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S

We suggest a method for using parametric information to modify a nonparametric
estimator at the level of relatively high-order derivatives. The technique represents an
alternative to methods that first fit a parametric model and then adjust it. In particular,
relative to a ‘nonparametric estimator with a parametric start’, our estimator is not biased
by the differences between parametric and nonparametric fits to low-order derivatives,
since we effectively remove all the parametric information about low-order derivatives
and replace it by nonparametric information. Thus, we employ parametric information
only when the nonparametric information is unreliable, and do not use it elsewhere. The
method has application to both nonparametric density estimation and nonparametric
regression.
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1. I

At least two different techniques have been proposed for combining parametric and
nonparametric information in a curve estimator. One, based purely on locally parametric
fitting, takes a potential parametric model and fits it in the neighbourhood of each point.
Local polynomial regression, e.g. Fan & Gijbels (1996), is a relatively well-understood
example; locally parametric methods in density estimation, e.g. Hjort (1994), Hjort &
Jones (1996) and Loader (1996), are more recent. A second technique is first to fit a
parametric model and then to attempt to adjust it, using nonparametric information.

The two approaches are related. For example, Hjort & Glad’s (1995) ‘nonparametric
estimator with a parametric start’ can be viewed as using locally parametric methods to
modify an initial, global parametric approximation. This amounts to modifying the global
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estimator simultaneously at several levels. While it has significant merits in some circum-
stances, it introduces a bias term for each level of correction.

We suggest an alternative way of combining local and global parametric models, making
a nonparametric correction at only one level. We take the view that global parametric
information is most valuable in the case of relatively high-order derivatives, where local
information is either unreliable, as a result of high amounts of stochastic error, or not
readily available. Throughout this paper, the terms ‘high order’ and ‘low order’ refer to
relative orders of derivatives; thus, f (r) is a derivative of order r and is of lower order than
f (s) if r<s.

Since local estimation of level and slope is often accurate even for relatively small sample
sizes, but local estimation of curvature is reasonable only for large samples, information
from a parametric model could be used to describe the second derivative explicitly. The
zeroth and first derivatives could be approximated directly from the data.

For example, traditional local-linear methods in nonlinear regression involve fitting the
model y1 (u |h1 , h2)¬h1+h2 (u−x) to data with design points in the neighbourhood of x.
One could consider models of higher order, in particular the local quadratic

y2 (u |h1 , h2 , h3 )¬h1+h2(u−x)+1
2
h3(u−x)2.

However, numerical difficulties and the relatively high degree of inaccuracy associated
with estimating h3 , which corresponds to the second derivative of the regression mean, m
say, at x, can make this unattractive. We suggest adopting a global parametric model, m0 ,
for the regression mean, and replacing h3 by m◊

0
(x). Then we fit the two-parameter model

y3(u |h1 , h2)¬y2{u |h1 , h2 , m◊
0
(x)} in place of y1(u |h1 , h2 ).

Numerical difficulties associated with fitting y3 are no greater than those when fitting
y1 . Moreover, for a given bandwidth the stochastic error of the fit is no greater, and there
can be significant reductions in bias. First-order properties of variance are identical to
those under the original local model, y1 . Therefore, the high-order parametric enhance-
ment provided by fitting second derivatives of m0 is robust against even relatively serious
misspecification of m0 . Additionally, there is the potential of reducing bias to zero. These
results will be made more precise, in the cases of both nonparametric regression and
nonparametric density estimation and for general local and global models, in § 5.

If the global parametric model were readily amenable to analysis then, in principle, one
could take it as the local model and simply employ locally parametric methods. However,
the global model is often not well suited to local use, for example because its complexity
can lead to computational difficulties. In particular, if the global model is multimodal,
then fitting it locally can be very difficult, but it is in just such complex cases that the
extra qualitative information available about high-order factors, such as curvature, is of
most value. Our method provides a way of using it, without being troubled by low-order
inconsistencies between the model and the true curve.

