臺灣大學數學系113學年度第1學期博士班一般資格考試

科目:統計

2024.09.06

- 1. (15 points) Let $X_c = \min\{X, c\}$, where X is a random variable and c is a constant. Assume $E[X^2] < \infty$. Show that $Var(X_c) \leq Var(X)$.
- 2. (7 points) (8 points) Let $X|Y=y\sim \text{Binomial}(y,p),\ Y|\Lambda=\lambda\sim \text{Poisson}(\lambda),\ \text{and}\ \Lambda\sim \text{Exponential}(\beta).$ Compute the expectation and variance of X.
- 3. (15 pts) Let $X = (X_1^{\top}, X_2^{\top})^{\top}$ be a random vector that follows a multivariate normal distribution with mean vector μ and variance Σ , where Σ is at least positive semi-definite. Assume that X_1 and X_2 are uncorrelated. Show that X_1 and X_2 are independent.
- 4. (10 points) Let $X \sim \text{Negative Binomial}(r, p)$. Approximate the probability $P(X \leq x)$ by an appropriate Chi-square distribution for each $x \in \{0, 1, \dots\}$.
- 5. (5 points) (10 points) State the conditions under which the maximum likelihood estimator is asymptotically normal and show this theoretical property.
- 6. (7 points) (8 points) Let $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ be two random samples from Bernoulli (p_1) and Bernoulli (p_2) , respectively. Consider the hypothesis test of $H_0: p_1 = p_2$ versus $H_A: p_1 \neq p_2$. Derive the Wald and score test statistics and their asymptotic distributions under H_0 .
- 7. (15 points) Let X_1, \ldots, X_n be a random sample from a probability density function $f(x|\theta)$, where $\theta \in \Theta$ and $dim(\Theta) = k$. Let λ_n be the likelihood ratio test statistic for testing the hypotheses $H_0: \theta \in \Theta_0$ versus $H_A: \theta \in \Theta \Theta_0$, where $\Theta_0 = \{\theta: \theta = g(\eta)\} \subset \Theta$ with η being a $(k-r) \times 1$ unknown parameter vector and $g(\cdot)$ being a continuously differential function from R^{k-r} to R^k . Show that under H_0 and the regularity conditions, $-2\ln(\lambda_n) \xrightarrow{d} \chi_r^2$.