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Abstract

Rice (1984) proposed a boundary modified kernel regression method which linearly

combines two kernel regression estimators based on different bandwidths. In the context

of density estimation, advantages of this method over two other popular approaches,

local linear fitting and the boundary kernels of Müller (1991), are discussed. Selection of

the ratio of the two bandwidths is studied. Asymptotic and exact mean squared errors

are provided as tools to analyze the problem. In the case of Normal kernels, keeping the

bandwidth ratio fixed, for ease and speed of implementation, and a specific bandwidth

ratio are suggested.

KEYWORDS: boundary effect, boundary kernel, exact mean squared error, kernel

smoothing, local linear smoothing.
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1 Introduction

Most nonparametric smooth curve estimators have difficulties caused by boundary effects.

If the support of the curve has important boundaries, then they are seriously biased in

regions near the endpoints. In practice, such effects are visually disturbing and often become

misleading in modeling the data. For small or moderate sample sizes, boundary area can

be a substantial portion of the support. Boundary effects can also cause a slower rate of

convergence in the usual asymptotic analysis of global performance.

Gasser and Müller (1979), Gasser, Müller and Mammitzsch (1985), Granovsky and

Müller (1991) and Müller (1991) discussed boundary kernel approach to correct this prob-

lem. Schuster (1985) proposed a mirror image estimator which folds back the conventional

kernel density estimator beyond the support of the density. This approach does not fully

correct the boundary problems, see Marron and Ruppert (1994), and will not be included in

our discussion. Local linear regression techniques achieve automatic boundary corrections

(Fan and Gijbels, 1992) and enjoy some optimal properties (Fan, 1993). Lejeune and Sarda

(1992) and Jones (1993) applied the local linear techniques to density estimation. Another

approach is to bin the data and then apply local linear fitting to the bin counts. These two

methods produce approximately the same estimators, see Cheng (1997). Rice (1984) sug-

gested linearly combining two kernel regression estimators which uses different bandwidths

such that the bias at the boundary area has the same order of magnitude as in the interior.

The context of density estimation is considered and the support of the density function

is assumed to be known throughout. It is shown in Section 3 that, compared to local

linear fitting or the approaches of Müller (1991), Rice’s boundary modified estimators are

typically much more stabilized; i.e. having smaller variances, while having competitive

mean squared errors near the boundary. The intuition is clear: it makes use of more nearby

data points. Variance inflation near the boundary is a common and serious problem for

many boundary modified methods. Rice’s boundary modification is advantageous in the

direction of controlling the variance at the boundary area. Another advantage of Rice’s

boundary modified estimators is that, in comparison with the other two, they are easier
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and faster to compute if the ratio of the two bandwidth is kept fixed. Details are given in

Section 3.

In Rice’s boundary method, the bandwidth ratio decides which boundary kernel to

use. Rice (1984) suggested a bandwidth ratio which depends on the location in such a

way that the range of moving average has the same length everywhere. But that makes

implementation of the estimator over a range difficult and slow. This choice is compared

with another possibility: keeping the bandwidth ratio unchanged over the range which

allows the fast binned implementation of kernel estimators, see Fan and Marron (1994). It

is found that, in the sense of asymptotic mean squared error, there is essentially no loss

in using the latter instead of the former. Asymptotic analysis of the mean squared error

becomes noninformative when the asymptotic bias is equal to zero. Another approach is to

calculate the exact mean squared error. For the Normal kernel, taking the limiting case of

the bandwidth ratio being equal to one is suggested as a general rule.

Section 2 briefly discusses the conventional kernel density estimator and its boundary

effects. In Section 3, Rice’s boundary modified kernel regression is adopted to the setting

of density estimation. Asymptotic properties and some merits of this method are also

discussed. Section 4 and Section 5 study choices of the bandwidth ratio by asymptotic and

exact analyses of the mean squared error.

2 Kernel Density Estimation

Suppose X1, ..., Xn is an i.i.d. sample observed from a population following a density f. A

kernel estimator of f is

f̂h(x) = n−1h−1
n∑

i=1

K(
x−Xi

h
),

where K is the kernel function, assumed to be a symmetric density function, and the

bandwidth h > 0 controls the amount of smoothing. To discuss boundary effects of kernel

density estimators, without loss of generality, consider that the support of the density is

known and assumed to be [0,∞); i.e. f(x) = 0 if x < 0 and f(x) > 0 if x ≥ 0.
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As n →∞, the bandwidth h tends to zero and therefore the boundary region shrinks to

the set {0}. And any fixed point other than zero is eventually not in the boundary region.

