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SUMMARY

We suggest a completely empirical approach to constructing confidence

bands for hazard functions, based on smoothing the Nelson-Aalen estimator.

In particular, we introduce a local bandwidth-choice method for the bands. Our

approach uses empirical information about both the survival rate and the cen-

soring rate, and employs undersmoothing to alleviate difficulties caused by bias.

We use both Edgeworth expansion and numerical simulation, the former to de-

velop a basic formula and the latter to modify it for general use.

Some key words: Bandwidth; Censored data; Confidence band; Coverage error;

Edgeworth expansion; Hazard function; Kernel methods; Survival analysis.



1. INTRODUCTION

The shape of the hazard rate or failure rate function gives insight into

the nature of the process that determines survival; see for example Aalen &

Gjessing (2001). Consequently, there is often a need to estimate the hazard rate

without imposing assumptions, such as shape constraints, that are not directly

supported by the data. This consideration has motivated an extensive literature

on nonparametric approaches to hazard rate estimation; see for example the

detailed survey given by Wang (2005) and the references in §2.1 below. In

the present paper we suggest nonparametric methods for constructing pointwise

confidence bands for the hazard rate, based on differencing and kernel-smoothing

the Nelson-Aalen cumulative estimator.

Our main challenge will be how to select the smoothing parameter. Al-

though, in principle, a confidence band could be constructed directly from the

asymptotic distributions of estimators studied by several authors, the practical

performance of such an approach would leave much to be desired, since the re-

sulting band would be heavily encumbered by bias. As a result, its coverage

accuracy would be poor.

This type of difficulty also arises in nonparametric density estimation and

regression, and there two approaches have been considered for alleviating it,

namely explicit bias correction and undersmoothing to reduce the effects of bias.

In those relatively conventional problems it is known from both theoretical and

numerical studies that undersmoothing generally gives better performance than

bias correction (Hall, 1992). The same may be shown to be the case here, too,

but the problem remains of how to choose the extent of undersmoothing. In this

paper, using a combination of theoretical and numerical arguments, we suggest a

simple, practical method for locally-adaptive bandwidth choice. By deriving an

asymptotic expansion for the coverage probability we determine the theoretically

optimal level of undersmoothing that should be used to construct a pointwise
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confidence band. However, the bandwidth that results depends on a variety

of unknowns and so is not directly applicable. We therefore use the optimal

bandwidth formula to suggest a simple empirical bandwidth that is appropriate

in a special case, and then modify it to obtain a new formula which is suitable

for general applications. The modification is based on the experience gained in

extensive simulations.

Work on confidence bands has been surveyed very well in papers by Claeskens

& Van Keilegom (2003) and Dumbgen (2003), and we mention here only some

recent literature not mentioned there. In particular, Picard & Tribouley (2000)

treated wavelet-based confidence bands for probability densities, Mao & Zhao

(2003) discussed spline-based confidence bands, Sun et al. (2000) and Ojeda et

al. (2004) proposed confidence bands in the context of generalised linear mod-

els, and Hall et al. (2004) introduced confidence bands for receiver operating

characteristic curves.

Some of this work uses bootstrap methods, although in the present set-

ting that technique is not attractive, for a number of reasons. First, bootstrap

methods for confidence bands in nonparametric function estimation do not take

account of bias, which has to be accommodated separately (Härdle & Bowman,

1988). Secondly, several derivatives of two different functions are involved in

formulae for the optimal bandwidth, and so a number of different bandwidths,

most of them of nonstandard sizes, need to be chosen as part of the bootstrap al-

gorithm. Thirdly, bootstrap confidence bands are of the same asymptotic width

as those produced by the simpler method suggested here, so that the bootstrap

does not enjoy advantages on that score.

2. METHODOLOGY

2.1. Hazard rate estimators

A variety of methods for hazard rate estimation have been considered in
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the literature, including techniques based on explicit estimation of the survival-

time density and distribution, and others founded on convolution. We shall

use the latter methods, of which early contributions include those of Ramlau-

Hansen (1983), Tanner & Wong (1983) and Yandell (1983). Even if attention is

confined to convolution there is a range of different methods, based for example

on smoothing the Nelson-Aalen estimator (Müller & Wang, 1990, 1994) or on

more implicit, local-polynomial ideas (Jiang & Doksum, 2003a, 2003b). The

first of these approaches will form the basis for our methodology. To describe it

we require a little notation, as follows.

