臺灣大學數學系 99 學年度上學期博士班資格考試題 科目:實分析

2010.09.17

1. (20 pts) Let $f : \mathbb{R} \to \mathbb{R}$ be a measurable function. Must the following statement hold? Given $\delta > 0$, there exists a continuous function ϕ on \mathbb{R} such that

 $m\left(\left\{x \in \mathbb{R} : f(x) \neq \phi(x)\right\}\right) < \delta.$

Hereafter, $m(\cdot)$ is the Lebesgue measure. Prove or disprove your answer.

2. (20 pts) Let $f \in L^2(\mathbb{R}^n)$ and $K(x) = \frac{1}{1+|x|}$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, where $|x| = \left(\sum_{j=1}^n x_j^2\right)^{1/2}$. Set $K_{\epsilon}(x) = \frac{\epsilon^{1-n}}{\epsilon+|x|}$ and let \tilde{f} be the maximal function defined by

$$\tilde{f}(x) = \sup_{Q} \frac{1}{m(Q)} \int_{Q} |f(y)| \, dy \,,$$

where the supremum is taken over all cubes Q with center x and edges parallel to the coordinate axes.

- (i) Must $\tilde{f} \in L^2(\mathbb{R}^n)$? (10 pts)
- (ii) Must there exist a constant C independent of f such that

$$\sup_{\epsilon > 0} |K_{\epsilon} * f(x)| \le C \,\tilde{f}(x) \,, \quad \forall x \in \mathbb{R}^n$$

holds? Here * is the convolution. (10 pts)

Prove or disprove all your answers.

- # 3. (20 pts) Let $\{f_k : k = 1, 2, 3, \dots\}$ be a bounded sequence in $L^2([0, 1])$. Must the sequence $\{f_k\}$ have a convergent subsequence in $L^1([0, 1])$? Prove or disprove all your answers. (10 pts)
- # 4. (20 pts) Can there exist $f \in L^1(\mathbb{R})$ and a sequence $\{f_n\}_{n=1}^{\infty} \subset L^1(\mathbb{R})$ such that as $n \to \infty$, $||f_n f||_{L^1} \to 0$ but $f_n(x) \to f(x)$ for no x? Prove or disprove your answer.
- # 5. (20 pt) Let $E \subset [0, 2\pi]$ be a measurable set with positive (Lebesgue) measure. Must $\lim_{n\to\infty} \int_E \cos^2(nx+u_n) dx = 0$ for any sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}$? Prove or disprove your answer.