臺灣大學數學系 102 學年度上學期博士班資格考試題 科目:實分析

2013.09.26

Choose 5 from the following 6 problems

1. Let $\{f_k\}$ be a sequence of functions in $L^p, 1 \leq p < \infty$, which converges almost everywhere to a function f in L^p . Show that $\{f_k\}$ converges to f in L^p if $||f_k||_{L^p} \to ||f||_{L^p}$.

2. Let S be the set of functions which are positive a.e. on [0, 1]. Define

$$M_f = \left(\int_0^1 x^2 f \, dx\right) \left(\int_0^1 f^{-1} \, dx\right), \qquad N_f = \left(\int_0^1 f \, dx\right) \left(\int_0^1 f^{-2} \, dx\right)^{\frac{1}{2}}.$$

(a) Determine $\inf_{f \in S} M_f$ and find all minimizers of M_f in S.

(b) Determine $\inf_{f \in S} N_f$ and find all minimizers of N_f in S.

3. Let E be a subset of \mathbb{R}^n .

- (a) Prove that E is Lebesgue measurable if and only if $E = H \setminus Z$, where H is a G_{δ} set and Z has measure zero. (A set is called G_{δ} if it is the intersection of a countable collection of open sets.)
- (b) Prove that E is Lebesgue measurable if and only if

 $m_*(A) = m_*(E \cap A) + m_*(E^c \cap A)$ for every $A \subset \mathbb{R}^n$,

where m_* denotes the Lebesgue outer measure.

- 4. Let $1 \le p \le \infty$, $1 \le q \le \infty$, $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$. (a) Prove that $||f * g||_{L^p} \le ||f||_{L^p} ||g||_{L^q}$ if q = 1. (b) Prove that $||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}$ if $\frac{1}{p} + \frac{1}{q} \ge 1$ and $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$.
- 5. Assume $\{x_k\} \subset \mathbb{R}^n$, $c_k \ge 0$, and $\sum_k c_k < \infty$. Let $g(x) = \sum_k c_k f(x + x_k)$.
- (a) Show that g(x) is finite almost everywhere if f(x) is Lebesgue integrable on \mathbb{R}^n .
- (b) Does the same conclusion hold if $f(x) \in L^p(\mathbb{R}^n)$ and 1 ?

6.

- (a) Prove that $(1 x^2)^b$ is absolutely continuous on [0, 1] if b > 0.
- (b) Let f be a nonnegative absolutely continuous function on [0, 1]. Is it true that \sqrt{f} is also absolutely continuous on [0, 1]?