Let C denote the censoring time, and T the true survival time, of a patient.

It is assumed that C and T are independent. Put X = min(C, T ) and δ = I(T ≤
C), and write f and F for the density and distribution functions, respectively,

of T . The hazard rate is given by

h(t) =
f(t)

1− F (t)
.

Let (Cj , Tj , Xj , δj), for 1 ≤ j ≤ n, denote independent values of (C, T, X, δ),

let L be the distribution function of X, and let L̂ be the standard empirical

estimator of L, computed from the data X1, . . . , Xn. We observe only the sample

S = {(X1, δ1), . . . , (Xn, δn)}. Write X(1) ≤ . . . ≤ X(n) for the ordered values of

X1, . . . , Xn, and let δ(j) be the concomitant of X(j) in the sequence (X1, δ1), . . . ,

(Xn, δn). Then, writing b for a bandwidth and taking the kernel, K, to be a

bounded, compactly supported, symmetric probability density, we define

ĥ(t) =
1
b

n∑

j=1

K

(
t−X(j)

b

)
δ(j)

n− j + 1
=

1
bn

n∑

j=1

K

(
t−Xj

b

)
δj

1− L̂(Xj) + n−1

(2.1)

to be our estimator. It is a smoothed version of the Nelson-Aalen estimator, and

has been considered before by Ramlau-Hansen (1983), Tanner & Wong (1983),

Yandell (1983) and others.

2.2. Two-sided confidence bands
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It can be shown that, for t ∈ (0, T ] with L(T ) < 1, if K is standardised so

that
∫

K2 = 1, then the estimator ĥ = ĥ(t), defined at (2.1), has mean equal to

h+O(b2) and variance asymptotic to (bn)−1 (1−L)−1 h, and that the distribution

of (ĥ−Eĥ)/(var ĥ)1/2 converges to the standard normal as n increases (Müller

& Wang, 1990). Let Φ denote the standard normal distribution function, and

given 0 < α < 1
2 , define xα by Φ(xα) = 1− 1

2 α. The properties discussed above

suggest interpreting the interval

Iα(t) =
[
ĥ− (bn)−1/2 (1− L̂)−1/2 ĥ1/2 xα , ĥ + (bn)−1/2 (1− L̂)−1/2 ĥ1/2 xα

]

as a two-sided confidence interval for h(t), with nominal coverage 1− α.

It may be shown by a lengthy argument, outlined in the Appendix, that

the coverage error of Iα is minimised by choosing the bandwidth, b, to be of size

n−1/3, and that, if b is asymptotic to a constant multiple of n−1/3,

pr
{
h(t) ∈ Iα(t)

}
= 1− α + ACE(t, α) + o

(
n−2/3

)
, (2.2)

where ‘ACE’ stands for ‘asymptotic coverage error’, which refers to the first-

order term in the difference between the actual and nominal coverage probabil-

ities of a confidence interval,

ACE( · , α) = −(bn)−1 xα

h (1− L)

{
1
12 κ(4)

(
x2

α − 3
)

+ 1
36 (κ(3))2

(
x4

α − 10 x2
α + 15

)

+ 1
4 x2

α

(
x2

α − 1
)− 1

6 κ(3) x2
α

(
x2

α − 3
)}

φ(xα)

+ b2

[
h′′

h

{
1
2 κ

(2)
2 + 1

6 κ(3) κ2

(
3− x2

α

)}

+ κ
(2)
2

(2h′ ` + h `′) (1− L) + 2 h `2

2 h(1− L)2

]
xα φ(xα)

− 1
4 nb5 κ2

2

(1− L) (h′′)2

h
xα φ(xα) , (2.3)

` = L′ is the density corresponding to the distribution L, κj =
∫

uj K(u) du,

κ(j) =
∫

K(u)j du and κ
(2)
2 =

∫
u2 K(u)2 du. In (2.3) it is assumed that K has

been standardised for scale through the condition κ(2) = 1.
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2.3. Bandwidth choice

We suggest choosing the bandwidth to minimise the absolute value of the

asymptotic coverage error, giving bopt = Bopt n−1/3. However, the constant Bopt

in this formula involves h, L and their first and second derivatives, which makes it

difficult to use the formula in practice, since estimation of these unknowns leads

to several other bandwidth selection problems. To avoid this impasse we bor-

row the ‘effective normal kernel’ idea, often used to select bandwidths for kernel

density estimation. In particular, in order to produce a model which is simple

and concise and at the same time allows us to include empirical information

about both the survival and censoring rates, we assume that the survival-time

and censoring-time distributions are exponential, with rates λT and λC , respec-

tively. In this case, h ≡ λT , h′ ≡ h′′ ≡ 0 and 1−L(t) = exp{−(λC +λT ) t}. The

assumption of exponential survival times is sometimes used for other purposes

in survival analysis, for example for sample-size calculations.

