臺灣大學數學系 109 學年度上學期博士班資格考試題 科目:實分析

2020.09.17

PH.D QUALIFYING EXAM: REAL ANALYSIS 2020 FALL

1.(10%) Suppose a function f(x) on [0,1] is defined as the following. If $x \in [0,1]$ is a rational number, i.e. $x = \frac{q}{p}$ for some integers p and q, then define $f(x) = \frac{1}{p}$, when x is not rational, define f(x) = 0. Prove or disprove f is measurable.

2.(15%) Let Q be the unit square in \mathbb{R}^2 . Suppose $\{f_n\}$ is a sequence of non-negative measurable functions in $L^1(Q)$ and $\lim_{n\to\infty}\int_Q f_n=\int_Q f<\infty$ and $f_n(x)\to f(x)$ pointwise. Show that $\lim_{n\to\infty}\int_E f_n=\int_E f$ for any measurable set $E\subset Q$.

3.(15%) Let $f(x)\in L^3(\mathbb{R})$ and $\phi(x)=\sin(\pi x)\cdot\chi_{[-1,1]}(x).$ Define $f_n(x)=n\int f(x-y)\phi(ny)dy.$

Show that f_n converges to 0 a.e.

4.(15%) Suppose μ is a Borel measure on \mathbb{R}^n and assume that there exists a constant c>0 such that whenever a Borel set E satisfies |E|=c, then $\mu(E)=c$. Show that μ is absolutely continuous w.r.t Lebesgue measure.

5.(15%) Let $1 and define <math>\theta$ by $\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$. Show that $||f||_r \le ||f||_p^\theta ||f||_q^{1-\theta}$.

6.(15%) Denote B the Borel σ -algebra in [0,1], and M([0,1]) be the space of real finite measures $\mu: B \to \mathbb{R}$ with norm $||\mu|| = |\mu|([0,1])$. Show that M([0,1]) is a real Banach space.

7.(15%) (a): Suppose E_1 and E_2 are nonmeasurable sets in \mathbb{R}^n . Prove or disprove $E_1 \cup E_2$ is nonmeasurable.

(b): Prove or disprove the following statement. B is not Lebesgue measurable if and only if there exists $\epsilon > 0$ such that for every Lebesgue measurable set $A \subset B$, $|B - A|_e \ge \epsilon$.