kernels other than the Normal may be

shown to produce a variety of new estimators which enjoy good bias�reduction

properties� provided the kernel is su�ciently smooth� �The smoothness is needed

in the Taylor�expansion part of the argument��

As is commonly the case with density estimators derived by locally parametric

methods� �f�� �f� and �f� do not necessarily integrate to �� Correcting the estimators

by dividing by their respective integrals may improve �nite�sample performance� For

example� in the case of Standard Normal data� the improvement in mean integrated

squared error of �f is by ��� when n � ���� with smaller increases for other densities

in our simulation study� Similar results were obtained by Jones� Linton and Nielsen

������ and Jones and Signorini �������

���� Assumptions on g and vj � The properties required of the parametric model

and score functions in the two�parameter case of Hjort and Jones� ����	� work are

not stated explicitly there� Concise conditions are needed if the outline technical
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arguments in the present paper are to be clear� however� and so we shall be speci�c

about them here�

Any successful candidate for g in a second�order locally parametric method

has to be capable of capturing the full range of potential values of both f and its

derivative� If g depends on its argument and parameters in a smooth way then this

implies that� after a suitable reparametrisation� it should be approximately linear

in small neighbourhoods of any given point x�

g�y� �� � 	��� � 	����y � x� � O
�

�y � x��
�

�
����

as y � x� Furthermore� the transformation which takes � to 	 � �	���� 	����T

should be one�to�one and onto the whole of �����	������� �The transformation

will of course depend on x�� The di�erentiated forms of �
���� must also be valid� for

as many derivatives of g �with respect to y and �� with x held �xed� that are required

for other aspects of the proof� For example� we need g��y� �� � 	��� �O�jy� xj� as

y � x�

Of course� �
���� is satis�ed by all standard two�parameter models that are

used in practice in locally parametric density estimation� In particular� if g is the

log�linear model employed as an example in Section 
�
 then �
���� holds with

	��� � ���� and 	��� � ��������� and if g is the Normal model�

g�y� �� � �

�����
�
����

���
exp

�
� �

� �������� �y � x� ������
�
�

then �
���� is valid with

	��� � �

�����
�
����

���
exp

�
� �

� ������������
�

and 	��� � 	�������
�
����

���
�

In the general formulation of locally parametric methods suggested by Hjort

and Jones ����	�� no explicit connection is required between the score functions vj

and the model g� Nevertheless� their arguments implicitly ask that

for each x� each of the conditions vjfx� x� ���x� ��g �� �

and ����t� vjfx� t� ���x� ��gjt�x �� � holds for some

j � j�x� �not necessarily the same j in both cases�� �
����

where as before� ���y� h� is de�ned as the solution of equation �
���� In particular�

without the second part of �
����� g�fx� ���x�g does not approximate f ��x�� Assuming
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that �
���� holds and vj is given by one of the formulae at �
�
�� �
���� is valid if

and only if 	���� ������j��	��� and ������j��	��� are nonzero when evaluated at

� � ���x� ���

If one �ts only densities in a uniformly�bounded two�parameter class G �

fg��� �� � � 
 �g� i�e� one satisfying

sup
x

sup
��g�x����G

g�x� �� �� � �
��
�

then all the bias and variance formulae in Sections 
�� and 
�
 �for example� �
���

and �
���� the latter provided that f�x� �� �� are correct as they stand� for the

actual bias and variance� They do not represent simply the bias and variance of

asymptotic distributions of �f� �f�� �f� or �f � This is in contradistinction to the case of

local polynomial methods in nonparametric regression� where the actual bias and

variance are typically not well�de�ned�

To establish this result we need a mild additional condition on the bandwidth�

It is su�cient to ask that for some � � � and all su�ciently large n� h�n� � n�����

In company with assumptions already made� for example the condition that K be

either compactly supported or the Standard Normal kernel �see Section 
���� this

may be shown to imply that for all 
� � � �� the event E � fj �f��x� � f�x�j � 
g

satis�es P �E� � O�n���� Call this result �R�� Standard arguments that would be

employed to establish versions of �
��� and �
��� when expectations are taken in

asymptotic distributions� may be used to show that �
��� and �
��� hold when� on

the left�hand sides� the estimator �f� �for example� is replaced by �f� I�eE�� whereeE denotes the complement of E and I�eE� is the indicator of eE � Since� by �
��
��

