臺大數學系新生暑假作業 2022/08

請書寫完整,於 08/31 22:00 前繳交至 Google 表單 https://forms.gle/ r8XVZ5YXhU74gTik8,參加 09/02 新生日將使用並檢討本份作業。

- 1. (a) If a is a rational number and b an irrational number, show that a + b is an irrational number. What about ab?
 - (b) Show that $\sqrt[n]{2}$ is not a rational number for any integer $n \ge 2$.
 - (c) Show that $\log_{10} 2$ is not a rational number.
- 2. Find all integer solutions $(x, y) \in \mathbb{Z}^2$ such that 2022x + 678y = 18. (*Hint*: Use Euclidean algorithm.)
- 3. On $I = [a, b] \subset \mathbb{R}$, consider the statement P: "There exists $x \in I$ such that for every $y \in I$, $x \leq y$ ". Which of the following statements are $\neg P$?
 - (a) For every $y \in I$, there exists $x \in I$ such that $x \leq y$.
 - (b) There exists $y \in I$ such that for every $x \in I$, $x \leq y$.
 - (c) For every $x \in I$, there exists $y \in I$ such that $x \leq y$.
 - (d) There exists $x \in I$ such that for every $y \in I$, x > y.
 - (e) There exist $x \in I$ and $y \in I$ such that x > y.
 - (f) For every $x \in I$ and $y \in I$, x > y.
 - (g) For every $y \in I$, there exists $x \in I$ such that x > y.
 - (h) For every $x \in I$, there exists $y \in I$ such that x > y.
 - (i) There exists $y \in I$ such that for every $x \in I$, x > y.
- 4. Determine if the following statements are true or false. Justify your answers.
 - (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } y^2 = 4x.$
 - (b) $\exists y \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$ we have $y^2 = 4x$.
 - (c) $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} \text{ such that } y^2 = 4x.$
 - (d) $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}$ we have $y^2 = 4x$.
 - (e) For every subset $A \subseteq \mathbb{N}$, there exists $a \in A$ such that for every $x \in A$, $a \leq x$.
 - (f) There is a subset $A \subseteq \mathbb{N}$ such that for every $a \in A$, there exists $x \in A$ such that a < x.
 - (g) There is a subset $A \subseteq \mathbb{N}$ such that for every $a \in A$, there exists $x \in A$ such that x < a.

- 5. Let X be a set and $A, B, C \subseteq X$. Prove the following statements:
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - (b) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ and $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
 - (c) $A \cap B = \emptyset$ if and only if $A \subseteq B^c$.
- 6. The following problems deal with some relations between a mapping and operations on sets. Given a function $f: A \to B$, we have two definitions:
 - The **image** of a subset $X \subseteq A$ under the function f is the set:

$$f(X) = \{f(x) \mid x \in X\}.$$

• The **preimage** of a subset $Y \subseteq B$ under the function f is the set:

$$f^{-1}(Y) = \{ x \in A \mid f(x) \in Y \}$$

Prove the following statements:

- (a) For any subset $X \subseteq A$, we have $X \subseteq f^{-1}(f(X))$. Also, give an example to explain that the equality may not hold (namely, $X \subsetneq f^{-1}(f(X))$ is possible).
- (b) For any subset $Y \subseteq B$, we have $f(f^{-1}(Y)) \subseteq Y$. Also, give an example to explain that the equality may not hold (namely, $f(f^{-1}(Y)) \subsetneq Y$ is possible).
- (c) Assume that f is injective. Then, for any subset $X \subseteq A$, we have $f(A \setminus X) \subseteq B \setminus f(X)$. Does this statement hold if f is not assumed to be injective?
- (d) For any subsets $Y_1, Y_2 \subseteq B$, we have $f^{-1}(Y_1) \setminus f^{-1}(Y_2) = f^{-1}(Y_1 \setminus Y_2)$.
- (e) For a collection $\{X_i\}_{i=1}^n$ of subsets of A with $X_i \subseteq A$, we have:

i.
$$f\left(\bigcup_{i=1}^{n} X_{i}\right) = \bigcup_{i=1}^{n} f(X_{i})$$

ii. $f\left(\bigcap_{i=1}^{n} X_{i}\right) \subseteq \bigcap_{i=1}^{n} f(X_{i})$. Also, give an example to explain that the

equality may not hold (namely, $f\left(\bigcap_{i=1} X_i\right) \subsetneq \bigcap_{i=1} f(X_i)$ is possible).