Formula (2.3) for ACE now simplifies considerably, and it can be shown

that |ACE(t, α)| is minimised by choosing b = Bopt n−1/3, where

Bopt =
[
B0(α) exp{(λC + λT )t}

/
κ

(2)
2 λT (λC + λT )2

]1/3

,

B0(α) = 1
6 κ(4)

(
x2

α − 3
)

+ 1
18 (κ(3))2

(
x4

α − 10x2
α + 15

)

+ 1
2 x2

α

(
x2

α − 1
)− 1

3 κ(3) x2
α

(
x2

α − 3
)
.

Since λC and λT are estimated root-n consistently by λ̂C = (1 − δ̄)/X̄ and

λ̂T = δ̄/X̄, where δ̄ = n−1
∑

j δj and X̄ = n−1
∑

j Xj , we can compute an

empirical, exponential optimum bandwidth as

bopt =
{
B0(α)

/
κ

(2)
2 λ̂T (λ̂C + λ̂T )2 n

}1/3 exp
{
(λ̂C + λ̂T )t

/
3
}

.

Of course, this bandwidth is proportional to the simpler quantity,

b̂opt = λ̂
−1/3
T

(
λ̂C + λ̂T

)−2/3
n−1/3 exp

{
(λ̂C + λ̂T )t

/
3
}

. (2.4)
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The theory leading to (2.4) is based on relatively high-order asymptotic

arguments for estimators, in a problem where even first-order theory can be

unreliable. In simpler but related settings, such as confidence-band construction

in nonparametric regression and density estimation, it has proved difficult to

develop effective bandwidth-choice algorithms based on asymptotic results given

by, for example, Hall (1992). Problems arise because there can be as many as

three quite different terms contributing to overall bias. As parameter settings

are altered there is significant potential for these terms to interact, with the

result that the bias contribution to coverage error can change in a way that is

not easily captured in small to moderate samples. In particular, in the context

of the present paper, and under the exponential model, two of the three terms

on the right-hand side of (2.3) that contribute to bias, and are proportional to

positive powers of b, vanish identically, but these terms do not vanish in the

cases of other models.

To overcome this difficulty, we decided not to use the exact constant of

proportionality that should appear in (2.4) under the exponential model, and

instead chose the constant on the basis of numerical experimentation for a range

of models. This leads to a smaller multiplier for (2.4) than is asymptotically

optimal under the exponential model. In fact, our numerical work indicates

that, in the case α = 0.05, taking the constant to be 1, as in (2.4), is satisfactory.

3. SIMULATION STUDY

Here we report on performance of the bandwidth selector at (2.4), applied

to construct the confidence band I0.05(t). We also compare this rule with an

empirical bandwidth proposed by Müller & Wang (1990, 1994) in the context

of curve, rather than band, estimation. The technique of Müller and Wang

produces asymptotic minimisation of asymptotic mean squared error. Hess et

al. (1999) performed extensive simulations to evaluate the performance of the
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hazard rate estimate based on this bandwidth. It was not proposed by Müller

and Wang that their method be applied to the construction of confidence bands,

but Gilbert et al. (2002) suggested, in the discussion section of their paper, that

this could be done. From some viewpoints this is an attractive proposal, since

in the simplest case, where there is no bias correction, it places the confidence

band symmetrically around a popular and effective curve estimator; and if bias

corrections are incorporated then it seems likely that the main impediment to

coverage accuracy will be removed. For these reasons, a comparison between our

approach and methods based on bandwidths chosen for curve estimation would

be of interest to practitioners.

Therefore, both bias-ignored and bias-corrected versions of confidence in-

tervals based on the method of Müller and Wang (1990, 1994) are considered.