The log-linear approach to density estimation is a good example of a locally parametric
method that is chosen significantly for its good computational properties, and has prob-
lems capturing certain important qualitative features of a density. In particular, estimators
based on locally fitted log-linear models are even less able than standard kernel methods
to reach into the mode of a density, since they are more negatively biased there than
second-order kernel approaches. However, this drawback may be largely overcome by
combining local log-linear fitting with a moderately accurate global model which has
modes in approximately the same places as the true density.

The global model might be viewed as a Bayesian prior, which we modify by incorporat-
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ing local information from the data. In the main examples considered in § 2, in particular
(2·3) and (2·4), the prior is used to supply information about curvature, and is modified
at a local level by using the data to estimate level and slope. A case of particular interest
is that where the global and local models are polynomials, or log-polynomials in the case
of density estimation, of degrees d and d∞<d, respectively. Once the parameters of the
global model have been estimated, only d∞ parameters in the local model remain to be
chosen. Our exposition will address (d∞, d)= (1, 2), and other cases may be treated
similarly.

Section 2 introduces low-order nonparametric approximations, derived by combining
high-order properties of the global model with low-order, locally parametric methods. In
the context of density estimation we consider both quadratic and Kullback–Leibler quanti-
fication of loss in locally parametric fits, but for regression we treat only quadratic loss.
Methods of assessing loss are described in § 3, and numerical properties of the resulting
estimators are discussed in § 4. Theoretical properties are sketched in § 5.

2. L-  

2·1. Corrections in the case of density estimation

Two models for f are involved: a local model, y( . |h), which might for example be log-
polynomial, and would be chosen at least partly on grounds of computational expediency;
and a global model, f0 , which would typically be determined by a relatively small number
of parameters estimated from the data. The local model is not intended to capture the
shape of f in any qualitative sense; that is done by f0 .

Next we describe construction of y, beginning by introducing a locally parametric
precursor, w. Given integers 1∏r<s, let w( . |a1 , . . . , a

s
) be an s-variate model for the true

density, f, in a neighbourhood of x. For the sake of simplicity, assume that w has been
parameterised so that a

i
= f (i−1)(x), for 1∏ i∏r, and that a

r+1 , . . . , a
s

denote known
functions of f (x), f (1) (x), . . . , f (s−1) (x); see (2·2) for an example. In formulating the local
model we shall estimate a1 , . . . , a

r
wholly nonparametrically, and employ information in

the global model to assist approximation to a
r+1 , . . . , a

s
.

There are at least two ways in which this can be done. First, we can simply replace
each f (i−1) (x) by f (i−1)0 (x), for 1∏ i∏s, whenever it appears in the known formula for a

j
(r+1∏ j∏s). Call this Case I. Secondly, we can make this substitution for f (i−1)(x) when
r+1∏ i∏s, but replace f (i−1)(x) by h

i
when 1∏i∏r, whenever either of these quantities

appears in the formula for a
j

for r+1∏ j∏s. Call this case II. In either case the local
model is

y( . |h)=w( . |h1 , . . . , h
r
, a*
r+1 , . . . , a*

s
),

where, for r+1∏ i∏s, we take

a*
i
=a

i
{f0 (x), . . . , f (s−1)0 (x)}

in Case I and

a*
i
=a

i
{h1 , . . . , h

r
, f (r)0 (x), . . . , f (s−1)0 (x)}

in Case II. We propose fitting y( . |h) using locally parametric methods, with either quad-
ratic or Kullback–Leibler loss describing performance.

The model w would be constructed so that y(i)(x |h)j f (i)(x) for 0∏i∏s−1 if both
(a) h

i
j f (i−1)(x) for 1∏i∏r, and (b) f (i−1)0 (x)j f (i−1) (x) for r+1∏i∏s. The approxi-



420 M.-Y. C, P. H  B. A. T

mation for 1∏ i∏r is guaranteed by the flexibility of locally parametric methods, and the
approximation for r+1∏ i∏s is valid if the global model is moderately accurate at high
orders. We do not need the global model to be particularly accurate, only approximate;
after all, it corrects the local model only in high-order terms.