(f) For a collection $\{Y_j\}_{j=1}^m$ of subsets of B with $Y_j \subseteq B$, we have:

i.
$$f^{-1}\left(\bigcup_{j=1}^{m} Y_j\right) = \bigcup_{j=1}^{m} f^{-1}(Y_j).$$

ii. $f^{-1}\left(\bigcap_{j=1}^{m} Y_j\right) = \bigcap_{j=1}^{m} f^{-1}(Y_j).$

- 7. Let $f: A \to B$ and $g: B \to C$ be maps.
 - (a) Show that if both f and g are injections, then so is $g \circ f$.
 - (b) Show that if both f and g are surjections, then so is $g \circ f$.
 - (c) Show that if both f and g are bijections, then so is $g \circ f$.
 - (d) Show that if $g \circ f$ is an injection, then f is also an injection. Give an example where g is not an injection but $g \circ f$ is.
 - (e) Show that if $g \circ f$ is a surjection, then g is also a surjection. Give an example where f is not a surjection but $g \circ f$ is.
 - (f) If $h: B \to A$ is a map such that $h \circ f = \mathbf{1}_A$ and $f \circ h = \mathbf{1}_B$, show that both f and h are bijections.
- 8. The unit sphere S in \mathbb{R}^3 is the set $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. Let $N = (0, 0, 1) \in S$ and $\mathscr{M} = S \setminus \{N\}$. Consider the xy-plane $\mathscr{L} = \{(X, Y, 0) \mid X, Y \in \mathbb{R}\}$. The **stereographic projection** $f : \mathscr{M} \to \mathscr{L}$ is a mapping which sends a point $P \in \mathscr{M}$ to a point $P' \in \mathscr{L}$ where P' is the unique intersection point of the line through N and P with the plane \mathscr{L} .
 - (a) Derive the stereographic projection formula:

$$f(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}, 0\right)$$

(b) Show that f is a bijection and find its inverse explicitly.

Figure 1: The stereographic projection

- 9. Fix $n \in \mathbb{N}$, and for any $a, b \in \mathbb{Z}$, let the relation $a \sim b$ mean $n \mid (a b)$.
 - (a) Show that \sim is an equivalence relation on \mathbb{Z} . **Remark**: The equivalence class of a will be denoted by \bar{a} or \bar{a}_n , and the set of these equivalence classes will be denoted by $\mathbb{Z}/n\mathbb{Z} := \{\bar{k} : k \in \mathbb{Z}\}$. This set has n elements.
 - (b) Check that if $a \sim b$, $c \sim d$, then $a + c \sim b + d$.
 - (c) Check that if $a \sim b$, $c \sim d$, then $ac \sim bd$.

Here, we will explain "well definedness" for the next exercise. This is an error hard to find when you are writing a proof.

You may want to define the following "taking the numerator" function:

$$f: \mathbb{Q} \to \mathbb{Z}: f(r) = p \text{ when } r = \frac{p}{q}.$$

This looks like a function but it is actually *not* a function, for a rational number $r = \frac{p}{q}$ may have another expression (say $\frac{2p}{2q}$), which makes r map to multiple values. In this situation, we say f is not well-defined.¹

Let us see another example:

$$g: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/10\mathbb{Z}: f(\bar{a}) = \overline{a^2}.$$

Although \bar{a} can be represented by many a (e.g. a + 10), such $\overline{a^2}$ are all the same equivalence class (by exercise 9(c)). In this situation, we say g is well-defined. That is, g maps every element in the domain to exactly one element.

The problem arises only when the element in the domain has several representations (like $r = \frac{p}{q} = \frac{kp}{kq}$) and we use these representations to define our function. For example, in defining a function $f : \mathbb{Q} \to \mathbb{Q}$, there is no danger in $f(r) = 1 + r^2$, but we have to be careful with $f(r) = \frac{q^2 + p^2}{q^2}$ for $r = \frac{p}{q}$.

When we say a "function"² f is well-defined, it means that f is *indeed* a function. That is, f maps every element in the domain to exactly one element.³

In mathematics, we check a function $f : X \to Y$ is well-defined by showing the following: If α, β represent the same element in X, then $f(\alpha) = f(\beta)$.

¹You may ask p, q to be coprime and q > 0 in order to define this function well, but this is off-topic. ²Before the well definedness is checked, f is not yet a function!

³You can also treat addition as a function (with two variables). In the previous exercise, we checked that addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$ is well-defined.

- 10. (a) Show that $f: \mathbb{Q} \to \mathbb{Q}$: $f(r) = \frac{p^2 + q^2}{q^2}$ for $r = \frac{p}{q}$, is well-defined.
 - (b) Show that $f : \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$: $f(\bar{a}) = \bar{a}$ is well-defined. (*Hint*: These two \bar{a} are different!)
 - (c) Show that $f: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$: $f(\bar{a}) = \bar{a}$ is not well-defined.
 - (d) Is $f : \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/20\mathbb{Z}$: $f(\bar{a}) = \overline{a^2}$ well-defined? Justify your answer.

