ALGEBRA COMPETITION 2018

請同學以題組整體完成度為優先考量。

1. For $A \in M_n(\mathbb{Q})$, define $\widetilde{A} \in M_{2n}(\mathbb{Q})$ by

$$\widetilde{A} = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}.$$

- (a) Express the characteristic polynomial and the minimal polynomial of \widetilde{A} in terms of those of A.
- (b) Suppose that \widetilde{A} and \widetilde{B} are similar in $M_{2n}(\mathbb{Q})$. Either prove that A and B are similar in $M_n(\mathbb{Q})$, or disprove this statement with a counter-example.
- 2. Let p be a prime, \mathfrak{S}_p the symmetric group of degree p and G a transitive subgroup of \mathfrak{S}_p . Prove the following.
 - (a) The order |G| of G is divisible by p, and G contains a subgroup of order p.
 - (b) If H is a non-trivial normal subgroup of G, then H is a transitive subgroup of \mathfrak{S}_n .
 - (c) G is solvable if and only if G contains only one subgroup of order p.
- 3. Let $\rho: G \to \operatorname{GL}(V)$ be a faithful finite dimensional complex representation of a finite group G with character χ . (Being faithful means ρ is injective.) For every $n \in \mathbb{Z}_{>0}$, denote by χ_n the character of $V^{\otimes n}$.

Let ω be an irreducible complex character of G.

(a) Let $a_n = \sum_{x \in G} \chi_n(x) \cdot \overline{\omega(x)}$. Show that the generating function

$$f(t) := \sum_{n \ge 0} a_n t^n \in \mathbb{C}[[t]]$$

is a rational function and give a formula for the rational function f(t) in terms of the characters χ and ω .

- (b) Determine the radius of convergence of the power series f(t). Show that f(t) is not identically equal to 0. Conclude that there are infinitely many $m \in \mathbb{Z}_{\geq 0}$ such that ω appears in $V^{\otimes m}$.
- 4. Let A be a commutative ring with unity and $\Lambda(A) = 1 + tA[[t]] \subset A[[t]]$. For $f = \sum_{k\geq 0} a_k(f)t^k \in \Lambda(A)$, let $f_n = \sum_{k=0}^n a_k(f)t^k$ be the truncation and formally write $f_n = \prod_{i=1}^n (1 \xi_{n,i}(f)t)$. Thus $(-1)^k a_k(f)$ are elementary symmetric polynomials of $\xi_{n,i}(f)$. Let

$$\mu_n(f,g) = \prod_{i,j=1}^n (1 - \xi_{n,i}(f)\xi_{n,j}(g)t)$$

Notice that the expansion of $\mu_n(f,g)$ is invariant under permutations of $\xi_{n,i}(f)$ and of $\xi_{n,j}(g)$ and we therefore regard $\mu_n(f,g)$ as in $A[\xi_{n,i}(f),\xi_{n,j}(g),t]^{\mathfrak{S}_n\times\mathfrak{S}_n}=A[t]$.

- (a) Show that for a fixed integer $k \geq 0$, the coefficient of t^k in $\mu_n(f,g)$ is stationary as $n \to \infty$. Conclude that $\mu(f,g) := \lim_{n \to \infty} \mu_n(f,g)$ yields a well-defined binary operator on $\Lambda(A)$.
- (b) Let $\alpha(f,g)=fg$, the multiplication in A[[t]]. Show that $\Lambda(A)$ with addition α and multiplication μ , defines a commutative ring with unity (1-t).
- (c) Define $s_k: \Lambda(A) \to A, k \geq 1$, such that

$$\sum_{k \ge 1} s_k(f)t^k = -t \frac{d \log f}{dt} := -\frac{tf'}{f}.$$

Show that each s_k is a ring homomorphism.