If r is even, as in the example at (2·3), then the most important of the high-order
approximations is the first, with i=r+1:

y(r) (x |h)j f (r)(x). (2·1)

When this condition is satisfied, properties of locally parametric estimators ensure that
bias is low; see § 5.

The example to which we shall devote most attention is that where w is a log-quadratic
model and y is log-linear. Thus, we rely on the global model for qualitative information
about curvature. To this end, define a= (a1 , a2 , a3)T and h= (h1 , h2)T, and in a neighbour-
hood of x consider the models

w(u |a)=a1 exp{(a2/a1 )(u−x)+1
2
a3(u−x)2}, (2·2)

y(u |h)=h1 exp{(h2/h1 )(u−x)+1
2
a3 (u−x)2}. (2·3)

Noting that w(x |a)=a1 , w∞(x |a)=a2 and w◊(x |a)=a−1
1

a2
2
+a1a3 , we see that we should

choose a3 so that f ◊(x)j f (x)−1 f ∞(x)2+ f (x)a3 . Therefore, Case I of our procedure would
use

a*
3
={ f ◊

0
(x)/f0(x)}−{ f ∞

0
(x)/f0 (x)}2

in (2·3), while, in Case II,

a*
3
=a*

3
(h )={ f ◊

0
(x)/h1}−(h2/h1)2.

2·2. Corrections in the case of regression

The same methods apply, although the class of potential models is different. For brevity
we pass directly to regression versions of the polynomial models at (2·2) and (2·3). Let m
denote the true regression mean, and let m0 be a global parametric model for m. Local
parametric models are given by

w(u |a)=a1+a2(u−x)+1
2
a3(u−x)2,

y(u |h)=h1+h2 (u−x)+1
2
m◊
0
(x)(u−x)2.

(2·4)

In this setting, Cases I and II of our approach are identical, since w◊(x |a)=a3 alone. Again
we suggest fitting y( . |h) using locally parametric methods, employing quadratic loss to
select h.

In the case of regression there do not exist general, canonical models to compare with
such as the normal density and its mixtures in density estimation. However, in some
special cases there are natural counterparts. These include parametric models that are
traditional in settings where nonparametric methods are being considered. See, for
example, models for the analysis of growth curve data (Gasser et al., 1985) and household
income data (Hildenbrand & Hildenbrand, 1986); and logistic models and, more generally,
five-parameter models of Richards type, e.g. Ratkowsky (1983, pp. 61–8), for the analysis
of data on biological population size. Härdle & Mammen (1993) have addressed the
problem of comparing parametric and nonparametric regression fits in a wide class of
contexts.
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3. L  

3·1. Empirical measures of loss in density estimation

Suppose we observe data X1 , . . . , Xn
from a distribution with density f on a closed

interval I, such as the whole real line or a compact subset of it. Let y( . |h) be the model
for f, governed by the parameter vector h= (h1 , . . . , h

r
)T, and put w(u)=h−1K{(u−x)/h},

where K is a bounded, symmetric, compactly supported probability density. An example
of y( . |h), in the case r=2, is given at (2·3). Note, however, that, as explained two sentences
below that display, a3 depends on h in Case II but not in Case I. Define h@=h@ (x, h) to be
the minimiser of either

Q(h )= P w(u)y(u |h)2 du−2n−1 ∑
n

i=1
w(X

i
)y(X

i
|h)

or

L (h )= P w(u)y(u |h) du−n−1 ∑
n

i=1
w(X

i
) log y(X

i
|h),

denoting quadratic loss and Kullback–Leibler loss respectively. A locally parametric esti-
mator of f (x) is f@ (x)=y(x |h@ ).

