Algebra Competition 2020

1. Let F be a field and n be a positive integer. Let A be an $n \times n$ matrix over F such that $A^{n}=0$ but $A^{n-1} \neq 0$. Show that any $n \times n$ matrix B over F that commutes with A is contained in the F-linear span of $I, A, A^{2}, \ldots, A^{n-1}$.
2. For a prime power $q=p^{n}$, let $\operatorname{PSL}\left(2, \mathbb{F}_{q}\right)$ denote the projective special linear group of dimension 2 over \mathbb{F}_{q}.
(a) Prove that if $q \equiv \pm 1 \bmod 8$, then $\operatorname{PSL}\left(2, \mathbb{F}_{q}\right)$ contains a subgroup isomorphic to S_{4}. (You may use without proof that a group presentation of S_{4} is $\left\langle a, b, c: a^{2}=b^{3}=c^{4}=a b c=e\right\rangle$, where e denotes the identity element.)
(b) Prove that A_{7} contains a subgroup isomorphic to $\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)$.
3. Let D be an integral domain. A function $N: D \rightarrow \mathbb{Z}_{\geq 0}$ is said to be a Dedekind-Hasse norm on D if
(i) $N(0)=0$,
(ii) $N(a)>0$ if $a \neq 0$, and
(iii) for any nonzero elements a and b in D, either $b \mid a$ or there exist elements x and y in D such that $N(x a-y b)<N(b)$.
Also, a nonzero element d of D is said to be a universal side divisor if d is not a unit and has the property that for any a in D, either $d \mid a$ or there exists a unit u in D such that $d \mid(a-u)$.
(a) Prove that if an integral domain has a Dedekind-Hasse norm, then it is a principal ideal domain.
(b) Prove that if an integral domain is a Euclidean domain, but not a field, then it has a universal side divisor.
(c) Prove that $\mathbb{Z}[(1+\sqrt{-19}) / 2]$ is a principal ideal domain, but not a Euclidean domain.
4. (a) Let K be a finite extension of \mathbb{Q}. Suppose that a, b, c are elements of K such that a is not a square in K and $a\left(b^{2}-a c^{2}\right)$ is a square in K. Prove that $K(\sqrt{b+c \sqrt{a}})$ is a cyclic extension of degree 4 over K. (A finite extension L / K is said to be a cyclic extension if L / K is Galois and the Galois group is cyclic.)
(b) Let $\alpha=\sqrt{(2+\sqrt{2})(2+\sqrt{3})(3+\sqrt{6})}$. Prove that the field $K=\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} and that the Galois group $\operatorname{Gal}(K / \mathbb{Q})$ is isomorphic to the quaternion group of order 8 .
5. Let A be a two-dimensional associative unital algebra over a field F. (That is, A is a vector space of dimension 2 over F that is also a ring with 1 such that the multiplication is F-bilinear.)
(a) Prove that A must in fact be commutative.
(b) Prove that if F is algebraically closed, then either $A \simeq F \times F$ or $A \simeq F[x] /\left(x^{2}\right)$.
(c) In the case $F=\mathbb{R}$, classify all possible A, up to isomorphisms.
