2022 NTU MATH TALENTS SELECTION

(1) By the fundamental theorem of algebra, a degree *n* complex polynomial has *n* complex roots. Let $\alpha_n = \cos(2\pi/n) + i\sin(2\pi/n)$, where $i^2 = -1$. Then we have $z^n - 1 = (z - 1)(z - \alpha_n^1) \cdots (z - \alpha_n^{n-1})$. Using the product notation Π , we have the expression

$$z^{n} - 1 = \prod_{j=0}^{n-1} (z - \alpha_{n}^{j}).$$

If n, k are coprime, α_n^k is called a primitive *n*-th root of unity. Given a positive integer *d*, we define the cyclotomic polynomial $\Phi_d(z)$ by

$$\Phi_d(z) = \prod_{\alpha: \text{ primitive } d\text{-th root of unity}} (z - \alpha).$$

Prove:

(a) $z^{12} - 1 = \Phi_1(z)\Phi_2(z)\Phi_3(z)\Phi_4(z)\Phi_6(z)\Phi_{12}(z).$ (b) $z^n - 1 = \prod_{d|n,d \ge 1} \Phi_d(z).$

- (c) $\Phi_d(z)$ is a polynomial with integral coefficients, for any d.
- (2) Choose three vectors $v_1, v_2, v_3 \in \mathbb{R}^n$. Define the parallel-tope spanned by v_1 and v_2 to be $P(v_1, v_2) := \{s_1v_1 + s_2v_2 \mid 0 \leq s_1, s_2 \leq 1\}$ in \mathbb{R}^n and the parallel-piped spanned by v_1, v_2 and v_3 to be $P(v_1, v_2, v_3) := \{s_1v_1 + s_2v_2 + s_3v_3 \mid 0 \leq s_1, s_2, s_3 \leq 1\}$ in \mathbb{R}^n . Here, let \mathbb{R}^n be equipped with its standard Euclidean inner product.
 - (a) Let $v_1 = (3, 1, -1)$, $v_2 = (-2, 0, 1)$ and $v_3 = (2, 2, 1)$ in \mathbb{R}^3 . Transform v_1, v_2 and v_3 into three orthogonal vectors v_1, v'_2, v'_3 and then compute the area of the parallel-tope $P(v_1, v_2)$ and the volume of the parallel-piped $P(v_1, v_2, v_3)$ in \mathbb{R}^3 .

(Justify your answers.)

(b) Let $v_1 = (1, -1, 1, -1)$, $v_2 = (2, -1, 1, 0)$ and $v_3 = (3, -1, 3, -1)$. Try to transform v_1 , v_2 and v_3 into three orthogonal vectors v_1, v'_2, v'_3 such that the subspaces generated by v_1, v_2, v_3 and v_1, v'_2, v'_3 are the same. Define the notion of "area" of the parallel-tope $P(v_1, v_2)$ in \mathbb{R}^4 and compute its value. Also define the notion of "volume" of the parallel-piped $P(v_1, v_2, v_3)$ in \mathbb{R}^4 and compute its value.

Date: 2022 Dec 16 9:00 - 11:00 .

- (3) Let $P(x) = a_n x^n + \dots + a_0$ be a real coefficients polynomial of degree *n* where $n \ge 0$. A real number *b* is called a balance point of P(x) if whenever $b = \frac{a+c}{2}$ for some real numbers *a*, *c*, then $P(b) = \frac{P(a)+P(c)}{2}$. Prove the following.
 - (a) If b is a balance point of P(x), then 0 is a balance point of $\tilde{P}(x)$ where $\tilde{P}(x) = P(x+b)$.
 - (b) If P(x) has two distinct balance points, then the degree of P(x) is at most 1.
- (4) (a) Suppose P₁, P₂, P₃ are three distinct points on a line l and P₀ is a point not on the line l. Let l_i be the line determined by P₀ and P_i for i = 1, 2, 3. Let d be the distance between P₀ and l, d_{ij} be the distance between P_i and l_j for 1 ≤ i ≠ j ≤ 3. Prove that min{d, d₁₂, d₁₃, d₂₁, d₂₃, d₃₁, d₃₂} < d.
 - (b) Let $n \ge 2$. Let S be a set of n distinct points in the plane, not all on a line and L be the set of lines through at least two points in S. Prove that the set L contains a line which contains exactly two of the points in S.
 - (c) Let $n \ge 3$. Let S be a set of n distinct points in the plane, not all on a line and L be the set of lines through at least two points in S. Prove that the set L contains at least n lines.