Algebra Competition 2020

- **1.** Let F be a field and n be a positive integer. Let A be an $n \times n$ matrix over F such that $A^n = 0$ but $A^{n-1} \neq 0$. Show that any $n \times n$ matrix B over F that commutes with A is contained in the F-linear span of $I, A, A^2, \ldots, A^{n-1}$.
- **2.** For a prime power $q = p^n$, let $PSL(2, \mathbb{F}_q)$ denote the projective special linear group of dimension 2 over \mathbb{F}_q .
 - (a) Prove that if $q \equiv \pm 1 \mod 8$, then $PSL(2, \mathbb{F}_q)$ contains a subgroup isomorphic to S_4 . (You may use without proof that a group presentation of S_4 is $\langle a, b, c : a^2 = b^3 = c^4 = abc = e \rangle$, where *e* denotes the identity element.)
 - (b) Prove that A_7 contains a subgroup isomorphic to $PSL(2, \mathbb{F}_7)$.
- **3.** Let D be an integral domain. A function $N: D \to \mathbb{Z}_{\geq 0}$ is said to be a Dedekind-Hasse norm on D if
 - (i) N(0) = 0,
 - (ii) N(a) > 0 if $a \neq 0$, and
 - (iii) for any nonzero elements a and b in D, either b|a or there exist elements x and y in D such that N(xa yb) < N(b).

Also, a nonzero element d of D is said to be a universal side divisor if d is not a unit and has the property that for any a in D, either d|a or there exists a unit u in D such that d|(a - u).

- (a) Prove that if an integral domain has a Dedekind-Hasse norm, then it is a principal ideal domain.
- (b) Prove that if an integral domain is a Euclidean domain, but not a field, then it has a universal side divisor.
- (c) Prove that $\mathbb{Z}[(1+\sqrt{-19})/2]$ is a principal ideal domain, but not a Euclidean domain.
- 4. (a) Let K be a finite extension of Q. Suppose that a, b, c are elements of K such that a is not a square in K and a(b² − ac²) is a square in K. Prove that K(√b + c√a) is a cyclic extension of degree 4 over K. (A finite extension L/K is said to be a cyclic extension if L/K is Galois and the Galois group is cyclic.)
 - (b) Let $\alpha = \sqrt{(2 + \sqrt{2})(2 + \sqrt{3})(3 + \sqrt{6})}$. Prove that the field $K = \mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} and that the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ is isomorphic to the quaternion group of order 8.
- 5. Let A be a two-dimensional associative unital algebra over a field F. (That is, A is a vector space of dimension 2 over F that is also a ring with 1 such that the multiplication is F-bilinear.)
 - (a) Prove that A must in fact be commutative.
 - (b) Prove that if F is algebraically closed, then either $A \simeq F \times F$ or $A \simeq F[x]/(x^2)$.
 - (c) In the case $F = \mathbb{R}$, classify all possible A, up to isomorphisms.