ALGEBRA COMPETITION 2017

請同學以題組整體完成度爲優先考量。

（1）A K_{n} representation $R=\left(V_{1}, V_{2}, \phi_{a}\right)$ consists of finite－dimensional complex vector spaces V_{1} and V_{2} ，and n linear maps $\phi_{a}: V_{1} \rightarrow V_{2}$ for $a=1, \cdots, n$ ．A morphism between K_{n} repre－ sentations $\left(V_{1}, V_{2}, \phi_{a}\right)$ and（ W_{1}, W_{2}, ψ_{a} ）consists of linear map $f_{i}: V_{i} \rightarrow W_{i}$ for $i=1,2$ such that $\psi_{a} f_{1}=f_{2} \phi_{a}$ for $a=1, \cdots, n$ ．An isomorphism（injection）of representations is a mor－ phism（ f_{1}, f_{2} ）such that f_{1} and f_{2} are isomorphisms（injections）．Given $\theta_{1}, \theta_{2} \in \mathbb{R}$ ，we define $\Theta(R)=\left(\operatorname{dim}\left(V_{1}\right) \theta_{1}+\operatorname{dim}\left(V_{2}\right) \theta_{2}\right) /\left(\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)\right)$ ．A representation R is called Θ－semistable if for every subrepresentation R^{\prime} of R we have $\Theta\left(R^{\prime}\right) \leq \Theta(R)$ ．
（a）Show that a K_{2} representation $R=\left(\mathbb{C}^{k}, \mathbb{C}^{k}, \phi_{1}, \phi_{2}\right)$ is indecomposable if and only if R is isomorphic to $\left(\mathbb{C}^{k}, \mathbb{C}^{k}, \operatorname{Id}_{k}, J_{\lambda}\right)$ ，where J_{λ} is a matrix in canonical Jordan form with only one block．
（b）Show that if $\theta_{1}<\theta_{2}$ the space of Θ－semistable K_{n} representations with nonzero n_{1} and n_{2} is empty．
（c）Show that if $\theta_{1}>\theta_{2}$ the space of isomorphic Θ－semistable K_{n} representations with dimen－ sion vector $\left(n_{1}, n_{2}\right)=(1,1)$ is $\mathbb{C P}^{n}$ ．
（d）Suppose $\theta_{1}>\theta_{2}$ and $\left(n_{1}, n_{2}\right)=(1, m)$ with $n>m>1$ ．Please construct the space of isomorphic Θ－semistable K_{n} representations．
（2）Let $G L_{3}\left(\mathbb{F}_{2}\right)$ be the group of 3×3 invertible matrices with entries in \mathbb{F}_{2} ．
（a）Consider the action of $G L_{3}\left(\mathbb{F}_{2}\right)$ on the nonzero vectors in \mathbb{F}_{2}^{3} ．Show that there exists an injective group homomorphism from $G L_{3}\left(\mathbb{F}_{2}\right)$ to S_{7} ．
（b）Let A be the set of 2－dimensional subspaces in \mathbb{F}_{2}^{3} and B be the set

$$
B=\left\{\left\{v_{1}, v_{2}, v_{3}\right\} \mid v_{i} \in \mathbb{F}_{2}^{3}, \quad v_{1}, v_{2}, v_{3} \text { are linearly independent over } \mathbb{F}_{2}\right\} .
$$

Compute the cardinalities of A and B and show that $G L_{3}\left(\mathbb{F}_{2}\right)$ acts on A and B transitively．
（c）The resolvent $\Theta_{g}(y)$ of $g(x) \in \mathbb{Q}[x]$ of degree $n \geq 4$ with roots $\alpha_{1}, \cdots, \alpha_{n}$ is defined to be

$$
\Theta_{g}(y)=\prod_{1 \leq i<j<k \leq n}\left(y-\left(\alpha_{i}+\alpha_{j}+\alpha_{k}\right)\right) .
$$

Let $f(x) \in \mathbb{Q}[x]$ be irreducible of degree 7 and $\Theta_{f}(y)$ be its resolvent，which we assume to be separable．Show that if the Galois group of $f(x)$ is isomorphic to $G L_{3}\left(\mathbb{F}_{2}\right)$ ，then $\Theta_{f}(y)=f_{1}(y) f_{2}(y)$ ，where $f_{1}(y), f_{2}(y) \in \mathbb{Q}[y]$ are irreducible of degree 7 and 28 respec－ tively．
（3）Let D be a division ring and D^{*} be the multiplicative group of non－zero elements in D ．
（a）Show that if $|D|<\infty$ ，then D is a field．（Hint：Consider the center F of D and the class equation for D^{*} ．）
（b）Assume $\operatorname{char}(D)=p>0$ ．Show that if G is a finite subgroup of D^{*} ，then G is cyclic．
（c）Let D be the Hamilton＇s real quaternions $H=\left\{a_{0}+a_{1} i+a_{2} j+a_{3} k: a_{i} \in \mathbb{R}\right\}$ ．Show that $x^{2}+1=0$ has infinitely many roots in D and $\sum_{i=0}^{n} a_{i} x^{i}=0$（where $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $a_{0} \in D$ but $a_{0} \notin \mathbb{R}$ ）has at most n roots in D ．
（4）Let $I=\left\langle f_{1}, f_{2}\right\rangle$ ，where $f_{1}=x z-y^{2}$ and $f_{2}=x^{3}-z^{2}$ in $\mathbb{C}[x, y, z]$ ．
（a）Let $f=-4 x^{2} y^{2} z^{2}+y^{6}+3 z^{5}$ ．Determine if $f \in I$ ．（Justify your answer．）
（b）Let $g=x y-5 z^{2}+x$ ．Determine if $g \in I$ ．（Justify your answer．）