� � �f� � C for a �nite constant C� then by �R�� the mean and mean square error

�in fact� any �nite moment� of �f� � �f� I�eE� � �f� I�E� equal O�n��� for all � � ��

This allows us to make the transition from the versions of �
��� and �
��� for �f� I�eE��

to the actual formulae �
��� and �
���� The cases of �f or �f�� rather than �f�� may

be treated similarly�

�� NUMERICAL RESULTS

The simulation study is only summarised here� further details are available

from the authors� A wide range of other high�order kernel�type estimators� with

bias O�h��� is compared numerically by Jones and Signorini ������� and so we
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limit ourselves to comparing �f� and �f with �a� a standard second�order kernel

estimator �fclass� using the Standard Normal kernel �� �b� a fourth�order kernel

estimator �fclass��� based on the kernel K����x� � �
�
�
� x����x�� and �c� the shift�

type estimator proposed by Samiuddin and el�Sayyad ������� The latter is arguably

the pre�existing method that is most closely related to our own� We shall choose the

version of Samiuddin and el�Sayyad�s estimator employed by Jones and Signorini

������� i�e�

�fSS�x� � �nh���
nX
i��

K
�
h��

�
x�Xi �

�
�
h� �� � �fclass�

��Xi�
�

�fclass�Xi�
��

�

where K is taken as �� and �fclass is as de�ned in Section � � that is� �fclass is a

standard kernel estimator with kernel � and bandwidth h� So as to directly compare

�fclass�� and �fSS with �f � we renormalised the latter by dividing by
R

�f � Note that

both �fclass�� and �fSS integrate to �� We do not alter the notation �f � however� in the

discussion below� Our simulation results indicate that renormalisation has minimal

e�ects on �f�� and hence we do not pursue normalisation of �f� in our study�

We chose � densities� f�� � � � � f�� namely �Gaussian�� �skewed unimodal�� �bi�

modal�� �separated bimodal� and �asymmetric bimodal� as described by Marron

and Wand ����
�� We used sample sizes n � ��� ���� 
��� ��� and ����� al�

though only results for n � ��� and for the �Gaussian� and �skewed unimodal�

densities will be discussed in detail� Results for other values of n and other den�

sities are similar� and their mean integrated squared error �MISE� performances

are summarised in Figure 
��� We employed the local log�linear parametric model

g�y� �� � ���� expf�y�x�����g� because of its popularity �e�g� Hjort and Jones ���	�

Loader ���	�� its simplicity �e�g� the availability of the closed�form estimator at

�
����� and the central position occupied by local linear methods in contemporary

curve estimation�

To calculate MISE curves we used a grid of bandwidths consisting of �� log�

arithmically equally�spaced points in the interval ����� ��� � Each MISE curve was

obtained by averaging ���� replications of integrated squared error �ISE� curves�

For each bandwidth h in the grid� we calculated the pointwise squared errors of the

estimates at 
�� equally�spaced points on the interval ��
� 
 � The trapezoidal rule

was employed to evaluate ISE� The MISE curves for n � ��� and for the densities



�	

f� and f� are depicted in Figures 
�
 and 
�
 respectively� For the sake of clarity�

only bandwidths in the interval ������ ��� are displayed� Vertical lines are drawn

through the minimisers of the MISE curves� and have the same line types as the

respective curves�

For the Gaussian and skewed unimodal densities� the estimator �f performs bet�

ter than �f� in MISE terms throughout the range of bandwidths considered� In the

case of small bandwidths� the MISE curves for the standard kernel estimator �fclass

and the standard locally parametric estimator �f� � �f�xjx� are almost identical�

whereas discrepancies are noted for large h� This is to be expected since� as men�

tioned by Hjort and Jones ����	�� for small to moderate h the locally parametric

estimator utilises primarily local properties of the model g� and hence the estima�

tion method is essentially nonparametric� As h increases the method becomes more

parametric� and the di�erence between MISE curves is best explained by errors in

approximating the true density by the model� Note� however� that the minimum

MISE�s for �fclass and �f� are approximately equal in all our simulations�

The performance of �f� improves on that of �f� for large n� although not neces�

sarily for smaller sample sizes� This is illustrated in Figures 
�
 and 
�
� where the

minimum MISE for �f� is seen to be less than that for �f� in the case n � ���� From

the theory� �f� outperforms �fclass when the sample size n is large enough� and this

is demonstrated by the increasing e�ciency as a function of n in Figure 
��� Never�

theless� the asymmetric quality of �f� is re�ected clearly in the MISE performance

