臺灣大學數學系112學年度第1學期博士班一般資格考試

科目: 實分析

2023, 09, 08

- 1. (20%) Let $E_k, k = 1, 2, 3, ...$, be measurable subsets of \mathbb{R}^n and let $m(E_k)$ denote the Lebesgue measure of E_k .

 - (a) Show that $m(\bigcup_{k=1}^{\infty} E_k) = \lim_{n \to \infty} m(\bigcup_{k=1}^{n} E_k)$. (b) Assume $\sum_{k=1}^{\infty} m(E_k) < \infty$. Let $E = \{x \in \mathbb{R}^d \mid x \in E_k \text{ for infinitely many k}\}$. Show that Eis measurable and m(E) = 0.
- 2. (15%) Assume that E_1 and E_2 are measurable in \mathbb{R}^m and \mathbb{R}^n respectively. Show that $E = E_1 \times E_2$ is measurable in \mathbb{R}^{m+n} and

$$m(E) = m(E_1) m(E_2).$$

- 3. (30%) Suppose f is integrable on \mathbb{R}^n .
 - (a) Show that if $\int_E f(x) dx \ge 0$ for every open set E, then $f(x) \ge 0$ for a.e. x.
 - (b) Show that for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$\int_{E} |f| < \epsilon$$
 whenever E is measurable and $m(E) < \delta$.

- (c) Show that $f(\frac{|x|x}{\alpha + |x|})$ converges to f(x) in the L^1 -norm as $\alpha \to 0^+$.
- 4. (20%) Show that if f is of bounded variation on [a, b], then
 - (a) $\int_a^b |f'(x)| dx \le T_f(a,b), \text{ where } T_f(a,b) \text{ denotes the total variation of } f \text{ on } [a,b];$
 - (b) $\int_{a}^{b} |f'(x)| dx = T_f(a, b) \text{ if and only if } f \text{ is absolutely continuous.}$
- 5. (15%) Show that if X is a normed vector space and Y is a Banach space, then the space L(X,Y) of all bounded linear maps is a Banach space.