Given a bandwidth, b, produced by this rule, these two versions of the confidence

intervals are respectively

[
ĥ− (bn)−1/2(1− L̂)−1/2 ĥ1/2 xα , ĥ + (bn)−1/2(1− L̂)−1/2 ĥ1/2 xα

]
,

[
ĥ− B̂ − (bn)−1/2(1− L̂)−1/2 ĥ1/2 xα , ĥ− B̂ + (bn)−1/2(1− L̂)−1/2 ĥ1/2 xα

]
,

where α = 0.05,

B̂ = 1
2 b2 h̃′′

∫
x2 K(x) dx , h̃′′(t) =

1
b3
d

n∑

j=1

Kd

(
t−X(j)

bd

)
δ(j)

n− j + 1

and the subscript d indicates ‘associated with estimating the second derivative

of h.’ In simulations we employed the kernel

Kd(x) =
315
32

(− 1 + 9 x2 − 15 x4 + 7 x6
)
, |x| ≤ 1 .

To calculate bd we used the factor method proposed by Müller & Wang (1990),

and there we computed an initial hazard-rate estimate employing the fourth-

order kernel,

K2(x) =
105
64

(1− 5x2 + 7x4 − 3x6) .
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The following scenario for a clinical-trial process was used in our simulation

study. We supposed that patients were taken into the study uniformly over Ta

time units. After the last patient had entered, all the patients were followed for

additional Tf time units. Therefore, the total duration of the study was Ta + Tf

time units. It was assumed that censoring occurred only when patients had not

developed the event of interest by the end of the study, and that no patient left

the study early or was lost to the follow-up.

The notation Ci, Ti and Xi is as in §2.1. We generated the true survival

time, Xi, from a given distribution, and then a censoring time, Ci, based on

a given uniform distribution for the random study-entry time. The observed

survival time and censoring indicator were then calculated for each patient, and

used to compute the respective confidence intervals with nominal 95% levels.

For each parameter configuration, 3,000 random samples of sizes n = 100 and

200 were generated. The proportion of the confidence intervals covering the true

hazard rate, and the average lengths of the intervals over 3,000 samples, were

used to estimate, respectively, the coverage probability and the expected length

for each confidence interval.

We assumed that the true survival times were from an exponential distribu-

tion with scale parameter λ, from a Weibull or gamma distribution with shape

parameter γ and scale parameter λ, or from a lognormal distribution with mean

parameter µ and variance parameter γ. We treated a range of different values of

λ, γ and µ in our simulations but, to save space, only the results when λ = 0.05

for exponential and Weibull distributions and λ = 0.1 for the gamma distribu-

tion, γ = 2, and µ = log 10, and for sample size 100, are summarised in Fig. 1. In

the censoring step we took Ta = 60 and Tf = 6. This represented, respectively,

23%, 20%, 24% or 23% censoring rates in the cases of the exponential, Weibull,

gamma and lognormal distributions.

From Fig. 1 we can see that the actual coverage of a confidence interval
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based on the rule (2.4) is very close to the nominal 0.95 level, except when t is

close to the right-hand boundary, in the case of the Weibull hazard rate, or to

the left-hand boundary, for the lognormal hazard rate. The figure also shows

that, if we use the optimal bandwidth based on mean squared error to calculate

a confidence interval for the hazard rate, then the coverage probability of the

resulting confidence interval is, in all cases, far below the nominal level. The

explicit bias-correction approach does not rectify this problem, largely because

the estimate of the second derivative is not sufficiently accurate.

To illustrate these points we mention that, in the case of gamma-distributed

survival times with shape parameter 2 and scale parameter λ, the coverage

probabilities of intervals based on the bandwidth at (2.4), when n = 100 and

t = 6, 12, 24, 36, are 0.936, 0.928, 0.905, 0.862 for the respective values of t and

for λ = 0.05; and 0.919, 0.926, 0.932, 0.911 if λ is increased to 0.075, which

represents a decrease in the percentage of censoring from 50% to 34%. The

respective values of coverage when the mean squared error optimal bandwidth

is used are all substantially less than when employing the bandwidth at (2.4);

they are 0.728, 0.686, 0.671, 0.634 when λ = 0.05 and 0.743, 0.653, 0.673, 0.627

when λ = 0.075. Coverages for the bias-corrected approach are even worse, in

each case.