when estimating the skewed unimodal and asymmetric bimodal densities�

The substantial improvements o�ered by �f are clear even for the small sample

size n � ���� Among the high�order methods we compared� �f has a better overall

performance than �fSS� and both estimators have greater e�ciency than �fclass�� in all

cases� as indicated in Figure 
��� Moreover� our skewed estimator �f has advantages

over �fSS from a computational viewpoint� To appreciate why� assume that the data

are not binned� and that the density is estimated at M grid points� Then the

number of kernel evaluations needed to compute �f is of size O�nM�� whereas that

for �fSS is of size O�n�M��

The improvements in performance o�ered by skewing methods over standard

kernel estimators are generally apparent in both the body of the distribution and



��

the tails� For example� if n � ��� and the target density is Normal �e�g� density

f��� and if we use globally�optimal bandwidths in each estimator� then the pointwise

mean squared error �PMSE� of �fclass exceeds that of �f over the range �
 standard

deviations from the mean� and the excess of PMSE for �fclass relative to that for

�f equals �	�� 
	� and ��� at �� � and 
 standard deviations from the mean�

respectively� The relatively low �gure at � standard deviation re�ects the fact that

the bias of �fclass is of order h� there�

In practice the bandwidth would be selected empirically� but in a compari�

son of estimators using di�erent bandwidth choice methods� the performance of

estimators would be confounded with the performance of bandwidth selectors� A

cross�comparison� of both bandwidth selectors and estimators� is beyond the scope

of this paper� However� we note that standard bandwidth choice methods� such as

cross�validation� are applicable without change to our skewing estimators�

�� OUTLINE OF TECHNICAL ARGUMENTS

���� Biases of skewed estimators� Here we show that �f�� �f� and �f have biases

of orders h	� h� and h�� respectively� Assume that �
���� and �
��
� hold� and

that f� g� v�� v� have four bounded derivatives with respect to each variable� �Only

three derivatives are required to derive the Ofh	 � �nh���g bias of �f��� Arguing

as in Hjort and Jones ����	� we may deduce that for any constant c the bias of

gfx� ���x� ch�g� as an estimator of f�x�� equals

gfx� ���x � ch�g � f�x� � O
�

�nh���
�
� �����

where ���y�� assumed uniquely de�ned in a neighbourhood of x� is the solution of

�
���� Put � � ch and Taylor�expand ���� � gfx� ���x � ��g around � � �� as a

power series in �� The coe�cient of � in the expansion equals

����
�
�x� g��fx� ���x�g� ����

�
�x� g��fx� ���x�g

� ����x� gfx� ���x�g � g�fx� ���x�g � ���
�

where

gjk�y� �� �
�
�j�k

��
������j

�
������k

�
g�y� �� �

To evaluate the right�hand side of ���
� observe that� on setting y � x and � � ���x�

in �
���� Taylor�expanding� and di�erentiating with respect to x the left�hand side�



��

we obtain

����x�
�
vjfx� x� ���x�g �f�x�� gfx� ���x�g 

�
� O

�
h�
�

� � �

Using the product rule to evaluate the di�erential on the left�hand side� employing

�
��� to prove that the term f�x�� gfx� ���x�g that forms part of the result equals

O�h��� and choosing j so that vjfx� x� ���x� ��g �� � �see �
������ we deduce that

f ��x�� ����x� gfx� ���x�g � O�h�� � ���
�

Again Taylor�expanding the left�hand side of �
��� with � � ���x� � ���x� h��

this time not di�erentiating but choosing j such that

����t� vjfx� t� ���x� ��g
		
t�x

�� � �����

�see �
������ we obtain

vjfx� x� ���x�g �f�x�� gfx� ���x�g 

� �
���h

�


vjfx� x� ���x�g

�
f ���x�� g��fx� ���x�g

�
� v��j fx� x� ���x�g

�
f�x�� gfx� ���x�g

�
� 
 v�jfx� x� ���x�g

�
f ��x�� g�fx� ���x�g

��
� O

�
h�
�

� � �

where v
�k�
j �x� t� �� �or vj with k dashes� denotes ����t�k vj�x� t� ��� Using �
��� we