11. Prove the following identities:

$$\begin{aligned} \text{(a)} \sin \alpha \cos \beta &= \frac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2} &, \quad \sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}. \\ \text{(b)} \cos \alpha \sin \beta &= \frac{\sin(\alpha + \beta) - \sin(\alpha - \beta)}{2} &, \quad \sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}. \\ \text{(c)} \cos \alpha \cos \beta &= \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2} &, \quad \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}. \\ \text{(d)} \sin \alpha \sin \beta &= -\frac{\cos(\alpha + \beta) - \cos(\alpha - \beta)}{2} &, \quad \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}. \\ \text{(e)} \quad \frac{1}{2} + \cos x + \cos 2x + \cos 3x + \dots + \cos nx = \frac{\sin\left[\left(n + \frac{1}{2}\right)x\right]}{2 \sin \frac{x}{2}} \end{aligned}$$

13. Use the mathematical induction to prove the following statements.

- (a) Prove that for all integers $n \ge 4$, we have $3^n > n^3$.
- (b) Define a sequence $\{c_n\}_{n=0}^{\infty}$ as follows:

$$\begin{cases} c_{n+1} = \frac{49}{8}c_n - \frac{225}{8}c_{n-2}, & n \ge 2, \\ c_0 = 0, c_1 = 2, c_2 = 16. \end{cases}$$

Prove that $c_n = 5^n - 3^n$ for all $n \in \mathbb{N} \cup \{0\}$.

(c) Suppose that $A = \begin{pmatrix} 7 & 12 \\ -2 & -3 \end{pmatrix}$. Prove that for any $n \in \mathbb{Z}$,

$$A^{n} = \begin{pmatrix} -2 & -6\\ 1 & 3 \end{pmatrix} + 3^{n} \begin{pmatrix} 3 & 6\\ -1 & -2 \end{pmatrix}.$$

Here $A^{-n} = (A^n)^{-1}$ is the inverse of A^n , and we follow the convention that $A^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity matrix.

14. (a) Show that for any matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{R})$, we have the following relation:

$$\mathbf{A}^2 - \mathrm{tr}(\mathbf{A}) \cdot \mathbf{A} + \mathrm{det}(\mathbf{A}) \cdot \mathbf{I_2} = \mathbf{O_2}$$

where
$$\mathbf{I_2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\mathbf{O_2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $\operatorname{tr}(\mathbf{A}) = a + d$ and $\det(\mathbf{A}) = ad - bc$.
(b) Let $\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$. Evaluate the matrix $\mathbf{A}^5 - 4\mathbf{A}^4 - 3\mathbf{A}^3 - 7\mathbf{A}^2 - 16\mathbf{A} - 2\mathbf{I_2}$.

- 15. (Arithmetic and geometric means inequality)
 - (a) Show that for two non-negative real numbers $a, b \in \mathbb{R}_{\geq 0}$, we have

$$\frac{a+b}{2} \geqslant \sqrt{ab}$$

and that the equality holds if and only if a = b.

(b) Show that for any $k \in \mathbb{N}$, and 2^k non-negative real numbers $a_1, a_2, \ldots, a_{2^k} \in \mathbb{R}_{\geq 0}$, we have

$$\frac{1}{2^k} \sum_{i=1}^{2^k} a_i \ge \sqrt[2^k]{a_1 a_2 \cdots a_{2^k - 1} a_{2^k}}$$

and that the equality holds if and only if $a_1 = a_2 = \cdots = a_{2^k}$.

(c) Suppose it is true that for any $n \ (n \ge 2)$ non-negative real numbers $a_1, \ldots, a_n \in \mathbb{R}_{\ge 0}$, we have

$$\frac{1}{n}\sum_{i=1}^n a_i \geqslant \sqrt[n]{a_1a_2\cdots a_{n-1}a_n}$$

and that the equality holds if and only if $a_1 = a_2 = \cdots = a_n$. Show that the inequality remains true for n - 1 non-negative real numbers and that the equality holds if and only if they are equal. (*Hint*: Consider $a_n = \frac{1}{n-1}(a_1 + \cdots + a_{n-1})$.)

(d) Show that for any n non-negative real numbers $a_1, \ldots, a_n \in \mathbb{R}_{\geq 0}$, we have

$$\frac{1}{n}\sum_{i=1}^{n}a_i \geqslant \sqrt[n]{a_1a_2\cdots a_{n-1}a_n}$$

and that the equality holds if and only if $a_1 = a_2 = \cdots = a_n$.

16. (Cauchy-Schwarz inequality) For real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, show that

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \leq (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2)$$

and that the equality holds if and only if there exists some constants $c_1, c_2 \in \mathbb{R}$, which are not all 0, such that $c_1(a_1, \ldots, a_n) + c_2(b_1, \ldots, b_n) = (0, \ldots, 0)$. (*Hint*: The quadratic polynomial $\sum_{i=1}^n (a_i x + b_i)^2$ in x is always non-negative.)

17. (Triangle inequality) Write $\|\mathbf{x}\| = \sqrt{\sum_{k=1}^{n} x_k^2}$ for $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Show that

$$\|x+y\|\leqslant \|x\|+\|y\|$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and that the equality holds if and only if there exist some nonnegative constants $c_1, c_2 \in \mathbb{R}$, which are not all 0, such that $c_1\mathbf{x} = c_2\mathbf{y}$.

(When n = 1, this inequality is just $|a + b| \le |a| + |b|$ for all $a, b \in \mathbb{R}$.)

提醒:如果不理解題目該證明什麼,請至新生講義裡確認定義後再作答,並多多查 詢英文單字字義。