國立臺灣大學數學系

九十六學年度上學期博士班資格考試題

科目:統計

2007.09

1. Suppose the random variables Y_1, \ldots, Y_n satisy

$$Y_i = \beta x_i + \epsilon_i, \quad i = 1, \dots, n,$$

where x_1, \ldots, x_n are fixed constants and $\epsilon_1, \ldots, \epsilon_n$ are iid Normal $(0, \sigma^2), \sigma^2$ unknown.

- (a) (10 pts.) Find the MLEs of β and σ^2 .
- (b) (10 pts.) Show that $\sum Y_i / \sum x_i$ and the MLE in (a) are both unbiased estimators of β . Compare the variances of these two estimators.
- 2. (20 pts.) Find the LRT of

$$H_0: \theta \leq 0$$
 versus $H_1: \theta > 0$

based on a random sample X_1, \dots, X_n from a distribution with pdf

$$f(x|\theta,\lambda) = \frac{1}{\lambda}e^{-(x-\theta)/\lambda}I_{[\theta,\infty)}(x)$$

where both θ and λ are unknown, $-\infty < \theta < \infty$, $\lambda > 0$, and I is the indicator function.

3. Suppose X has the logistic location pdf

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2}, \quad -\infty < x < \infty,$$

where $-\infty < \theta < \infty$ and θ is unknown.

- (a) (10 pts.) Show the the logistic location family has an MLR.
- (b) (10 pts.) Based on X, find the most powerful size α test of $H_0: \theta = 0$ versus $H_1: \theta = 1$. Find the power of the test.
- (c) (5 pts.) Show that the test in (b) is UMP size α for testing $H_0: \theta \leq 0$ versus $H_1: \theta > 0$.
- 4. Let X be a single observation from the pdf $f(x) = \theta x^{\theta-1} I_{(0,1)}(x)$, where $\theta > 0$ is unknown and I is the indicator function.
 - (a) (10 pts.) Let $T = X^{\theta}$. Show that T is a pivotal quantity. Use T to construct 1α confidence intervals for θ .
 - (b) (5 pts.) Among the confidence intervals in (a), show that $\{\theta : 0 \le \theta \le \log \alpha / \log X\}$ has the minimum length.
- 5. Let X_1, \ldots, X_n be iid random variables from a Poisson(λ) distribution with the pmf

$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

- (a) (10 pts.) Find the best unbiased estimator of $\lambda e^{-\lambda} = P(X_1 = 1)$.
- (b) (10 pts.) Find a UMA one-sided 1α confidence interval for λ of the form (0, U(X)].