臺灣大學數學系

104 學年度下學期博士班資格考試題 科目:實分析

- 2016.02.25
- 1. (20%) Which of the following spaces is (are) separable?

(i) ℓ^2 , (ii) ℓ^{∞} , (iii) $L^p(\mathbb{R}^2)$, $1 , (iv) <math>L^{\infty}[0,1]$

Justify your answer.

- 2. (20%) Construct an absolutely continuous strictly monotone function g on [0,1] such that g'=0 on a set of positive measure.
- 3. (20%) Let $g \in L^{\infty}[0,1]$ with norm $||g||_{\infty}$. Prove that $\forall \varepsilon > 0, \exists f \in L^{1}[0,1]$ such that $\int_{0}^{1} fg \ge (||g||_{\infty} \varepsilon) \int_{0}^{1} |f|$.

4. (total 20%, 10% each) Suppose $f \in L^1(\mathbb{R}^n)$, $n \ge 2$ and $\int_{\mathbb{R}^n} |f| dx \le 1$.

(i) Prove that $\forall k \in \mathbb{N}, \exists r_k \ge 10^k$ such that $\int_{\partial B_n} |f| dS < \frac{1}{r_k}$, where

$$\partial B_r = \left\{ x = \left(x_1, \cdots, x_n \right) \in \mathbb{R}^n : \sum_{j=1}^n x_j^2 = r^2 \right\} \text{ for } r > 0.$$

(ii) Suppose that f is continuous on \mathbb{R}^n . Prove that $\forall k \in \mathbb{N}, \exists r_k \ge 10^k$ and $x_k \in \mathbb{R}^n$ such that $|f(x_k)| \le C r_k^{-n}$, where C is a positive constant independent to k

5. (total 20%, 10% each)

- i. Calculate the value $P = \inf \left\{ \int_{\mathbb{R}^n} u^2 \ln(1+u^2) dx : \int_{\mathbb{R}^n} u^{2m} dx = 1 \right\}$ for $m, n \in \mathbb{N}$. Justify your answer. Discuss all cases of $m, n \in \mathbb{N}$.
- ii. Can the value P be achieved by a function in $L^{2m}(\mathbb{R}^n)$? Justify your answer. Discuss all cases of $m, n \in \mathbb{N}$.