臺灣大學數學系 99 學年度下學期博士班資格考試題 (科目:實分析

2011.02.24

1. (10 points)

Prove the following integral version of Minkowski's inequality for $1 \le p < \infty$:

 $\left[\int \left|\int f(x,y)dx\right|^p dy\right]^{1/p} \leq \int \left[\int \left|f(x,y)\right|^p dy\right]^{1/p} dx.$

2. (10 points)

Prove that $L^{\infty}(E)$ is not separable for any measurable set E with positive measure.

3. (10 points) Prove that a continuous function defined on a closed interval is uniformly continuous.

4.(10 points)

Prove that a function defined on a closed interval is Riemann integrable.

5. (30 points)

(i) State and prove the simple Vitali covering lemma.

(ii) Prove that if $f \in L(\mathbb{R}^n)$ and f has compact support, then the set

$$A_{f^*}(\alpha) = \{x \in \mathbb{R}^n | f^*(x) > \alpha\}$$

is bounded in \mathbb{R}^n , where f^* is the Hardy-Littlewood maximum function of f.

(iii) Under the assumption of (ii), show that there exists a positive constant c independent of f and α such that $\omega_{f^*}(\alpha) = |A_{f^*}(\alpha)| \leq \frac{c}{\alpha} \int_{\mathbb{R}^n} |f|$

6. True or False. For each of the following statements, prove it if the statement is true; otherwise, give a counter example. (30 points)

- a) Suppose $f(x) = \sum_{j=0}^{\infty} a_j x^j$, where $a_j \in \mathbb{R}^1$, $j = 0, 1, 2, \dots$, and $\sum_{j=0}^{\infty} |a_j| = 10252010$. Then f(x) is of bounded variation on the closed interval [0, 1].
- b) Suppose that g(x) is a bounded function on [0, 1] such that for any positive $\epsilon < 1$, $V[g; \epsilon, 1] < M$. Then $V[g; 0, 1] \le M$, where V[g; a, b] is the variation of g over [a, b].
- c) Suppose that f(x) and $\phi(x)$ are bounded functions on [-1, 1] such that $\int_{-1}^{0} f(x)d\phi(x) = 1$ and $\int_{0}^{1} f(x)d\phi(x) = 1$. Then $\int_{-1}^{1} f(x)d\phi(x) = 2$.

d) $f_n(x) \to f(x)$ uniformly in $\mathbb{R} \Rightarrow f_n(x) \to f(x)$ in $L^1(\mathbb{R})$.

e) $f_n \to f$ in $L^1([0,1]) \Rightarrow f_n \to f$ pointwise a.e on [0,1].