Therefore we analyze the kernel estimator at points x = ch, c ≥ 0, which is a sequence of

points with a fixed distance, with respect to the bandwidth, from the boundary point zero.

Quantification of boundary effects of f̂h is given below. Some conditions are convenient for

analyses of the asymptotic mean squared error.

Condition 1.

• f has two derivatives and f ′′ is bounded and uniformly continuous in a neighborhood

of zero or x when x is a boundary or interior point, respectively.

• K satisfies
∫

K2 < ∞ and
∫ ∣∣u2K

∣∣ < ∞.

Here, the first two derivatives of f at 0 are taken as limits from the right. For any

real-valued function χ on R, c ∈ R and l = 0, 1, 2, define µl,c(χ) =
∫ c
−∞ ulχ(u)du and

µl(χ) =
∫∞
−∞ ulχ(u)du. Suppose that Condition 1 holds, then for x = ch, c ≥ 0, as n →∞,

h → 0 and nh →∞, f̂h(x) has expected value

E{f̂h(x)} = µ0,c(K)f(x)− hµ1,c(K)f ′(x) +
h2

2
µ2,c(K)f ′′(x) + o(h2), (1)

and variance

V ar{f̂h(x)} = n−1h−1f(x)µ0,c

(
K2
)

+ o(n−1h−1). (2)

See Marron and Ruppert (1994) for details.

Suppose that K is supported on [−1, 1]. Then for any c ∈ [0, 1), µ0,c (K) < 1 and

f̂h(x), x = ch, as an estimator of f (x) , has a nonzero constant bias unless f (0+) is equal

to zero. And for c ≥ 1, (1) and (2) become

E{f̂h(x)} = f(x) +
h2

2
µ2(K)f ′′(x) + o(h2), (3)

and

V ar{f̂h(x)} = n−1h−1f(x)µ0

(
K2
)

+ o(n−1h−1), (4)

respectively, which are the same as the usual interior bias and variance expansions.
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3 Rice’s Boundary Modification

Rice (1984) proposed a boundary modification of kernel regression estimators. In the bound-

ary area, the method takes a linear combination of two kernel regression estimators based

on different bandwidths such that the bias is of the same order of magnitude as in the

interior. The idea is similar to the bias reduction technique discussed in Schucany and

Sommers (1977). We adapt the method to the context of density estimation.

Given α > 0, the boundary modified kernel estimator of f (x) , x = ch, c ≥ 0 is

fα,h(x) = af̂h(x)− bf̂αh(x) = n−1
n∑

i=1

(aKh − bKαh)(x−Xi), (5)

where

a =
αµ1,c/α (K)

αµ0,c (K) µ1,c/α (K)− µ0,c/α (K) µ1,c (K)
, b =

µ1,c (K)
αµ1,c/α (K)

a. (6)

Here, a and b depend on c and are obtained by requiring fα,h(x) to have a bias of order h2,

see Rice (1984). With a and b as in (6), define

Kα(·) = a K(·)− b

α
K(

·
α

). (7)

Asymptotic bias and variance of fα,h(x) are given in the following theorem. The proof is

similar to analyses of bias and variance of the usual kernel density estimators and hence is

omitted.

Theorem 1 Under Condition 1, for x = ch, c ≥ 0, as n →∞, h →∞ and nh →∞,

Bias{fα,h(x)} =
h2

2
f ′′(0+)µ2,c

(
Kα

)
+ o(h2), (8)

and

V ar{fα,h(x)} =
f (0+)

nh
µ0,c

(
K

2
α

)
+ o(n−1h−1). (9)

Hence fα,h retains the same rate of convergence in mean squared error everywhere.

