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SUMMARY

Integrated squared density derivatives are important to the plug-in type of bandwidth
selector for kernel density estimation. Conventional estimators of these quantities are
inefficient when there is a non-smooth boundary in the support of the density. We intro-
duce estimators that utilize density derivative estimators obtained from local polynomial
fitting. They retain the rates of convergence in mean-squared error that are familiar from
non-boundary cases, and the constant coefficients have similar forms. The estimators and
the formula for their asymptotically optimal bandwidths, which depend on integrated
products of density derivatives, are applied to automatic bandwidth selection for local
linear density estimation. Simulation studies show that the constructed bandwidth rule and
the Sheather-Jones bandwidth are competitive in non-boundary cases, but the former
overcomes boundary problems whereas the latter does not.

Keywords: BANDWIDTH SELECTION; BOUNDARY EFFECTS; DATA BINNING; LOCAL POLYNOMIAL
FITTING; PLUG-IN BANDWIDTH SELECTOR

1. INTRODUCTION

Suppose that X, . . ., X, is an independent and identically distributed (IID) sample
from a population following an unknown density function f. We consider using the
sample to estimate the following functional of the density:

0,0 = Jf("’(x) F9x) dx,

where 7, v > 0 and « + v is an even integer. Throughout this paper, f*(x) is taken as
0 when x is outside the support of f and as the limit from the right, or left, when x is
a left, or right, boundary point. Special cases where v = v are crucial to the plug-
in type of automatic bandwidth selection for kernel density estimation; see Jones
et al. (1994). Kernel estimators of these quantities are discussed in Hall and Marron
(1987), Jones and Sheather (1991) and Aldershof (1991) among others. When
boundaries are present in the support of f, the estimators proposed therein are very
inefficient. The main reason is that the non-smoothness of the density at the
boundaries introduces an extra bias term which dominates the mean-squared error;
see Van Es and Hoogstrate (1994) for detailed discussion.

Instead of the conventional kernel density derivative estimators, we use density
derivative estimators resulting from local polynomial fitting to construct estimators
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of 6,,. The motivation is that such derivative estimators automatically correct
boundary effects. Indeed, they are shown in Cheng et al. (1995) to be as efficient as
any other linear estimator in a weak minimax sense. Asymptotic properties of the
resulting estimators are investigated. They have the same rates of convergence and
similar constant coefficients as the estimators of Jones and Sheather (1991) in non-
boundary cases and retain the rates of convergence even in boundary cases. The
optimal smoothing parameters of the estimators are given so that they, together with
the estimators, can be directly adapted for data-driven bandwidth selection.

Binning of the data is essential to the estimators introduced here. The idea of local
polynomial fitting arises in the regression setting; see Stone (1977). Binning pro-
duces bin counts which can be viewed as responses at the bin centres. Then local
polynomial ideas can be introduced in the density estimation context. Local linear
regression techniques were applied to estimating distributions and densities by
Lejeune and Sarda (1992) without binning the data. In that paper, a local polynomial
was fitted to the empirical distribution function by minimizing a kernel weighted L*-
norm. Differentiating the estimated distribution curve gives an estimator of the
density. Jones (1993) also mentioned density derivative estimators derived from local
polynomial fitting. These estimators of the density and its derivatives are roughly the
same as those obtained from our approach; see Section 2 for details.

Bickel and Ritov (1988) gave information bounds for nonparametric estimation of
the quantities ., and provided estimators which attain the best ./n-convergence.
The estimators presented in this paper can achieve the same /n-convergence if the
density has a larger degree of smoothness than that assumed in Bickel and Ritov
(1988). But our estimators need smoothness of the density only in its support whereas
Bickel and Ritov (1988) imposed their smoothness conditions over the entire real
line. However, no information bounds have been given for classes of densities that
are smooth except for having some possible jumps of the density or its derivatives.
We conjecture that similar information bounds are available for these more general
classes of densities and the estimators presented here will be the corresponding best
estimators.

