臺灣大學數學系 101 學年度第 2 學期博士班資格考

科目:統計

- 1. (15%) Let X_1, \ldots, X_n be a random sample from a population with probability density function f(x) and differentiable cumulative distribution function F(x). Show that $\sqrt{n}(M_n \mu)$ is asymptotically normal with mean zero and variance $1/(2f(\mu))^2$, where M_n and μ are separately the sample median and population median.
- 2. (8%) (7%) Let X_1, \ldots, X_n be a random sample from a population with probability density function

$$f_X(x|\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \ 0 < \theta < \infty.$$

Find the uniformly minimum variance unbiased estimator (UMVUE) of θ and show that the variance of the UMVUE cannot attain the Cramér-Rao lower bound.

- 3. (8%) (7%) Let $p_j(X_1,\ldots,X_n)$ denote a valid p-value for $H_{0j}:\theta\in\Theta_j$ versus $H_{Aj}:\theta\notin\Theta_j$, $j=1,\ldots,k$. Define a valid p-value $p(X_1,\ldots,X_n)$ for the hypotheses $H_0:\theta\in\bigcup_{j=1}^k\Theta_j$ versus $H_A:\theta\in\bigcap_{j=1}^k\Theta_j^c$ and find a level α test defined by $p(X_1,\ldots,X_n)$.
- 4. Let $\hat{\theta}_n$ be an estimator of θ_0 based on a random sample X_1, \ldots, X_n .
- (4a) (7%) (8%) Define the jackknife estimator of θ_0 and construct an approximated $100(1-\alpha)\%$, $0 < \alpha < 1$, confidence interval for θ_0 based on the jackknife estimator and its asymptotic variance. (4b) (10%) Construct a $100(1-\alpha)\%$ bootstrap quantile confidence interval for θ_0 .
- 5. Let X_1, \ldots, X_n be a random sample from $N(\theta, a\theta)$, where a is a known positive constant and $\theta > 0$.
- (5a) (7%) Find a minimal sufficient statistic for θ .
- (5b) (3%) (5%) Show that, for any constant $0 \le c \le 1$, $E[c\bar{X}_n + (1-c)dS_n|\theta] = \theta$ with $d = [(n-1)\Gamma((n-1)/2)]/[2a\Gamma((n+1)/2)]$, and find the minimizer, say \hat{c} , of $Var(c\bar{X}_n + (1-c)dS_n|\theta)$.
- 6. (8%) (7%) Let X_1, \ldots, X_n be a random sample from $Uniform(\theta, \theta + 1)$. Find the uniformly most powerful size α test of the hypotheses $H_0: \theta = 0$ versus $H_A: \theta > 0$, and calculate the power of the test at θ_1 , where $\theta_1 > 0$.