This method introduces an extra parameter α , the ratio of the two bandwidths. Rice

(1984) recognized that it is difficult to find the best solution for each c and suggested taking
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α = 2−c, when K is supported on [−1, 1]. It ensures that the estimator is a weighted average

of observations falling into the interval [0, 2h] which has the same length as [x − h, x + h],

the region of smoothing for x in the interior. However, by taking α = 2− c, fα,h(x) involves

Kh and K(2−c)h with the latter vary as the location x = ch changes. Then, a fair amount

of computation is required when implementing the estimator over a range. On the other

hand, if α is fixed, then for every x, fα,h(x) is a linear combination of two kernel estimators

based on Kh and Kαh. Applying the fast binned calculation of kernel estimates (Fan and

Marron, 1994) to compute the two kernel estimates and then forming the linear combination

we obtain the values of fα,h over a range. Sections 4 and 5 investigate on issues concerning

choice of the bandwidth ratio.

Next we compare Rice’s boundary modification with two other popular boundary cor-

rection methods: local linear fitting and Müller’s boundary kernel approach. For brevity,

assume the kernels for those two estimators to be K. Then, their asymptotic biases and

variances are the respective versions of (8) and (9) with Kα replaced by some equivalent

kernels K∗
c (u) and K+ (c, u). Formulae for those equivalent kernels are given in Jones (1993)

and Müller (1991). Each of the estimators is a conventional kernel density estimator based

on its corresponding equivalent kernel. Figure 1 depicts the three equivalent kernels for

four different values of c (0, 0.2, 0.4 and 0.6). The kernel K was taken as the Epanechnikov

kernel 3
4

(
1− u2

)
I(0,1) (u) . The bandwidth ratio α was fixed at 2− c, as suggested by Rice

(1984), and for Müller’s method we took k = 2 and µ = 1. Figure 1 suggests use of kernels

with smooth tails for Rice boundary modification. Otherwise; e.g. with the Epanechnikov

kernel, the equivalent kernel Kα has two sharp corners which would appear in the curve

estimates. It is also suggested that, for the values of c, the norm of Kα is the smallest

(which means that fα,h has the smallest asymptotic variance) among the three equivalent

kernels.

[Put Figure 1 about here please]

Figure 2 depicts the kernel parts of the asymptotic biases, variances and mean squared

errors (after the canonical rescales, see (10) for the version for Kα) as functions of c.
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The setups are the same as in Figure 2 For all 0 ≤ c ≤ 1, Müller’s boundary kernels

yield the worst and comparatively large asymptotic bias, variance and mean squared error.

Comparing the other two, they have asymptotic mean squared errors close to each other.

But for 0 ≤ c ≤ 0.2, Rice’s boundary modified estimator has an asymptotic variance much

smaller than that of the local linear estimator; i.e. the former minimizes the instability in

estimating the function near the boundary. This is an important merit for Rice’s boundary

modification. Estimation near the boundary is difficult since there is less information given

by the data; i.e. less data points available in the smoothing. Therefore boundary corrected

methods, though achieve the same rate of convergence everywhere, are subject to increase

in variance in the boundary region. For example, it is well known that although local linear

smoothing has many appealing properties it has the problem of large variance inflation near

the boundary.

[Put Figure 2 about here please]

Consider implementation of the three boundary corrected methods. Boundary kernels

of Müller (1991) vary over the range of estimation, so it is comparatively hard and slow to

compute the estimates. Local linear estimates can be fast computed using binned calcu-

lation. That involves five convolutions, see Fan and Marron (1994). As discussed earlier,

keeping the bandwidth ratio fixed allows the Rice’s boundary modified estimates to be

computed with two convolutions.

Each bandwidth ratio α decides a unique shape of the boundary kernel function Kα.

Thus choosing the best kernel from the family {Kα, α > 0} is equivalent to deciding the

best bandwidth ratio among {α > 0}. For any x = ch, c ≥ 0, it can be verified that

fα,h(x) = fα−1,αh(x)

for any α > 0. Hence it suffices to choose the best bandwidth ratio among {α ≥ 1}. Notice

that for α = 1, Kα=1 6= K and the both the denominators and numerators in (6) are zero.

Instead Kα=1 is taken as the limiting case of (7):

Kα=1 (·) = lim
α→1

Kα (·) .
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And it is interpreted as the kernel which yields bias of order h2, see Rice (1984), by linearly

combining two kernel estimators with bandwidths that are very close to each other.