3·2. Deterministic loss functions associated with Q and L

Except for terms that do not depend on h, we may regard Q(h) and L (h ) as empirical
versions of the deterministic loss functions v(h )¬v{ f, y( . |h)} and l(h )¬l{ f, y( . |h)},
respectively, where

v( f, g)= P w(g− f )2 du, l( f, g)=− P w{ f log(g/f )− (g− f )} du

are distance functions on the set of all probability densities. The relationships between v
and Q and between l and L may be seen by noting that Q(h)�v(h )−D1 and
L (h)�l(h)−D2 as n�2, where D1=∆vf 2 and D2=∆v( f log f− f ) do not depend on
h; and that v(h )=E{Q(h )}+D1 and l(h )=E{L (h)}+D2 .

3·3. Quadratic loss in nonparametric regression

Assume data pairs (X1 , Y1), . . . , (Xn
, Y

n
) are generated by the model Y

i
=m(X

i
)+e

i
,

where the X
i
’s are independent and identically distributed with density f, and, conditional

on the X
i
’s, the e

i
’s are independent with density f. Let y( . |h ) be a model for m, such as

that at (2·4). In this setting we define

Q(h)=n−1 ∑
n

i=1
w(X

i
){Y

i
−y(X

i
|h )}2,

choose h@ to minimise Q, and take m@ (x)=y(x |h@ ) as our estimator of m. The analogue of
v here is

v(h )=n−1 ∑
i

w(X
i
){y(X

i
|h)−m(X

i
)}2.

Note that v depends on X1 , . . . , Xn
, although not on Y1 , . . . , Yn .
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4. N 

We conducted a comprehensive simulation study to compare the different locally para-
metric methods proposed. As target densities we used a skewed distribution, #2, two
symmetric bimodal distributions, #6 and #7, and two asymmetric bimodal distributions,
#8 and 0·25N (−1, 0·52)+0·75N (1, 0·52 ). The numbers refer to the normal mixtures intro-
duced by Marron & Wand (1992).

The methods used were Case I and Case II of the technique proposed at (2·2) and (2·3),
hereafter referred to as version I and version II, respectively. As global models for version II
of our method we used a normal distribution in unimodal cases and a normal mixture,
0·5N (m−c, s2 )+0·5N(m+c, s2 ), in bimodal cases. For the latter we estimated m, c and
s using method of moments estimators. The estimator was calculated by an iterative
Newton–Raphson algorithm. Version I of our method was implemented using an explicit
formula based on a normal distribution as global model. We also employed the local log-
linear and local log-quadratic estimator using the explicit formulae given by Hjort &
Jones (1996).

Since we were mostly interested in the performance of the methods for small to moderate
sample sizes, we took n=30, 50, 75 and 100 in our simulation study. The bandwidth
parameter h was varied between 0·2 and 0·9. For each setting we generated 200 replications.
For each replication, the density estimates were evaluated at 201 equispaced points in
[−3, 3]. Using these evaluations we calculated integrated squared error using the trap-
ezoidal rule, and mean integrated squared error by averaging all 200 integrated squared
error values. We also recorded at each point the mean and variance of the 200 estimates,
as well as the 10 and 90 percentiles.

To obtain an impression of the visual behaviour of the estimates we calculated several
roughness measures:

R1= P f@ ∞(u)2 du, R2= P f@ ◊(u)2 du, R3= P | f@ ◊(u) |
{1+ f@ ∞(u)2}3/2

du.

The first two are well-known descriptions of roughness (Scott, 1992, p. 53). The third
measures the average curvature of the estimate, with increased weight being given to places
where f@ is flat and where, consequently, traditional kernel methods tend to suffer visibly
from noisy estimates of curvature. Derivatives were calculated by first- and second-order
central difference formulae, and integrated using the trapezoidal rule.

The simulation study showed that our methods generally have lower variance than do
log-quadratic estimators. Thus, the global-model approach is achieving the purpose for
which it was designed, i.e. reducing stochastic variability by replacing error-prone non-
parametric estimates of high-order terms by less variable ones resulting from a simpler,
parametric global model. If the global model is significantly in error then of course, at
least in large samples, our approach can be more biased than log-quadratic estimators,
but this bias occurs only in high-order terms.