Our estimators of 6,, and the formula for their asymptotically optimal bandwidth
imply some plug-in data-driven bandwidth selectors in density estimation. An
important strength of such bandwidth selectors is that, unlike many conventional
bandwidth rules, they yield proper bandwidths even when there are non-smooth
boundaries and they are as efficient as conventional selectors in non-boundary cases.
To illustrate boundary effects on the conventional bandwidth rules, consider the
plug-in bandwidth rule of Sheather and Jones (1991). It is popular from both
practical and theoretical viewpoints; see Jones et al. (1994) and Sheather (1992) and
references therein. In that procedure, 6., is estimated by

~ +00
Oy = J fgj)(x)z dx

o0

or

7 1§~ 709
— (=1 = My
By = 17 TG0,
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where 73" is the mth derivative of a kernel density estimator f;. The estimator &,
is motivated by 6,,=(-1)"[f @)f when f is smooth everywhere. However, the
previous equality does not hold if there are non-smooth boundaries in the support of
f. As for the former, ﬂ,”(x) # 0 for xs that are close to the boundary, if any, but
f M(x) = f(x) = 0. One immediate result of these problems is that the estimators have
larger biases and become relatively inefficient. Or intuitively they feel the non-
smoothness or discontinuity of the curve and become too large. As a result, the
Sheather—Jones procedure selects a bandwidth that is too small for the data. We
indeed observed such problems for the Sheather-Jones bandwidth in simulation
studies. Such boundary effects do not pertain only to the Sheather—Jones selectors,
since most of the existing bandwidth selectors involve using kernel estimators of 6, ,
for various values of +.

This paper is organized as follows. Estimators of 6,, together with local
polynomial techniques applied to density estimation are discussed in Section 2.
Asymptotic properties of the estimators are investigated in Section 3. In Section 4,
the results of Section 3 are applied to bandwidth selection for density estimation and
a simulation study shows its usefulness in practice.

2. THE ESTIMATORS

First, we discuss estimating density derivatives, with an IID sample, by local
polynomial fitting. The idea is to fit some ‘response’, which is equal to the density
plus a random error term, by a local polynomial. An apparent way to create such
responses is to bin the data, i.e. divide the support of the density into a set of disjoint
intervals and move the observations in each interval to its centre. After this binning,
the data are transformed into a set of bin counts. The counts reflect the height of the
density at the bin centres: a larger count indicates a higher density. Therefore, these
counts can be viewed as the ‘responses’ at the ‘design points’—the bin centres.
Precisely, for some positive constant b and each i =1, . . ., g, define the bin centre as
xi = L+ (i — )b and the corresponding bin count as

n
Ci = Z I[xi—b/2,x.‘+b/2)(’Yf)'
j=1

Here, L and g are fixed numbers chosen such that no data points are less than L or
greater than L + gb.
Each ¢; provides information about f(x;) in the sense that

p xi+b/2
n b7l > b7 J f() du =~ f(x)), 1)
xi—b/2
as n — oo and nb — oo. Following the ideas of local polynomial fitting, consider

. g Xi— X e P 32
i, | S K-S s | @

/=0

where K is a non-negative function and #4 is positive. Denote the solution of the
least squares problem (2) as b;(x), j =0, 1, . . ., p. Then a natural estimator of /®(x)
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is ﬁ,m)(x) =m! bu(x), m=0, 1, ... p. When p=1 and m =0, f(x) is referred to
as a local linear estimator of the density f(x).
Define S, = (Sn,i+j-2(X)) < 1,j < p+1» Where

g o '
Sn,j(x)=ZK<x’h x) (i — xy, j=0,1,..., 2p.
i=1

Standard weighted least squares calculation shows that

g A
B = Y- wa (25 ), ©
i=1

where Wi(1) = en1Sh'(1, ht, . .., ) K(t) with en.1 being the (m+ 1)th unit
(p + 1)-vector. The above calculation is straightforward and is given in Fan et al.
(1993) and Ruppert and Wand (1994).

