臺灣大學數學系113學年度第1學期博士班一般資格考試 科目:實分析 2024.09.04

- 1. (30%) Let E be a measurable set in \mathbb{R}^n with its Lebesgue measure |E| > 0.
 - (a) Let $H = \{ |x| | x | x \in E \}$. Show that |H| > 0.
 - (b) Let $K = \{x y \mid x \in E, y \in E\}$. Show that there exists an r > 0 such that the ball $B_r = \{x \in R^n \mid |x| < r\} \subset K$.
 - (c) Let f be a nonnegative real-valued measurable function defined on E. Show that the graph of f, $G = \{(x, f(x)) \in \mathbb{R}^{n+1} \mid x \in E\}$, has measure zero in \mathbb{R}^{n+1} .
- 2. (30%) Let f, $\{f_k\} \in L^p(E)$, $1 \le p \le \infty$.
 - (a) Assume $||f f_k||_p \to 0$. Show that there exists a subsequence of $\{f_k\}$ which converges to f a.e. in E.
 - (b) Assume $f_k \to f$ a.e. and $||f_k||_p \to ||f||_p$, $1 \le p < \infty$. Show that $||f f_k||_p \to 0$.
 - (c) Find g, $\{g_k\} \in L^3([0, 1])$ such that $g_k \to g$ a.e. in [0, 1], $\lim_{k \to \infty} ||g_k||_2 = ||g||_2$, and $\limsup_{k \to \infty} ||g_k||_3 > ||g||_3$.
- 3. (20%) Let *f* be nonnegative, bounded, and Riemann integrable on [*a*, *b*]. Show that *f* is Lebesgue integrable on [*a*, *b*].
- 4. (20%) Prove the following result concerning *changes of variable*. Let g(t) be monotone increasing and absolutely continuous on $[\alpha, \beta]$, and let f be bounded and measurable on [a, b], $a=g(\alpha)$, $b=g(\beta)$. Then f(g(t)) is measurable on $[\alpha, \beta]$ and

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt.$$

(Hint: Consider the case when f is the characteristic function of an interval, an open set, etc.)