臺灣大學數學系 105 學年度上學期博士班資格考試題 科目:實分析

2016 Fall, Real Analysis Qualifying Exam

Each problem counts 20 points.

- 1. The following two problems are regarding Riemann-Stieltjes integrals.
 - (i) Show that if $\int_a^b f dg$ exists, then so does $\int_a^b g df$, and

$$\int_a^b f dg = [f(b)g(b) - f(a)g(a)] - \int_a^b g df.$$

(ii) For functions f and g defined on the interval [a, b], prove that if f and g have a common discontinuous point, then $\int_a^b f dg$ does not exist.

2. Suppose that f is a continuous function defined on the finite closed interval [a, b]. Prove that f is uniformly continuous on [a, b] and the Riemann integral of f over [a, b] exists.

3. Which of the following spaces is (are) separable?

(i)
$$l^2$$
, (ii) l^{∞} , (iii) $L^p(\mathbb{R}^2), 1 , (iv) $L^{\infty}[0, 1]$.$

Justify your answer.

4. State and prove the Lebesgue's point theorem for $f(x) \in L^1_{loc}(\mathbb{R}^n)$.

1

5. Show rigorously the integral

$$\lim_{t \to \infty} \int_0^t \frac{\sin x}{x} = \frac{\pi}{2}$$