胡達開先生紀念獎學金代數競賽

台大數學系

2019年5月17日,18:00-21:00

1. (20 pt.) Let *K* be a field with char K = p > 0 and $A \in M_n(K)$. Suppose that

$$A^{p^k} = QAQ^{-1}$$

for some $k \in \mathbb{N}$ and $Q \in \operatorname{GL}_n(\overline{K})$. Show that $A^{p^m} = A$ for some $m \in \mathbb{N}$.

- **2.** Prove that the following equations have only the assigned solutions in \mathbb{Z} : (1) (10 pt.) $x^3 - y^2 = 1$, (x, y) = (1, 0).
 - (2) (15 pt.) $x^3 y^2 = 5$, no integer solutions.
- **3.** Given a ring homomorphism $f : A \to B$, *B* is called an *A*-algebra if *B* is generated by f(A) and $C_B(A) := C_B(f(A))$.
 - (1) (10 pt.) If *P* is a prime ideal¹ of *B* show that $f^{-1}P$ is a prime ideal of *A* if *B* is an *A*-algebra. Give a counterexample for general *f*.
 - (2) (15 pt.) For two *A*-algebras *B* and *C*, show that there is a unique natural *A*-algebra structure on $B \otimes_A C$. (Hint: consider $C_B(A) \otimes_{\mathbb{Z}} A \otimes_{\mathbb{Z}} C_C(A)$.)
- **4.** Decompose the group rings C*G* and Q*G*, either abstractly or explicitly, into product of simple factors for the following cases:
 - (1) (10 pt.) $G = C_n$, the cyclic group of order $n \in \mathbb{N}$.
 - (2) (10 pt.) $G = Q_8$, the quaternion group $\{\pm 1, \pm i, \pm j, \pm k\} \subset \mathbb{H}$.
 - (3) (10 pt.) $G = D_n$, the dihedral group of order 2n.

You may work on each part independently by assuming the previous parts in the same problem.

¹An ideal $P \subsetneq R$ is prime if for any two ideals *I*, *J* of *R*, *IJ* \subset *P* implies *I* \subset *P* or *J* \subset *P*.