2008.09.18

Real Analysis Qualifying Exam

There are six problems in this exam. To pass the exam, you have to answer at least four problems correctly.

1. Let (X, \mathcal{S}, μ) be a σ -finite measure space. Assume that $f: X \to [0, \infty)$ is a measurable function. Let $\varphi: [0, \infty) \to [0, \infty)$ be a C^1 function with never-vanishing derivative. Show that

$$\int_{X} \varphi \circ f(x) d\mu = \int_{0}^{\infty} \varphi'(t) \mu(\{x : f(x) > t\}) dt.$$

- 2. Prove or disprove the following statements.
- (a) Denote \mathcal{L} the Lebesgue measurable set of \mathbb{R} . Assume that $f,g:\mathbb{R}\to\mathbb{R}$ are Lebesgue measurable functions, i.e., $\{x:f(x)>t\}\in\mathcal{L}$ and $\{x:g(x)>t\}\in\mathcal{L}$ for all $t\in\mathbb{R}$. Is $f\circ g$ Lebesgue measurable?
- (b) Let \mathcal{B} be the Borel set of \mathbb{R} . Assume that f and g are Borel measurable, i.e., $\{x: f(x) > t\} \in \mathcal{B}$ and $\{x: g(x) > t\} \in \mathcal{B}$ for all $t \in \mathbb{R}$. Is $f \circ g$ Borel measurable?
- (c) Let μ be the Lebesgue measure of \mathbb{R} . Let A be a Lebesgue measurable set and B be a Borel set satisfying $\mu(A) = \mu(B) = 0$. If $N \subset A$, then must N be a Lebesgue measurable set? On the other hand, if $N \subset B$, then must N be a Borel set?
- **3**. Let $f: \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. Show that there exists a Borel function g such that f = g a.e.
- 4. Prove or disprove the following statements (consider $\mathbb R$ with Lebesgue measure).
- (a) $f_n \to f$ uniformly in $\mathbb{R} \Rightarrow f_n \to f$ in L^1 .
- (b) $f_n \to f$ in $L^1 \Rightarrow f_n \to f$ pointwise a.e.
- (c) Let $\psi : \mathbb{R} \to \mathbb{R}$ be continuous and $f_n \to f$ a.e., then $\psi \circ f_n \to \psi \circ f$ a.e.
 - 5. Let (X, \mathcal{S}, μ) be a measure space with $\mu(X) < \infty$. Assume that the real-valued function f is measurable and $\lim \int f^n d\mu$ exists and is finite. Show that

$$\lim \int f^n d\mu = \mu(\{x : f(x) = 1\}).$$

6. Let $f:X\to [0,\infty)$ be a measurable and essentially bounded function. Denote ess $\sup f=:M>0.$ Assume that $\mu(X)<\infty.$ Show that

(a) $\lim_{n \to \infty} \int \int e^{n} dx \, \lambda \, V_n$

$$\lim \left(\int f^n d\mu \right)^{1/n} = M.$$

(b)
$$\lim \frac{\int f^{n+1} d\mu}{\int f^n d\mu} = M.$$