國立臺灣大學數學系 九十五學年度博士班資格考試試題 科目:統計

2007.06.01

1. (20 pts) Let X_1, \ldots, X_n be i.i.d. having the Poisson distribution $Poisson(\theta)$ with $\theta > 0$.

- (a) (12 pts) Find the UMVUE of $\exp(-t\theta)$ with a fixed t > 0.
- (b) (8 pts) Show that the ratio of asymptotic mean squared error of UMXUE T_n and Cramer-Rao lower bound goes to 1.

(You can either show it or cite a theorem but the conditions should be checked.)

2. (20 pts) Let $(Y_1, Z_1), \ldots, (Y_n, Z_n)$ be i.i.d. with the p.d.f.

$$\lambda^{-1}\mu^{-1}e^{-y/\lambda}e^{-z/\mu}I_{(0,\infty)}(y)I_{(0,\infty)}(z),$$

where $\lambda > 0$ and $\mu > 0$. Here I_A is the indicator function of A.

- (a) (5 pts) Find the MLE of (λ, μ) .
- (b) (15 pts) Suppose that we only observe $X_i = \min(Y_i, Z_i)$ and $\Delta_i = 1$ if $X_i = Y_i$ and $\Delta_i = 0$ if $X_i = Z_i$. Determine the MLE of (λ, μ) .
- 3. (20 pts) Assume that

$$X_{i+1} - \theta = \rho(X_i - \theta) + \delta_i$$

with δ_i i.i.d. N(0,1) and $X_1 \sim N(\theta, 1/(1-\rho^2))$.

- (a) (10 pts) Determine $Corr(X_1, X_i)$ and $Var(X_i)$.
- (b) (10 pts) Show that \bar{X} is a consistent estimator of θ .
- 4. (20 pts) Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \sigma^2)$. Suppose that $\sigma^2 = \gamma \mu^2$ with unknown $\gamma > 0$ and $\mu \in R$. Obtain a confidence set for γ with confidence coefficient 1α by inverting the acceptance region of the likelihood ratio tests for

$$H_0: \gamma = \gamma_0$$
 versus $H_1: \gamma \neq \gamma_0$.

5. (20 pts) Assume that

$$X_i = \theta t_i + \epsilon_i, \quad i = 1, \dots, n,$$

where $\theta \in \Theta$ is an unknown parameter, Θ is a closed subset of R, ϵ 's are i.i.d. uniform random variables on the interval [-1,1], t_i 's are fixed constants, $\sup_i |t_i| < \infty$ and $\sup_i t_i - \inf_i t_i > 2$. Let

$$T_n = S_n(\tilde{\theta}_n) = \min_{\gamma \in G} S_n(\gamma),$$

where

$$S_n(\gamma) = 2 \max_{i \le n} |X_i - \gamma t_i| / \sqrt{1 + r^2}.$$

- (a) (8 pts) Show that the sequence $\{\tilde{\theta}_n, n = 1, 2, ...\}$ is bounded.
- (b) (12 pts) Show that T_n is a strongly consistent estimator of

$$\vartheta = \min_{\gamma \in \Theta} S(\gamma),$$

where $S(\gamma) = \lim_{n \to \infty} S_n(\gamma)$ almost surely.