As expected, except at boundary points in some cases, the actual coverage

of the confidence interval based on the bandwidth at (2.4) moves closer to the

nominal level, 0.95, as sample size increases. The improvement is generally less

marked for the other two confidence procedures. For example, in the context of

gamma-distributed survival times with shape parameter 2 and scale parameter

λ = 0.05, the coverage probabilities of our intervals, for t = 6, 12, 24, 36, are

0.936, 0.928, 0.905, 0.862, respectively, when n = 100, improving to 0.925, 0.937,

0.933, 0.934 when n = 200. On the other hand, for confidence intervals based

on the mean squared error optimal bandwidth, the respective coverages are
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only 0.656, 0.800, 0.656, 0.445 when n = 100, and 0.677, 0.795, 0.701, 0.513 when

n = 200. In each case, one effect of increasing sample size is to reduce interval

length by between 20% and 25%.

The very low coverages of confidence intervals computed using the band-

widths based on mean squared error are, of course, direct results of those inter-

vals being too short. In almost all cases the intervals were only 50% to 70% as

long as the intervals based on the bandwidth selector at (2.4). This statement

is accurate quite generally; in particular, it applies to λ = 0.075 and to n = 200,

as well as to the cases λ = 0.05 and n = 100 on which we reported in Fig. 1.

In survival analysis, it is known that heavy censoring in the data causes

problems for many statistical procedures. There, different approaches usually

are required to handle cases with heavy censoring. Therefore we also evaluated

the performance of the bandwidth rule (2.4) when the survival data were heavily

censored. Fig. 2 presents the results respectively for the Weibull and gamma

distributions with all parameters unchanged except the scale parameter, which

was 0.03, 0.02 and 0.01 for the Weibull and 0.05, 0.03 and 0.02 for the gamma.

This brought the censoring rate up to respectively 39%, 59% and 86% when the

survival distribution was Weibull, and 50%, 71% and 83% when the survival

distribution was gamma. We can see from Fig. 2 that our rule still performs

satisfactorily, except in the case of extremely heavy censorship.

We also studied the version of our bandwidth-choice method where the

effect of censoring was ignored. This amounts to replacing (λ̂C + λ̂T ), at (2.4),

by λ̂T , to which the former would be equal if our estimator of the censoring

rate were zero. The impact of this change on the results in Fig. 1 is hardly

detectable. However, in the case of Fig. 2, where censoring is particularly heavy,

deterioration is noticeable when censoring is not taken into account.

4. DISCUSSION
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Our approach has potential applications to other band-estimation problems,

including those arising in nonparametric regression. There, as in this paper, an

Edgeworth expansion can be used to motivate a bandwidth selector that is valid

in simple cases, and numerical simulation can be employed to modify the formula

so that the empirical bandwidth enjoys good performance in a much wider range

of settings.

Our simulations indicated a relatively larger coverage error at the time

points closer to the boundary. It is not known whether the hazard rate es-

timate based on local polynomial method as proposed by Jiang & Doksum

(2003a, 2003b) would make any improvement since the development of the Edge-

worth expansion for the coverage of the confidence interval based on this estimate

is much harder. In line with other practical advice for interpretation of nonpara-

metric survival curve estimates (Marubini & Valsecchi, 1995), we recommend

avoiding drawing inference about the hazard rate at time points that are close

to the boundary.

APPENDIX

Outline Proof of (2.2)

The expansions we shall give below hold under the assumption that b ³
n−1/3; that is, n1/3b is bounded away from zero and infinity as n → ∞. How-

ever, expansions that have identical explicit terms, and slightly modified remain-

ders, apply for a wider range of bandwidths, and they imply that the optimal

bandwidth, in the sense of minimising coverage error, must satisfy b ³ n−1/3.

Define D ≡ (bn)1/2 (1−L̂)1/2 (ĥ−µ), where µ = b−1E
[
K{(t−X1)/b}δ1/{1−

L(X1)}
]
, and let ctj(D) denote the jth cumulant of the distribution of D.

