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1. (20 pt.) Let K be a field with char K = p > 0 and A ∈ Mn(K). Suppose that

Apk
= QAQ−1

for some k ∈N and Q ∈ GLn(K). Show that Apm
= A for some m ∈N.

2. Prove that the following equations have only the assigned solutions in Z:
(1) (10 pt.) x3 − y2 = 1, (x, y) = (1, 0).
(2) (15 pt.) x3 − y2 = 5, no integer solutions.

3. Given a ring homomorphism f : A → B, B is called an A-algebra if B is
generated by f (A) and CB(A) := CB( f (A)).
(1) (10 pt.) If P is a prime ideal1 of B show that f−1P is a prime ideal of A if

B is an A-algebra. Give a counterexample for general f .
(2) (15 pt.) For two A-algebras B and C, show that there is a unique natural

A-algebra structure on B⊗A C. (Hint: consider CB(A)⊗Z A⊗Z CC(A).)

4. Decompose the group rings CG and QG, either abstractly or explicitly, into
product of simple factors for the following cases:
(1) (10 pt.) G = Cn, the cyclic group of order n ∈N.
(2) (10 pt.) G = Q8, the quaternion group {±1,±i,±j,±k} ⊂H.
(3) (10 pt.) G = Dn, the dihedral group of order 2n.

You may work on each part independently by assuming the previous parts in the same problem.
1An ideal P ( R is prime if for any two ideals I, J of R, I J ⊂ P implies I ⊂ P or J ⊂ P.
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