Visual inspection of plots with either pointwise variances or percentiles showed that
both versions of our estimator had approximately the same amount of variability. In terms
of mean integrated squared error, however, version I is superior to version II. Table 1
gives the achieved minimal mean integrated squared error for all estimators in each setting.
With one exception discussed below, the two versions of our method and local-linear
estimator achieved minimal mean integrated squared error at similar bandwidths, while
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Table 1. Minimum mean integrated squared error, multiplied by
103, achieved by all estimators for each target density and sample
size. T he numbers refer to the normal mixtures introduced by
Marron & Wand (1992). T he mixture for the distribution ‘bimodal ’

is given in the text.

Estimator
Target density n Version I Version II Log-linear Log-quadratic

Bimodal #6 30 17·393 21·037 17·052 20·359
50 12·636 14·677 12·860 13·715

75 9·415 10·618 9·683 9·777
100 7·381 8·231 7·674 7·400

Bimodal #7 30 25·709 32·419 28·161 32·634

50 18·446 22·031 20·477 21·019
75 13·471 15·467 15·047 14·196

100 10·509 11·973 11·853 10·461

Bimodal #8 30 22·129 24·515 21·214 24·776
50 16·126 17·067 15·825 17·167
75 12·410 13·092 12·232 12·610

100 9·973 10·424 9·904 9·917

Bimodal 30 28·257 32·298 29·732 29·982
50 18·450 20·956 19·756 18·857

75 14·335 15·961 15·565 14·085
100 11·138 12·230 12·307 10·626

Skewed #2 30 13·987 16·351 17·089 15·073

50 9·958 10·525 12·349 9·067
75 8·026 7·650 9·545 6·309

100 6·874 6·093 7·795 4·922

the local-quadratic estimator achieved its minimal mean integrated squared error typically
at a much larger bandwidth.

These mean integrated squared error figures show that, for most of the bimodal target
densities and for n=50 or 75, version I of our method performed best in terms of mean
integrated squared error. It is followed by the log-linear estimator, the log-quadratic
estimator and version II of our method. Plots of pointwise biases showed that the log-
quadratic estimator typically has smallest pointwise bias but it needs larger sample sizes
before this reduction in bias offsets the increase in variance with respect to mean integrated
squared error.

For the skewed target density, version I of our method and the log-quadratic estimator
both achieved minimal mean integrated squared error at the largest bandwidth used. The
mean integrated squared error curve for version I of our method had, for each sample
size, a local minimum close to the bandwidths at which the log-linear and version II of
our method attained their minimum. The behaviour of these estimators for this target
density is not surprising, as the skewed distribution is unimodal and therefore well approxi-
mated by a quadratic function on a logarithmic scale. Hence, the bias component of mean
integrated squared error is practically negligible and a large bandwidth may be used to
reduce the variance component.

The superiority of our methods in terms of variance and visual appearance is supported
by the roughness criteria calculated in the simulation study. For all three criteria, version I
of our method and the log-linear method achieved comparable values, although our



424 M.-Y. C, P. H  B. A. T

method was usually better, especially at bandwidths where minimal mean integrated
squared error was obtained. The log-quadratic method was markedly rougher with respect
to all three criteria. In terms of R1 , version II of our method behaved much like version I
and the log-linear method. In terms of R2 and R3 , version II displayed behaviour similar
to the log-quadratic method. Closer analysis showed that this is because this estimator is
calculated by an iterative procedure and not a closed formula. Consequently, version II
is more susceptible to second-order differences. The behaviour of these estimators is
depicted in Fig. 1.
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Fig. 1. Behaviour of the estimators for the bimodal distribution given in the text and sample size n=30.
Dashed line, the true density; solid line, the mean over 200 replications; dotted lines, the 10 and 90 percentiles

of the replications.

In summary, our simulation study showed that our method is robust against misspecifi-
cation of the global model. It is not necessary that the class from which the global model
stems contain the actual distribution, as long as one gets the general ‘shape’ correct. This
is especially true for version I of our method. Furthermore, the reduction in bias for this
version is sufficient to make it preferable, in terms of mean integrated squared error, to
log-linear methods. For small samples, at least, it is superior to log-quadratic methods on
account of its lower variance.

