臺灣大學數學系

100 學年度上學期博士班資格考試題

科目:統計

2011.09.15

- 1. (20%) Suppose $X_1, ..., X_n$ are iid $N(\mu, \mu^2), \mu > 0$.
 - (a) (5%) Show that both \bar{X} and s are both consistent estimates of μ . Here s^2 is the sample variance.
 - (b) (8%) Derive joint limiting distribution of (\bar{X}, s^2) .
 - (c) (7%) Find the limit of $P(|s \mu| < |\bar{X} \mu|)$.
- 2. (15%) Let the distribution of survival times of patients receiving a standard treatment be the known distribution F_0 , and let Y_1, \ldots, Y_n be the i.i.d. survival times of a sample of patients receiving an experimental treatment. Assume that the distribution of survival times of Y is of the form $G(y, \Delta)$ where $G(y, \Delta) = 1 [1 F_0(y)]^{\Delta}$ for y > 0 and $\Delta > 0$. To test whether the new treatment is beneficial we test $H_0: \Delta \leq 1$ versus $H_A: \Delta > 1$. Assume that F_0 has a density f_0 .
 - (a) (8%) Find the UMP test.

- (b) (7%) Show how to find critical values.
- 3. (20%) Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} U[\mu \sigma, \mu + \sigma]$, and we want to test $H_0: \mu = 0$ versus $H_A: \mu \neq 0$ based on X_1, X_2, \ldots, X_n .
 - (a) (6%) Derive the likelihood ratio test and express it as a function of $W = X_{(n)} X_{(1)}$ and $U = \max(X_{(n)}, -X_{(1)})$.
 - (b) (7%) Show that, under H_0 , U is complete and sufficient and U and W/U are independent.
 - (c) (7%) Derive the asymptotic distribution of $-2\log \Lambda_n$ where Λ is the likelihood ratio.
- 4. (15%) Suppose X_1, X_2, \ldots are iid $Poisson(\mu)$ and we wish to estimate $P(X_1 = 0)$.
 - (a) (4%) Derive the maximum likelihood estimate of $P(X_1 = 0)$ which is denoted by δ_n .
 - (b) (5%) Derive the approximations of $E(\delta_n) P(X_1 = 0)$ and $Var(\delta_n)$ with an error bound $O(n^{-2})$. Please justify your answer.
 - (c) (6%) Show that $(1 1/n)^{\sum_{i=1}^{n} X_i}$ is UMVUE of $P(X_1 = 0)$.
- 5. (15%) Let X₁, X₂,..., X_n be the indicators of n Bernoulli trials with success probability θ. Suppose ℓ(θ, a) is the quadratic loss (θ − a)² and that the prior π(θ) is the beta, β(r, s), density. (i.e., The beta density function is x^{r-1}(1 − x)^{s-1}/B(r, s).)
 - (a) (7%) Find the Bayes estimate θ_B of θ .
 - (b) (8%) Show that $\hat{\theta} = (S_n + \sqrt{n}/2)/(n + \sqrt{n})$ has a constant risk and $\hat{\theta}$ is minimax. Here $S_n = \sum_{i=1}^n X_i$.

- 6. (15%) Let P_{θ} denote the uniform distribution on $[0, \theta]^2$, for $\theta > 0$. That is, the coordinates X_1 and X_2 are independent $Uniform[0, \theta]$ under P_{θ} . Let $S = X_1 + X_2$ and $M = \max(X_1, X_2)$. Consider estimation of θ with loss function $L(\theta, a) = (\theta - a)^2$.
 - (a) (5%) Explain why $E_{\theta}(S|M=m)$ is preferred to S for estimating θ .
 - (b) (5%) Explain why $E_{\theta}(2X_1|S)$ is preferred to $2X_1$ for estimating θ .
 - (c) (5%) Explain why $E_{\theta}(3M/2|S=s)$ is not preferred to 3M/2 for estimating θ .