In connection with higher order kernel approaches such as those of Gasser et al.

(1985), it is clear that, as n — oo and b/h — 0,
Snj(x) = b W Si{1 4+ 0(1)},

where

+00 .
S,-=J Y K(t)dt, j=0,1,... 2p.

—00

Hence, if we write S = (Siyj-2)p < j < pt1

5O ~ o

Therefore, we have the following equivalent kernel representation. For each m = 0,
l,...,p

ex 1 S0t .., P)TK(), m=0,1,...p. 4)

g

JACTLT S T P )
i=1

where KX(f) = e S7'(1, ¢, . . ., t”)TK(f). Connections between the local polynomial
fitting approach and higher order kernel methods were discussed in Miiller (1987)
and Lejeune (1984). Although it is suggested that the two approaches yield
equivalent estimators, advantages of local polynomial estimators include much better
interpretability and automatic boundary correction.

When considering boundary cases, the support of f is assumed, without loss of
generality, to be [0, 00). To study asymptotic behaviours of the estimators in the
boundary region, we let x = ch, ¢ > 0. In that case,

+oo
S,-=J YK()dt, j=0,1,...,2p
—C
and K&(t) = enn ST'(1, 1, . . ., ) K() Ii—c,00)(0).
Lejeune and Sarda (1992) and Jones (1993) employed local polynomial fitting
techniques to density estimation in a different manner. Their approach was to fit a
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local polynomial to the empirical density function by minimizing the L*-norm, i.e.

— P . 2
N [

where
Sy =n"Y" Iu= X)),
i=1
the empirical density function. This yields an estimator of ™ which is

— [ L
100 =g k() m=obp ©)
=1

Note that

g
1 =1 p—(m+1) Xi = X\
mn h ; K;kn( h )cx
is a binned approximation of f{"(x). Hence, expressions (5) and (6) imply that £, (x)
and f,"(x) are equivalent. Binned implementation of f,"(x) is faster than calculating
Ji™(x). Since for each j=0, 1, . . ., 2p, given the weight function K, we can find an
explicit formula for

+00
S; = J Y K(r)dt

—C

whereas

Sni(x) = i K(Z=)0n =%/

involves more numerical operations. Proof of the following theorem can be found in
Cheng (1994).

Theorem 1. For each fixed m=0, 1, ..., p, suppose that f and its first m
derivatives are bounded and K is bounded. Then, as n — oo, h — 0, nh*™*' > o
and b/h — 0,

2 (m) 2
E{};(m)(x) _f(m)(x)}Z — {J tP+lK';l:l(t) dt} {H} h2(11+1—m)
JELTCY PRR AR

nh2m+1 nh2m+1

Therefore, local polynomial density derivative estimators attain automatic boun-
dary corrections. We propose to estimate 6., by
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P =03 1w ) =T 330 3 wi () (2 H)aee, )

i=1 j=1 k=1

where a > 0. Note that the bandwidth for 8,,(a) is @ which is different from the
bandwidth / when estimating density derivatives. Asymptotic properties of 8,,,(a) are
investigated in the following section.

3. ASYMPTOTIC PROPERTIES OF ESTIMATORS OF INTEGRATED DENSITY
DERIVATIVE PRODUCTS

The density f is said to be in the class Fp11, where p is a non-negative integer, if
there is a constant M > 0 such that, for any x and y belonging to the support of f,

| x) — DB < Mx - y). 8)

For a more precise version of inequality (8), see Bickel and Ritov (1988). Proof of the
following theorem can be found in Cheng (1994).