deduce that the left�hand side equals

��h
� v�jfx� x� ���x�g

�
f ��x�� g�fx� ���x�g

�
� O�h�� �

whence it follows from ����� that

f ��x�� g�fx� ���x�g � O�h�� � �����

Combining ���
� and ����� we see that the right�hand side of ���
� equals O�h���

Hence� the term in � in the Taylor expansion of ���� is of size O
�
�h�

�
� O�h	��

Next we deal with the coe�cient of �
��

�� which may be shown by an analogue

of the argument leading to ���
� to equal

����x��gfx� ���x�g� g��fx� ���x�g � 
 ����x� g�fx� ���x�g � ���	�



��

Formally di�erentiating �
��� we deduce that ����x���gfx� ���x�g � f�x� � O�h���

This result may be obtained rigorously by making minor modi�cations to arguments

of Hjort and Jones ����	�� Re�ning the argument leading to ����� we may identify

the right�hand side and show that� after one di�erentiation� it is still of order O�h���

Therefore� f ���x�� ����x� g�fx� ���x�g � O�h��� Combining the last two results we

see that the quantity at ���	� equals g��fx� ���x�g�f ���x��O�h��� From this formula

for the coe�cient of �
��

� in the Taylor expansion of ����� and from the result in the

previous paragraph for the coe�cient of �� we deduce that

gfx� ���x� ��g � gfx� ���x�g � �
��

�
�
g��fx� ���x�g � f ���x�

�
� O�h	� � �����

Using �
��� and ����� we �nd that the quantity at ����� �equal to the bias of

gfx� ���x� ch�g� equals

�
� h

�
�
�� � c�

� �
f ���x�� g��fx� ���x�g

�
� O

�
h	 � �nh���

�
�

Since �f� is de�ned by taking c � ��
���
� in gfx� ���x� ch�g then� for either choice of

the � and � signs� its bias equals simply Ofh	 � �nh���g�

Appealing to symmetry properties when evaluating Taylor expansions� it may

be proved by a similar but longer argument than that leading to ����� that

gfx� ���x� ch�g� gfx����x� ch�g � 
 f�x�

� h�
�
�� � c�

��
f ���x�� g��fx� ���x�g

�
� O�h�� �

From this formula and �
��� we deduce that

�
�� ����


� �gfx� ���x � ch�g� gfx� ���x� ch�g � gfx� ���x�g

�
� f�x�

�
h�



�
� � ����

�
�
� � ���� � 
�c�

� �
f ���x�� g��fx� ���x�g

�
� O�h�� � �����

The left�hand side equals the bias of �f�� up to terms of order �nh���� Taking

c � l� where l is de�ned by �
�	�� the right�hand side of ����� equals O�h��� Hence�

E� �f�� � f � Ofh� � �nh���g� Similarly we may prove that the bias of �f � �f�

equals Ofh� � �nh���g�

���� Variance of skewed estimators� We assume �
����� and also �without loss

of generality� that the original parametrisation was � � 	� We further assume



��

�
���� and its di�erentiated form� and �
��
�� Then� following the argument in

Section ��
 of Hjort and Jones ����	�� the variance of �f� is seen to be asymptotic

to �nh�����K��f�x�� where� in place of Hjort and Jones� formula for ��K��� one has

��K�� � wTM��
� M�M

��
� w� with wT � �� � o���� ch � o�h��� M� � diag ��� h�����

M� � diag ���� h
��	� and c � ��

���
� � It follows that ��K�� � �� � c����� �	 �

�� � ���� �	� as had to be proved� Formulae for the variances of �f� and �f may

be derived by similar but more elaborate arguments� which are detailed in the

forthcoming ANU PhD thesis of E� Choi�
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Captions for �gures and table

Figure ���� Relative e�ciencies� The vertical axis gives ratios of the minimum MISE

values of �f�� �f�� �f�� �f � �fclass�� and �fSS relative to the standard kernel estimator
�fclass� calculated for �ve of the �fteen Gaussian mixture densities of Marron and

Wand ����
�� Panels �a�!�e� represent respectively unimodal� skewed unimodal�

bimodal� separated bimodal and asymmetric bimodal densities� The vertical axes

in all panels have the same range and scale�

Figure ���� Comparison of MISE curves for the Gaussian density f� with sample

size n � ���� The �gure is plotted on a log�log scale� for the sake of clarity� The line

types in the legend correspond to the estimators �fclass� �f�� �f�� �f�� �f � �fclass�� and
�fSS�

Figure ���� Comparison of MISE curves for the skewed unimodal density f� with

sample size n � ���� Again� the �gure is plotted on a log�log scale� The line types

in the legend correspond to the estimators �fclass� �f�� �f�� �f�� �f � �fclass�� and �fSS�
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