5. T 

5·1. Preliminary remarks

Usually, the global parametric model f0 , in the case of density estimation, or m0 , for
regression, would suffer stochastic fluctuations of order only n−D, where n denotes sample
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size. This is not to say that the accuracy of the parametric model would be O(n−D); indeed,
we do not need even the global model to be consistent. Since errors of this size are of
smaller order than the errors introduced by local parametric modelling, then in developing
first-order theory we may assume without loss of generality that the fitted global model
f0 is nonstochastic. That we do below.

Formulae for bias alter if we use a global model to enhance the local model. In the case
of local linear regression the effects on bias are particularly transparent, so we address
them here. If, in place of the local-linear model h1+h2(u−x), we fit the ‘enhanced’ local
quadratic

h1+h2 (u−x)+1
2
m◊
0
(x)(u−x)2,

then in the calculations that lead to m@ we are simply replacing the response variable Y
i

by Y
i
−1

2
m◊
0
(x)(Y

i
−x)2. Therefore the asymptotic bias, which was previously a constant

multiple of (d/du)2m(u) |
u=x=m◊(x), is now the same constant multiple of

(d/du)2{m(u)−1
2
m0 (x)(u−x)2}|

u=x=m◊(x)−m◊
0
(x).

That is, the effect of fitting a global model is simply to ‘correct’ in the obvious way, by
subtraction, for the dominant term in the expression for bias. Section 5·4 will describe
more general results for bias and variance in the local polynomial case, while §§ 5·2 and
5·3 will address bias and variance in density estimation.

5·2. Representation for f@

Here and in § 5·3 we treat the case of density estimation, where both quadratic and
Kullback–Leibler loss are candidates for measuring performance. The relationship between
empirical and deterministic loss functions translates into the following simple represen-
tation for f@, available under general conditions: if h@ and h0 are defined as the minimisers
of Q(h ) and v(h) respectively, or as the minimisers of L (h) and l(h ) respectively, then

f@ (x)=y(x |h0)+{(nh)−1 f (x)r}DZ, (5·1)

where Z is asymptotically normal N (0, 1) and r is a constant, given by (5·2) and identical
for all choices of loss and all choices of the model y. Regularity conditions are discussed
in the Appendix. Formula (5·1) describes the error-about-the-mean term, i.e. the stochastic
term, in the difference f@− f. Formula (5·5) will give the bias term.

Since r has this invariance property, it may be written down directly from a formula
given by Loader (1996) in the special case where loss is interpreted in the Kullback–Leibler
sense and y( . |h) is an exponential polynomial. When x is an interior point of I,
r=k¬∆K2 for all r�1; and when x is a finite endpoint of I and r=1, r=2k. More
generally, suppose the support of K equals the interval [−c, c], let S be the set of limit
points of {zµ[−c, c] : x+hzµI}, let e1 be the column vector of length r with 1 in the
first position and 0’s elsewhere, and let K

l
be the r×r matrix with k

i+j−2,l in position
(i, j ), where k

il
=k

il
(S)=∆

S

uiK(u)l du. Then,

r=eT
1
K−1
1

K2K−1
1

e1 , (5·2)
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implying in particular that

r=qk02/k201 if r=1,

{k21 (k02k21−k12k11)−k11(k12k21−k11k22 )}/(k01k21−k2
11

)2 if r=2.

5·3. Approximate equivalence of quadratic and Kullback–L eibler loss

A close connection between v and l may be seen directly from Taylor expansion: if f
is continuous and f (x)>0 then, as g� f,

l( f, g)=
1

2 P w( f−g)2 f−1+ 1

3 P w( f−g)3 f −2+ . . .

~
1

2
f (x)−1v( f, g).

Therefore, it comes as no surprise to learn that the asymptotic bias, y(x |h0 )− f (x), often
does not depend, to first order, on the type of loss function. Since variance components
are first-order equivalent, see § 5·2, then optimising quadratic or Kullback–Leibler loss
often produces first-order equivalent estimators. This contrasts markedly with properties
of these loss functions in a global setting; see Hall (1987), for example.