Theorem 2. Suppose that f € Fj1 with p +2 > v + v and the weight function K is
compactly supported with two derivatives. Since 0,.(a) is symmetric in v and v,
we assume + < v for clean presentation. Then &,,(a) has bias

~ ! 1+ 6! ,_,

+ 0(n'a ) + O(@ ), ®)

and variance

2
varl@,.(@) = 2o ([7){ e ey} + 3 { ooy - 6.

+ o(n 2@ Xy 4 o), (10)

provided that n — oo, a — 0, na"***' — oo and b/a — 0.

Remark 1. Consider the case v = v. Let k = p — v + 1. Suppose that f is smooth
and supported on the entire real line. Then &, 7(a) has the same rate of convergence in
mean-squared error as the corresponding estimator of Jones and Sheather (1991)
based on a kernel of order k. Indeed, if K is the standard normal density, the
equivalent kernel K}, in approximation gS) is equal to (m!)"'K™. Then 8, ,(a) is
roughly the same as their estimator fﬁ( (x)* dx. Hence theorem 2 is also the first
result on binned version estimators of integrated density derivatives in the non-
boundary case.

Remark 2. 1t is worthwhile to mention that our estimators are so effective that even
the constant coefficients in the asymptotic mean-squared errors depend on f through
the same functionals, whether or not there is any non-smooth boundary.
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Corollary 1. Suppose that [K*K} and [«”*'K} have the same sign. Then, if
Oyp+1 > 0, the bandwidth which minimizes the asymptotic mean-squared error of
0,.(a) is

1/(p+7+2)

»y!(p+1)!(y+u+1)JK:K’:

GAMSE =

n(1+ 6,,)(p — v+ 1)|6ypn1] Ju’”*‘K’,‘,‘

and the optimal asymptotic mean-squared error is equal to

2p—v+1)/(p+v+2) 2y+v+D)/(p+y+2)
2 ('y! qux*) (1+6,)|62p01] Ju"“Kt
2! A
+y+20 p—v+1 (y+v+DE+1)
2(p v+1)/(p+7+2) 4 {Jf(f('yﬂ/)) 9'271/}, (1 1)
and, if 6,41 <0,
1/(p+7v+2)
Y + 1) J KK
AAMSE = )

n(l + 67V)‘97,p+1| JupHK;f

and the optimal asymptotic mean-squared error is equal to

2(y+v)+1/(p+v+2)

(1 + 67y)|0’7y11+l | JuP'HK:‘
26 ([ )] [eke+ o} TR
o+ 1) KIS

4 (y+v, _
s { ey -6, (12

Remark 3. Expression (12), which is yielded by the Jones—Sheather mean
cancellation technique, has a better rate of convergence than expression (11) has.
Hence, if a more general class of densities is taken into account, there is a distinction
in the rates of convergence between easy and difficult densities.

Remark 4. If [ K3K? and fu”“K* have different signs, then expression (11)
holds when 6,,+1 <0 and expression (12) is valid when 6,,41 > 0. If K(¢) =
(1— ) I_1,+11(f), choosing P such that (p + 1 — «y)/2 is an odd integer is equivalent to
| K3K3 having the same sign as Jurt K. Besides, if f has no important features at
the boundaries,

brpit = (1)1 [ (orrony
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which is negative if and only if (p + 1 —+)/2 is odd. Hence, under such circum-
stances, we can always obtain expression (12).

Remark 5. From expressions (11) and (12), E{#,.(aamse) — 6,,)° is asymptotically

2y = 4{j SR — e%,u}

under the condition that p > v+ 2v if 6,41 >0 and p+1>y+2vif 6,41 <0.
Note that, when the support of fis unbounded, (02 ,)~" is the same as the information
bound given in Bickel and Ritov (1988). The requirement that p (or p+1) > 3y for

8,,(a) to achieve the optimal /n-convergence is more than what is needed for the
estimator of Bickel and Ritov (1988). However, if f € F,41 and there is any non-
smooth boundary, estimators in Bickel and Ritov (1988) become less efficient but

8,,,(a) still can achieve /n-convergence. Given these results, there are two p0351b1e
generalizations of the information bound results in Bickel and Ritov (1988). One is to
consider cases where v # v, and the other is to include densities that are smooth
except for having possible discontinuous derivatives on a finite set.

