## 2022 NTU MATH TALENTS SELECTION

(1) By the fundamental theorem of algebra, a degree $n$ complex polynomial has $n$ complex roots. Let $\alpha_{n}=\cos (2 \pi / n)+i \sin (2 \pi / n)$, where $i^{2}=-1$. Then we have $z^{n}-1=(z-1)\left(z-\alpha_{n}^{1}\right) \cdots\left(z-\alpha_{n}^{n-1}\right)$. Using the product notation $\Pi$, we have the expression

$$
z^{n}-1=\prod_{j=0}^{n-1}\left(z-\alpha_{n}^{j}\right)
$$

If $n, k$ are coprime, $\alpha_{n}^{k}$ is called a primitive $n$-th root of unity. Given a positive integer $d$, we define the cyclotomic polynomial $\Phi_{d}(z)$ by

$$
\Phi_{d}(z)=\prod_{\alpha: \text { primitive }} \prod_{d \text {-th root of unity }}(z-\alpha)
$$

Prove:
(a) $z^{12}-1=\Phi_{1}(z) \Phi_{2}(z) \Phi_{3}(z) \Phi_{4}(z) \Phi_{6}(z) \Phi_{12}(z)$.
(b)

$$
z^{n}-1=\prod_{d \mid n, d \geq 1} \Phi_{d}(z)
$$

(c) $\Phi_{d}(z)$ is a polynomial with integral coefficients, for any $d$.
(2) Choose three vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{n}$. Define the parallel-tope spanned by $v_{1}$ and $v_{2}$ to be $P\left(v_{1}, v_{2}\right):=\left\{s_{1} v_{1}+s_{2} v_{2} \mid 0 \leq s_{1}, s_{2} \leq 1\right\}$ in $\mathbb{R}^{n}$ and the parallel-piped spanned by $v_{1}, v_{2}$ and $v_{3}$ to be $P\left(v_{1}, v_{2}, v_{3}\right):=\left\{s_{1} v_{1}+s_{2} v_{2}+s_{3} v_{3} \mid 0 \leq s_{1}, s_{2}, s_{3} \leq\right.$ $1\}$ in $\mathbb{R}^{n}$. Here, let $\mathbb{R}^{n}$ be equipped with its standard Euclidean inner product.
(a) Let $v_{1}=(3,1,-1), v_{2}=(-2,0,1)$ and $v_{3}=(2,2,1)$ in $\mathbb{R}^{3}$. Transform $v_{1}, v_{2}$ and $v_{3}$ into three orthogonal vectors $v_{1}, v_{2}^{\prime}, v_{3}^{\prime}$ and then compute the area of the parallel-tope $P\left(v_{1}, v_{2}\right)$ and the volume of the parallel-piped $P\left(v_{1}, v_{2}, v_{3}\right)$ in $\mathbb{R}^{3}$.
(Justify your answers.)
(b) Let $v_{1}=(1,-1,1,-1), v_{2}=(2,-1,1,0)$ and $v_{3}=(3,-1,3,-1)$. Try to transform $v_{1}, v_{2}$ and $v_{3}$ into three orthogonal vectors $v_{1}, v_{2}^{\prime}, v_{3}^{\prime}$ such that the subspaces generated by $v_{1}, v_{2}, v_{3}$ and $v_{1}, v_{2}^{\prime}, v_{3}^{\prime}$ are the same. Define the notion of "area" of the parallel-tope $P\left(v_{1}, v_{2}\right)$ in $\mathbb{R}^{4}$ and compute its value. Also define the notion of "volume" of the parallel-piped $P\left(v_{1}, v_{2}, v_{3}\right)$ in $\mathbb{R}^{4}$ and compute its value.
(3) Let $P(x)=a_{n} x^{n}+\cdots+a_{0}$ be a real coefficients polynomial of degree $n$ where $n \geq 0$. A real number $b$ is called a balance point of $P(x)$ if whenever $b=\frac{a+c}{2}$ for some real numbers $a, c$, then $P(b)=\frac{P(a)+P(c)}{2}$. Prove the following.
(a) If $b$ is a balance point of $P(x)$, then 0 is a balance point of $\widetilde{P}(x)$ where $\widetilde{P}(x)=P(x+b)$.
(b) If $P(x)$ has two distinct balance points, then the degree of $P(x)$ is at most 1 .
(4) (a) Suppose $P_{1}, P_{2}, P_{3}$ are three distinct points on a line $l$ and $P_{0}$ is a point not on the line $l$. Let $l_{i}$ be the line determined by $P_{0}$ and $P_{i}$ for $i=1,2,3$. Let $d$ be the distance between $P_{0}$ and $l, d_{i j}$ be the distance between $P_{i}$ and $l_{j}$ for $1 \leq i \neq j \leq 3$. Prove that $\min \left\{d, d_{12}, d_{13}, d_{21}, d_{23}, d_{31}, d_{32}\right\}<d$.
(b) Let $n \geq 2$. Let $S$ be a set of $n$ distinct points in the plane, not all on a line and $L$ be the set of lines through at least two points in $S$. Prove that the set $L$ contains a line which contains exactly two of the points in $S$.
(c) Let $n \geq 3$. Let $S$ be a set of $n$ distinct points in the plane, not all on a line and $L$ be the set of lines through at least two points in $S$. Prove that the set $L$ contains at least $n$ lines.