4 Asymptotic MSE Study on Bandwidth Ratio

Equations (8) and (9) indicate that the asymptotic bias and variance depend on K and α

only through the quantities µ2,c

(
Kα

)
and µ0,c

(
K

2
α

)
respectively. The effects of Kα, f and

h on the asymptotic mean squared error

AMSE{fα,h(x)} ≡
{

h2

2
f ′′(0+)µ2,c

(
Kα

)}2

+
f (0+)

nh
µ0,c

(
K

2
α

)
,

can be separated from each other by applying the idea of canonical kernels introduced by

Marron and Nolan (1989). Let δα = µ0,c

(
K

2
α

)1/5
µ2,c

(
Kα

)−2/5
, then

AMSE{fα,δαh(x)} = µ0,c

(
K

2
α

)4/5
µ2,c

(
Kα

)2/5
{

f(0+)
nh

+
h4

4
f ′′(0+)2

}
.

Define

SK,c(α) = µ0,c

(
K

2
α

)2 ∣∣∣µ2,c

(
Kα

)∣∣∣ . (10)

Then AMSE
(
fα,δαh(x)

)
is factorized into two parts: S

2/5
K,c(α) which depends on Kα, and{

n−1h−1f (0+) + h4f ′′(0+)2/4
}

which involves only h and f. Thus comparison among ker-

nels Kα can be done through investigating the quantity SK,c(α). We call δα, which depends

on Kα, the canonical bandwidth for the kernel Kα.

Given any c ≥ 0, the best α, in the sense of optimizing the asymptotic mean squared

error, minimizes SK,c(α) over all α ≥ 1. If there exists an αopt which uniformly minimizes

SK,c(α) for every c ≥ 0, then it would be the best constant bandwidth ratio. Typically the

minimizer of SK,c(α) depends on c. The following is an attempt to seek for some feasible

solutions.

Consider K ≡ ϕ , the standard normal density. Note that the best α depends on the

kernel. The following analyses and those in the next section can be done for kernels other

than the Normal kernel. We choose to work with Normal kernels since they are popular in
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practice for they produce nice smooth curve estimates. In that case,

a =

{
Φ (c)− 1

α
ϕ (c) ϕ

(
c

α

)−1

Φ
(

c

α

)}−1

, b =
ϕ (c)

αϕ
(

c
α

)a. (11)

Hence

µ2,c (ϕα) = a (−cϕ(c) + Φ(c))− bα2
{
− c

α
ϕ(

c

α
) + Φ(

c

α
)
}

, (12)

and

µ0,c

(
ϕ2

α

)
=

1√
2π

{
a2

√
2
Φ
(√

2c
)
− 2ab√

1 + α2
Φ

(√
1 + α2c

α

)
+

b2

√
2α

Φ

(√
2c

α

)}
, (13)

where Φ is the c.d.f. of the standard normal density. These kernel parts, for various choices

of α, of the asymptotic bias and variance are given as functions of c in Figure 3 The µ2,c (ϕα)

and µ0,c
(
ϕ2

α

)
curves with α ≡ 2 are very close to those with α = 2−c/4 respectively. Hence

there is essentially no gains in using the complicated bandwidth ratio α = 2 − c/4 rather

than a ≡ 2.

[Put Figure 3 about here please]

Figure 4 depicts Sϕ,c(α)2/5, the kernel part of the asymptotic mean squared error (see

(10)), as a function of α for several values of c. It is shown that Sϕ,0(α) is minimized at

α = 1. Thus for c = 0 the best kernel function among {ϕα : α ≥ 1} is

lim
α→1

ϕα(u) = 2(2− u2)ϕ(u), u ∈ R.

Numerical study suggests that Sϕ,c(α) is minimized at α = 1 for any fixed c ∈ [0, 0.84] .

Figure 4 provides visual evidence for some chosen values of c.

[Put Figure 4 about here please]

As for c ∈ (0.84,∞), the minimal value of Sϕ,c(α) is equal to zero at some αopt(c) > 1,

see Figure 3 in case of some illustrative values of c. But Sϕ,c(α) is zero when µ2,c (ϕα) = 0,

which implies that the asymptotic bias is of some order smaller than h2. In that case,

analysis based on Sϕ,c(α) is meaningless and some higher order bias terms need to be
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included while studying the asymptotic mean squared error. We do not pursuit in that

direction since the situation becomes much more difficult and the density function and its

higher derivatives play important roles.