4. APPLICATIONS TO AUTOMATIC BANDWIDTH SELECTION

The results given in corollary 1 are useful for automatic bandwidth selection.
Recall from theorem 1 that local linear estimators of f{x) achieve boundary
corrections automatically. Hence, in the presence of non-smooth boundaries, local
linear density estimators are preferable to conventional kernel dens1ty estimators.

The behaviour of f,(x) is mainly decided by its bandwidth 4 since it controls the
amount of smoothing. A proper choice of the bandwidth depends on derivatives of
the unknown density. In non-boundary cases, f4(x) is essentially the same as the usual
kernel density estimator with kernel K; see equation (5). Hence any bandwidth
procedure for kernel density estimation will be appropriate. But, as discussed in
Section 1, those bandwidth rules will not be adequate if there are non-smooth
boundanes Since the estimators &, are less sensitive to boundary effects, they will
hopefully provide a better alternative when replacing the usual pilot estimators in the
Sheather—Jones selector. Next we construct a data-based bandwidth for local linear
density estimation based on the estimators 6,, and corollary 1. The development is
very similar to that of the Sheather—Jones procedure

For any function v on the real line, denote j1/z(t) dt as R(). The mean integrated
squared error (MISE) of the local linear density estimator f; is asymptotically

i, 1
Z <J u K) 02,2 +r_lﬁ R(K),

as n— 0o, h—> 0, nh - oo and b/h — 0; see Cheng (1994). Its minimizer with

respect to A& is
) 1/5
hy = {R(K)/ (J uzK) 92,2} n'5, (13)
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which is referred to as the asymptotically optimal bandwidth for local linear density
estimation. Note that A« is unknown since it depends on the quantity 62.

To estimate 6, » we take p = 3 and obtain 85 »(a). At this stage, a proper choice of
the bandwidth a is needed. According to corollary 1, the asymptotically optimal
bandwidth for 85 2(a) is

17
a4 = {24x R(K%) / 92,4Ju41<;‘} n 7, (14)
where
_ -1, if92,4<0,
X=15/2, if 6,4 > 0.
From equations (13) and (14),
a. = C(K) DR, (15)
where
25\ 1/7
24 R(&D [ K ) i
C(K) = o= (5E)
R(K) J u4K; 2,4

Following the ideas of plug-in estimation of A., replace 6, of equation (13) by
022{a(h)} and find the solution in 4 of the equation

5 1/5
h= [R(K) / (JuzK) (%;{a(h)}] n s, (16)

where

a(h) = C(K) D(f)n*". (17)

Here D(f) involves 62, and 6,4 which are again unknown, but it can be estimated by
some reference value through a scale parametric model of . Let 7 be a fixed density
function, e.g. the standard normal density, that has been normalized so that some
measure of scale such as the standard deviation is equal to 1. It can be verified that
D(ny) = A2/ D(mi), where ni(-) = X' mi(-/)\). Hence, from equation (17), set

ax(h) = C(K) D(m)N/"h"".

Our plug-in bandwidth selector, denoted as A, is defined to be the solution of the
equation analogous to equation (16) with a(h) replaced by as(h), where A is a /n-
consistent estimate of A.

hi involves only one-step estimation of 6,,, i.e. D(f) of equation (17) is directly
estimated by a reference value. Conventional plug-in procedures use reference values
at one stage later. For example, in the Sheather—Jones procedure, the bandwidth in
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6>, contains unknown quantities 6,, and 633. They are estimated by some kernel
estimators whose bandwidths depend on approprlate reference values.

