2020 & KREZ A 4%ES
w & F XX

(1) HERBEELESE m Ao n, ZRAT 57X
fmn(x )—x —2(m+n)x2—|—(m—n)2.

Q) X FEE L—RBOR—ERL AT CEEAKRR
0P| _
d(P,L)
B—AE A e > 0898 P € E PTH m 49 69 S5,

(a) AR4E ¢ LA HT.
(b) &9 T 248 7~ 3F [ 6 [ 4k th 427, Bp - i 2 [ 46 69 AR

(B) & f:R - RA—BEGHE FRES
E={xeR; f(x+h) > f(x) for some h = hy > 0}.
(@) ¥R E # @, %% E X8 %4 (open set).
(b) B Lo E =172, (a;,bj) B |ag|, |by| < oo, &Y

fla) = £ (by)-

(4) &— B mxn GFHREIER A, KRMEBH R F65 (IT) @ =
v L@J Av € R™ e A HVE—BAH R" 3] R™ 894 PE 4 4
(a) &

1 -1 -1 1 0
-11 0 -2 =2
1 -1 -2 0 =2
2 -2 -1 3 2

tH image(A) 84 7.
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For those people who are not familiar with Chinese, we provide
also the English translation below.

Do explain your arguments in details. No partial credits will be
assigned to non-substantial solutions.

(1) For any two positive integers m and n, consider the polyno-
mial
fun(x) = x* =2(m +n)x> + (m —n)?.
Characterize the values of m and n so that fy, , (x) is the prod-
uct of two non-constant polynomials with integer coefficients.

(2) Let E be a plane, O € E be a point and L C E be a line. Let
I' C E be the set of all points P € E such that
OP|
d(P,L)
is a fixed value e > 0.
(a) Classify I according to the value of e.
(b) Show that I is equivalent to a conic section, that is the in-

tersection of a plane in space with a circular cone, which
is not a circle.
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(3) Suppose f : R — R is a continuous function. Consider
E={xeR; f(x+h) > f(x) for some h = hy > 0}.
(a) If E # @, show that E is an open set.
(b) Suppose we now have E = [[72;(a),b;). Show that for
those finite intervals (ay, b;), we must have

fla) = £(by)-

(4) If A is an m X n matrix over IR, then A can be regarded as
a linear transformation from R” to R by sending a column
vector v to Av.

(a) Let

1 -1 -1 1 0
-11 0 -2 =2
1 -1 -2 0 =2
2 -2 -1 3 2

A=

Compute the dimension of image(A).
(b) Find a matrix B such that kernel(B) = image(A).