In conclusion, for the Normal kernel, we recommend taking α ≡ 1 for the following

reasons. First, Figure 3 suggests fixing α at a constant over the estimation range for

simplicity and computational speed considerations. Second, as indicated in Figure 4, α = 1

is the best choice for c ∈ [0, 0.84] , a range where the boundary effect is worse than it is in

(0.84,∞). Finally, it can be shown that for any α, limc→∞ ϕα ≡ ϕ; i.e. there is not much

difference among {ϕα : α ≥ 1} for large values of c, and hence choice of α is a minor issue

for c ∈ (0.84,∞). Notice that for any c ≥ 0, α = 1 is the limiting case

lim
α→1

ϕα(u) =
(2 + c2 − u2)ϕ(u)

(c2 + 1)Φ(c) + cϕ(c)
,

by L’Hopital’s rule. Taking α ≡ 1 does allow the fast binned calculation of the esti-

mates since, for any c ≥ 0, ϕα=1 is a linear combination of two kernel estimates based

on the kernels ϕ (u) and u2ϕ (u) with coefficients
(
2 + c2

) {
(c2 + 1)Φ(c) + cϕ(c)

}−1 and{
−(c2 + 1)Φ(c)− cϕ(c)

}−1 respectively.

We have seen that minimizing Sϕ,c(α) for c ≥ 0.84 is irrelevant to the issue of choosing

α, and instead higher order bias terms need to be considered. This has not been carefully

investigated because there is another approach by calculating the exact mean squared error.

We discuss the details in the next section.

5 Exact Mean Squared Error

When analyzing effects of the bandwidth ratio on performance of the Rice boundary mod-

ified estimator, asymptotic mean squared error analysis becomes noninformative in some

cases. An alternative approach is to study the exact mean squared error. Small to moderate

sample size properties are emphasized, but the results interact with knowledge learned from

asymptotic studies. Mean squared error of the estimator depends on the density f . We

take members from the family of truncated normal mixture densities which contains a rich
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variety of shapes. In addition, the kernel is chosen as the normal density. Then the bias

and variance of kernel estimators are easy to compute. Four densities from the family of

truncated normal mixture family are studied. Formulae for these densities are listed Table

5.1.

Table 5.1. Truncated normal mixture densities.

Density #1
{

1
2Φ(− 1

5)−1N(− 1
5 , 1) + 1

2Φ(− 7
√

2
10 )−1N(− 7

10 , 1
2)
}
I(0,∞)(x)

Density #2
{

3
5Φ(−

√
3
10)−1N( 3

10 , 3
10) + 2

5Φ(5
2)−1N(5

2 , 1)
}
I(0,∞)(x)

Density #3
{

4
5Φ(0)−1N(0, 4

9) + 1
5Φ(9)−1N(3, 1

9)
}
I(0,∞)(x)

Density #4
{∑7

l=0
1
8Φ(µl

σl
)−1N(µl, σ

2
l )
}
I(0,∞)(x), µl = 3

{
(2
3)l − 1

}
, σl = (2

3)l

The expected value and variance of the Rice boundary modified estimator are respec-

tively

E{fα,h(x)} =
1
h

∫ ∞

0
Kα(

x− s

h
)f(s)ds, (14)

and

V ar{fα,h(x)} =
1

nh2

∫ ∞

0
Kα(

x− s

h
)2f(s)ds− 1

nh2

{∫ ∞

0
Kα(

x− s

h
)f(s)ds

}2
. (15)

Note that

h−1Kα

( ·
h

)
= aϕh (·)− bϕαh (·) ,

and

f(x) =
m∑

l=1

wlΦ
(

µl

σl

)−1

ϕ (x− µl) I(x≥0),

for some m ∈ Z+, µl ∈ R, σl > 0, 0 ≤ wl ≤ 1, l = 1, ...,m and
∑m

l=1 wl = 1. It can be shown

that ∫ ∞

0

1
h

Kα(
x− s

h
)f(s)ds =

m∑
l=1

wlΦ
(

µl

σl

)−1 {
aAl

h(x)− bAl
αh(x)

}
, (16)

and ∫ ∞

0
h−2Kα(

x− s

h
)2f(s)ds =

m∑
l=1

wl√
2πh

Φ
(

µl

σl

)−1
{

a2

√
2
Al

h√
2

(x)−
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2ab√
1 + α2

Al√
α2h2

1+α2

(x) +
b2

√
2α

Al
αh√

2

(x)

 , (17)

where

Al
t(x) =

1√
t2 + σ2

l

ϕ

 x− µl√
t2 + σ2

l

Φ

 tσ−1
l µl + σlt

−1x√
t2 + σ2

l

 , t > 0, l = 1, ...,m.