To describe bias, we define y(i)(u |h) to equal the ith partial derivative of y(u |h) with
respect to u. Assume there exists a unique r-vector h1=h1(x) such that y(i)(x |h1 )= f (i)(x)
for 0∏ i∏r−1. Then, for h0 defined under either quadratic or Kullback–Leibler loss,

y(x |h0 )− f (x)=hr{ f (r)(x)−y(r) (x |h1)}(r!)−1k
r1

eT
1
K−1
1

e1+O(hr+1). (5·3)

Note particularly that the difference between the true density f and the fitted model y( . |h1)
appears only at the first order, here the rth order, at which nonparametric information is
not being used. By way of comparison, when we employ a nonparametric estimator with
a parametric start the difference between the true f and the global model f0 , at each level
up to and including the (r−1)th, makes a contribution to the term of order hr.

Higher-order expansions are series in the differences f (i)(x)−y(i)(x |h1 ). Comparing (2·1)
and (5·3) we see that, if the initial global model is reasonably accurate in terms of approxi-
mating rth derivatives, then bias will be reduced relative to what it would be if we used
ordinary kernel methods. For the latter, the term f (r)(x)−y(r) (x |h1) in (5·3) would be
replaced by f (r)(x), and so would not admit correction by the global model.

If r is odd and x is an interior point of I then k
r1
=0, and so the first term on the

right-hand side of (5·3) vanishes. Then the bias is of order hr+1, and the term of that order
depends on choice of loss function as well as on the model. Details in the case of
Kullback–Leibler loss and log-polynomial models for f are given by Loader (1996). For
the case of general loss functions and models with r=1, 2, 3, see Hjort & Jones (1996).

5·4. Quadratic loss in nonparametric regression

Let h@ and h0 denote the minimisers of Q(h ) and v(h), respectively, and assume the
errors e

i
in the regression model have variance s2 in a neighbourhood of x. See § 3·3 for

definitions of Q(h ), v(h) and the regression model. Then, analogously to (5·1), m@ admits
the representation

m@ (x)=y(x |h0 )+{(nh)−1 f (x)−1r}DsZ,
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where again Z is asymptotically normal N (0, 1) and r is given by (5·2). Moreover, (5·3)
continues to hold if f there is replaced by m.

A
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A

Background to theoretical results

For (5·1) to hold we require f to have r−1�0 continuous derivatives in a neighbourhood of
x, f (x)>0, h�0 and nh�2 as n�2, and y( . |h) to be able to represent uniquely all values of
( f, . . . , f (r−1) )T that may potentially arise in a neighbourhood of ( f (x), . . . , f (r−1) (x))T. Recall that
h is of length r; this is the ‘derivative-matching condition’. It is concisely described by the assumption
that, after a reparameterisation, y( . |h ) is expressible as

y(u |h )= ∑
r

i=1
1

(i−1)!
h
i
(u−x)i−1+o( |u−x |r−1 ) (A·1)

as u�x, and that the inverse reparameterisation is continuous and one-to-one in a neighbourhood
of ( f (x), . . . , f (r−1) (x))T. We ask too that y( . |h ) be continuously differentiable as a function of h,
and that the remainder term in (A·1) be of the stated order after a differentiation with respect to h.

Sufficient conditions for (5·5) are that f have r+1 bounded derivatives in a neighbourhood of
x, that f (x)>0, if loss is measured in Kullback–Leibler terms, that the derivative-matching con-
dition hold, that y(u |h ) have r+1 bounded derivatives as a function of u, and that these derivatives
have themselves two bounded, continuous derivatives as functions of h. Thus, in the expansion at
(A·1), representing y( . |h ) after reparameterisation, the remainder term is O( |u−x |r), and is also
of this order after two differentiations with respect to h.

Details of assumptions and technical arguments behind results in § 5·4 are given by Ruppert &
Wand (1994).
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