臺灣大學數學系 110 學年度上學期博士班資格考試題 科目:實分析

2021.09.24

- 1.(15%) Let B be a Lebesgue nonmeasurable set in \mathbb{R}^n . Prove that there exists a set $B_0 \subset B$ such that B_0 is also nonmeasurable and for any $A \subset B_0$ if A is measurable, then |A| = 0.
- 2.(10%) Suppose f_k converges a.e to f and $||f_k||_p \to ||f||_p$ for some $0 . Show that <math>||f_k f||_p \to 0$.
- 3.(15%) Assuming f is nonnegative and integrable in \mathbb{R}^1 . If f is also Lipschitz, i.e $|f(x) f(y)| \le C|x y|$. Prove that $\liminf_{n \to \infty} \sqrt{n} f(n) = 0$.
- 4.(15%) Let A be a Lebesgue measurable set in \mathbb{R}^1 . Prove that for any $\epsilon > 0$, there exists a continuous function f(x) in \mathbb{R}^1 such that $|\{x \in \mathbb{R}^1; f(x) \neq \chi_A(x)\}| < \epsilon$.
- 5.(15%) Show that $\liminf_{p\to\infty} ||f||_{L^p(E)} \ge ||f||_{L^\infty(E)}$ for any measurable function f and measurable set E.
- 6.(15%) Given a measurable function f(x) in \mathbb{R}^n and suppose that $|\{x,|f(x)|>\lambda\}| \leq \frac{A_1}{\lambda}$ and $|\{x,|f(x)|>\lambda\}| \leq \frac{A_2}{\lambda^r}$ for some 1 < r. Show that $f \in L^p(\mathbb{R}^n)$ for any 1 .
- 7.(15%) Given $f \in L^p(\mathbb{R}^1)$ for some $1 \leq p < \infty$. Given $t \in \mathbb{R}^1$, define $f_t(x) := f(x-t)$. Show that $\lim_{t\to 0} ||f_t f||_p = 0$.