We do not implement two steps of estimation in hy since that requires the estimate
6,4 which would make the procedure disadvantageous from the followmg two
aspects. First, &> 4 requires computing the inverses of g matrices each of size 6 x 6 (see
equations (3) and (7)), which will make the implementation extremely slow. Second,
6,4 involves f®(x), which inherits a large variability from the data; hence it makes
the bandwidth procedure unstable. An alternative to doing two estimation steps is to
keep everything in the Sheather-Jones rule unchanged except replacing 0,2 by 05,.
The resulting bandwidth is denoted as h, and the original Sheather—Jones bandwidth
as hsr.

A simulation study was conducted to examine the performance of /1, % and hsm
in practice. 10 independent samples each of size 100 were drawn from the x*-
distribution with 2 degrees of freedom. For each sample, the bandwidths were
computed and local linear density estimates were implemented based on them. Fig. 1
depicts the local linear density estimates using bandwidths hsser and Ay.

The conventlonal bandwidth Agjer is too small and yields undersmoothed estimates
of the y3-density, which is discontinuous at 0. The proposed bandwidth rule 7
achieves boundary correction and produces reasonably good estimates of the
underlying density. Estimates based on hy are not shown here, but they are close to
those based on A;. Similar results were observed from a separate simulation in the
uniform[0,1] case.

We further 1nvest1 ated the bandwidths by another simulation stud¥ The den51ty
was xl, Xz, x3 or x5. The sample size was 100 or 1000. For xl, x3 and X3, the
asymptotically optimal bandwidth /. does not exist, since the quantity 6. is infinite.
Hence the bandwidths rules 71, & and hgpr were examined by MISEs of local linear
density estimators based on them. Each MISE was estimated as the average of 1000
realizations of the integrated squared error, the values of which were calculated by
the trapezoidal rule from corresponding errors evaluated on a grid of 600 equally
spaced points. Table 1 summarizes the results.

Under the x3-distribution, the proposed bandwidths achieve a substantial
reduction in MISE (about 30% when n = 100 and 50% when n = 1000) compared
with Agier. In the other cases, the three bandwrdths give very close MISE values
Indeed, all are too small when applied to xi-samples. The reason is that the Xi-

TABLE 1
Approximate MISEs of local linear estimators based on hssp1, By or ha, for x*-samples of
size 100 or 1000

Degrees Sample size MISE (hsip1) MISE(h) MISE(hy)
of freedom
1 100 0.08365 0.08719 0.08797
1 1000 0.04753 0.04821 0.04787
2 100 0.00796 0.00541 0.00578
2 1000 0.00174 0.00083 0.00088
3 100 0.00525 0.00552 0.00566
3 1000 0.00109 0.00109 0.00109
5 100 0.00286 0.00298 0.00307
5 1000 0.00051 0.00052 0.00052




1997] BOUNDARY AWARE ESTIMATORS 201

0.36

0.24

0.12

0.00

0.60

0.48

0.36

0.24

0.12

{b)
) of the x3-density (- ) using different data-

Fig. 1. Local linear density estimates ( e in
based bandwidths: (a) Sheather-Jones bandwidth Agsser; (b) proposed bandwidth 4 (sample size n =
100)
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density has a sharp spike at the boundary Wthh makes automatic bandwidth
selection extremely difficult. As for x3- and x}-samples, the performances of the
bandwidth procedures are about the same and yield reasonably good estimates of the
density.

We conclude from our simulation results that

(a) A1 improves hsipr when the underlying densities have non-smooth boundaries
but without tough features there,

(b) A1, hz and hsyer are competitive when there is either no important feature near
the boundaries or no boundary and

(c) there is no apparent advantage of h, over ;.

Asymptotic properties of & were studied in Cheng (1995). Ruppert et al. (1995)
developed a bandwidth selector, called hste, for local linear regression. The pro-
cedure utilized parallel estimators of 8,,(a) and its performance was demonstrated by
simulation studies. We conjecture that a theoretical justification for this bandwidth
selector is possible and is analogous to that for A;.
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