Lengthy calculations show that

ct1(D) = c (b/n)1/2 + o
{
(bn)−1

}
,

ct2(D) = h
(
κ(2) + 2 c1 b2

)
+ o

{
(bn)−1

}
,
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ct3(D) = (bn)−1/2 κ(3) h (1− L)−1/2 + o
{
(bn)−1

}
,

ct4(D) = (bn)−1 κ(4) h (1− L)−1 + o
{
(bn)−1

}
,

where c1 = 1
4 κ

(2)
2 (1 − L) h−1 {h/(1 − L)}′′ and c denotes a generic constant,

taking different values at different appearances. This leads to the Edgeworth

expansion,

pr
{

D
/
h1/2

(
1 + c1b

2
) ≤ x

}
= Φ(x) + h−1/2 c (b/n)1/2 φ(x)

− (bn)−1/2 1
6 {1 + o(1)}κ(3) x2 − 1

{h (1− L)}1/2
φ(x)

− (bn)−1 x

h (1− L)

{
1
24 κ(4)

(
x2 − 3

)

+ 1
72 (κ(3))2

(
x4 − 10 x2 + 15

)}
φ(x) + o

{
(bn)−1

}
,

which formula can be shown to imply that

pr
{

(bn)1/2 (1− L̂)1/2
∣∣ĥ− h− 1

2 b2 κ2 h′′ − c n−1
∣∣
/

ĥ1/2
(
1 + c2b

2
) ≤ x

}

= 2Φ(x)− 1− (bn)−1 x

h (1− L)

{
1
12 κ(4)

(
x2 − 3

)

+ 1
36 (κ(3))2

(
x4 − 10 x2 + 15

)
+ 1

4 x2
(
x2 − 1

)− 1
6 κ(3) x2

(
x2 − 3

)}
φ(x)

+ o
{
(bn)−1

}
, (A.1)

where c2 = c1 − 1
4 κ2 (h′′/h). Careful use of the delta method shows that if

the ‘bias term,’ 1
2 b2 κ2 h′′ + c n−1, is omitted from inside the probability in the

numerator on the left-hand side of (A.1), then the correction term,

b2 κ2
h′′

h
x

{
1
2 + 1

6 κ(3)
(
3− x2

)}
φ(x)− 1

4 nb5 κ2
2

(1− L) (h′′)2

h
xφ(x) ,

should be added to the right-hand side. This property, and a similar result for

the change that occurs on removing the factor 1 + c2b
2 inside the probability,

implies that

pr
{

(bn)1/2 (1− L̂)1/2
∣∣ĥ− h

∣∣
/

ĥ1/2 ≤ x
}
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= 2Φ(x)− 1− (bn)−1 x

h (1− L)

{
1
12 κ(4)

(
x2 − 3

)

+ 1
36 (κ(3))2

(
x4 − 10 x2 + 15

)
+ 1

4 x2
(
x2 − 1

)− 1
6 κ(3) x2

(
x2 − 3

)}
φ(x)

+ b2

[
h′′

h

{
1
2 κ

(2)
2 + 1

6 κ(3) κ2

(
3− x2

)}

+ κ
(2)
2

(2h′ ` + h `′) (1− L) + 2 h `2

2 h(1− L)2

]
xφ(x)

− 1
4 nb5 κ2

2

(1− L) (h′′)2

h
xφ(x) + o

{
(bn)−1

}
.

This expansion leads quickly to (2.2), with ACE there given at (2.3).
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Fig. 1:  Actual coverage of confidence intervals with nominal coverage 95%, for hazard 

rate computed from 3000 simulated sets of data with sample size 100.  Dashed line: 

nominal level; ♦: coverage for confidence intervals with bandwidth determined by 

formula (2.4); ■: coverage for confidence intervals with bandwidth determined by 

asymptotic MSE; ▲: coverage for bias-corrected confidence intervals with bandwidth 

determined by asymptotic MSE.  Panels correspond to data from (a) Exponential (0.05), 

(b) Weibull (2, 0.05), (c) Gamma (2, 0.1), (d) Lognormal (10, 2).     
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Fig. 2:  Actual coverage of confidence intervals with bandwidth determined by formula 

(2.4) and nominal coverage 95%, for hazard rate computed from 3000 simulated sets of 

data with sample size 100.  Dashed line: nominal level; ♦: coverage for confidence 

intervals with λ=0.03 for Weibull (39% censoring) and 0.05 for Gamma (50% censoring); 

■: coverage for confidence intervals with λ=0.02 for Weibull (59% censoring) and 0.03 

for Gamma (71% censoring); ▲: coverage for confidence intervals with λ=0.01 for 

Weibull (86% censoring) and 0.02 for Gamma (83% censoring).   Panels correspond to 

data from (a) Weibull survival function and (b) Gamma survival function.  

 




