臺灣大學數學系 99 學年度上學期博士班資格考試題 科日: 統計

2010.09.17

- 1. Let U_1, \dots, U_n, \dots be i.i.d. U(0,1) random variables, X have the p.d.f. $P(X = x) = 1/((e-1)x!)I_{\{1,2,\dots\}}(x)$, and $S_n = \sum_{i=1}^n U_i$.
- (1a) (10%) Derive the distribution of $Z = \min\{U_1, \dots, U_X\}$.
- (1b) (10%) Compute the expectation of $N = \min\{n : S_n > 1\}$.
- 2. Let X_1, \dots, X_n be a random sample from a p.d.f f(x) with median M.
- (2a) (10%) Suppose that $f(M) \neq 0$. Derive the limiting distribution of $\sqrt{n}(M_n M)$, where $M = Median\{X_1, \dots, X_n\}$.
- (2b) (10%) Suppose that $g^{(1)}(x)$ is continuous at M and $g^{(1)}(M) \neq 0$. Find an approximated probability of $P(g(M_n) \leq x)$.
- 3. Let X_1, \dots, X_n be a random sample from $Bernoulli(\pi)$ with n > 2.
- (3a) (10%) Find the uniformly minimum variance unbiased estimator of π^2 .
- (3b) (4%) (6%) Find the maximum likelihood estimator of π^2 and show that the one-step jackknife estimator is an unbiased estimator of π^2 .
- 4. (20%) Let X_1, \dots, X_n be a random sample from a p.d.f $f(x|\theta)$ with $\theta \in \Theta$ and $dim(\Theta) = k$. Consider the hypotheses $H_0: \theta \in \Theta_0$ versus $H_A: \theta \in \Theta \Theta_0$, where $\Theta_0 = \{\theta: \theta = g(\eta)\} \subset \Theta$ with η being a $(k-r) \times 1$ unknown parameter vector and $g(\cdot)$ being a continuously differential function from R^{k-r} to R^k . Show that $-2\ln(\lambda_n) \xrightarrow{d} \chi_r^2$ under H_0 and the regularity conditions, where λ_n is the likelihood ratio test statistic.
- 5. (10%) Show that a uniformly most powerful test is an unbiased test.
- 6. (10%) Let $\hat{\delta}$ be the Bayes estimator with constant risk. Show that $\hat{\delta}$ be the minimax estimator.