臺灣大學數學系 98 學年度下學期博士班資格考試題

科目:實分析

2010.02.25

Please answer all questions as complete as possible. You will NOT get partial credits for incomplete solutions. Passing grade: 70.

1.(20%) Let (X, \mathcal{B}, μ) be a measure space. Show that if $\mu(X) < \infty$, $f_n \to f$ in measure and $g_n \to g$ in measure, then $f_n g_n \to fg$ in measure. For this statement, can the assumption of $\mu(X) < \infty$ be removed?

2. True or false:

(a)(10%) Let f be a function on \mathbb{R}^n . The set of discontinuities of f is Borel set.

(b)(10%) |f| is measurable $\Rightarrow f$ is measurable.

(c)(20%) Let f be a nonnegative absolutely continuous function on [a, b], then f^s is absolutely continuous for any 0 < s < 1.

3. Let \mathcal{Z} be the space of measurable, finite-valued a.e. functions on the finite measure space (X, \mathcal{B}, μ) . For $f, g \in \mathcal{Z}$, define

$$d(f,g) = \int \frac{|f-g|}{1+|f-g|} d\mu.$$

Show that

(a)(10%) for $f_n \in \mathbb{Z}$, $f_n \to 0$ in measure if and only if $d(f_n, 0) \to 0$. (b)(20%) \mathbb{Z} is a complete metric space with respect to d.

4.(20%) Let (X, \mathcal{B}, μ) be a σ finite measure space and $(\mathbb{R}, \mathcal{R}, \lambda)$ be the Lebesgue measure space. Assume that $f: X \to [0, \infty)$ is measurable. Show that the set $\Gamma_f = \{(x, t) \in X \times \mathbb{R} : f(x) = t\}$ is an element of $\mathcal{B} \times \mathcal{R}$ (product σ field) and $\mu \times \lambda(\Gamma) = 0$.

5.(10%) Let S be the set of positive a.e. functions on [a, b]. Define

$$M_f = (\int_a^b f dx) (\int_a^b f^{-1} dx).$$

Determine $\min_{f \in S} M_f$ and classify all minimizers of $\min_{f \in S} M_f$.