臺灣大學數學系 107 學年度上學期博士班資格考試題 科目:實分析

2018.09.13

PH.D QUALIFYING EXAM: REAL ANALYSIS 2018 FALL

1.(15%) Assume $\{E_j\}_{j=1}^m$ is a collection of measurable sets in [0,1] with the property that every $x \in [0,1]$ belongs to at least n of E_j $(n \le m)$. Show that $|E_j| \ge \frac{n}{m}$ for some j.

2.(10%) Suppose A is a measure zero set in \mathbb{R} . Show that there exists a sequence of open sets U_n such that $A \subset \bigcap_{n=1}^{\infty} U_n$ and $\lim |U_n| = 0$.

3.(15%) Is it possible to construct a measurable function $f: \mathbb{R} \to \mathbb{R}$ such that $f \in L^p(\mathbb{R})$ for all $p \geq 1$ but $f \notin L^\infty(\mathbb{R})$? Show your result.

4.(15%) Let g(x) be a bounded measurable function with the property that

$$\lim_{n \to \infty} \int_E g(nx) dx = 0,$$

for any measurable set E with finite measure. Given $f \in L^1(\mathbb{R})$, does

$$\lim_{n\to\infty}\int_{\mathbb{R}}f(x)g(nx)dx=0?$$

Prove or disprove your result.

5.(15%) Let $\{\phi_k\}$ be a complete orthogonal system in L^2 . Given a bounded sequence of numbers $m=\{m_k\}$ and for every $f\in L^2$, we define $T(f)(x)=\sum_k m_k c_k \phi_k(x)$, where $c_k=\int f(x) \bar{\phi_k}(x)$. Show that $||T(f)||_2 \leq C||f||_2$ for some constant C that is independent of f.

6.(15%) Let $f(x_1, x_2, x_3) = (x_1^2 + x_2^4 + x_3^6)^{-p}$, where p > 0. Find the range of p so that f is integrable on a bounded set that contains the origin.

7.(15%) Given a measurable set $A \subset [0,1]$ with |A| > 0. Let $B = \cos(A) = \{\cos(x), x \in A\}$. Show that the measure of B is strictly less than the measure of A, i.e |B| < |A|.

1