The above results can be derived using formulae given in Aldershof, et al. (1992). Combining

(14) - (17), we obtain an explicit formula for the mean squared error of the Rice boundary

modified estimators.

Next, exact mean squared error is used to investigate selection of the bandwidth ratio.

We consider an equally spaced grid of values of α, ranging from 1 to 5, and x = 0. (For

boundary points other than x = 0, one can consider x = ηn−1/5 for some η > 0.) The

bandwidth is taken as hf,α = Cfn−1/5δα, where Cf is some constant, depending on the

density, chosen to be visually appropriate for some simulated data sets. For the densities

#1, #2, #3 and #4, Cf = 0.7, 1.2, 0.5, and 1 respectively. Notice that these bandwidths are

multiples of the canonical bandwidths. Hence comparison among kernels does not confound

with the effects of the density and the choice of bandwidth on the mean squared error.

The mean squared error is increasing in α for densities #1 and #3. It implies that

α = 1 is best for these two densities under all of the five sample sizes. On the other hand,

the mean squared error is always improved with larger α when the density is either density

#2 or #4. The following provides some insights. For any 1 ≤ α1 < α2, kernel ϕα1
has a

deeper negative right-hand-side tail than ϕα2
does. Since density #1 achieves its maximum

at x = 0 and then decreases, a kernel estimator of f (0) has a negative bias. The value of

density #1 is large, which means more data points, in the region where h−1
f,1ϕ1 (·/hf,1) is

larger than h−1
f,2ϕ2 (·/hf,2). This implies that f1,hf,1

(0) is larger and therefore better than

f2,hf,2
(0) . Similarly, density #1 is relatively low at places where h−1

f,1ϕ1 (·/hf,1) is more

negative than h−1
f,2ϕ2 (·/hf,2) , which implies that there are rarely any observations that

lower the estimate. The situation is similar when estimating density #3 at x = 0.

In the case of estimating density #2 at x = 0, the negative tails of the kernels happen

at a region where the value of the density is large and hence makes the estimates too small.
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So a larger α, which results in a lighter negative tail of the kernel Kα, is preferred.

Finally, the negative tail and higher positive part of h−1
f,1ϕ1 (·/hf,1) are both less impor-

tant for estimating density #4 at x = 0. Since the density is negligible in those regions. On

the other hand, h−1
f,2ϕ2 (·/hf,2) is relatively higher at a very small region right next to x = 0

and the density is extremely large there. Hence α = 2 is superior to α = 1 in this case.

When the kernel is Gaussian, our asymptotic studies recommend taking α ≡ 1. And

the studies on the exact mean squared errors suggest that the “improved” positive part

of ϕ1and its relatively small support are preferred while estimating at locations where the

density has a moderate peak. Hence α ≡ 1 is recommended as a general choice.

In conclusion, we discussed advantages of Rice’s boundary modification. For that

method, best choice of the bandwidth ratio α depends on the density, the sample size,

the kernel and the location in a complicated way. We provided both asymptotic and ex-

act formulae of the mean squared errors to analyze the problem. We also performed some

analyses in the case of Normal kernel and made some useful suggestions.
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Figure 1: Equivalent kernels from Rice’s boundary modification with α = 2−c (solid), local

linear fitting (dotted) and Müller’s method with k = 2, µ = 1 (dashed).



Figure 2: Kernel parts in the asymptotic biases (top), asymptotic variances (middle) and

asymptotic mean squared errors (bottom) of the Rice’s boundary estimator with α = 2− c

(solid), local linear estimator (dotted) and Müller’s estimator with k = 2, µ = 1 (dashed).



Figure 3: Kernel parts µ2,c (ϕα) and µ0,c
(
ϕ2

α

)
in the asymptotic bias and variance of Rice’s

boundary modified density estimator at x = ch, given as functions of c for α ≡ 2 (solid

line), 4 (dashed), 1.5 (dotted) or 2− c/4 (dotted-dashed).



Figure 4: Kernel part, i.e. S
2/5
ϕ,c (α), in the mean squared error of Rice’s boundary modified

density estimator at x = 0 is plotted as a function of α for various c.


