臺灣大學數學系 101 學年度下學期博士班資格考試題 科目:實分析

2013.02.21

Qualified Exam for Real Analysis

Feb. 2013

1. (20%)

Let f be integrable on (a,b). Prove that there exists a unique function g such that

$$\int_{a}^{x} g(t) dt = \left(\int_{a}^{x} f(t) dt \right)^{2}, \forall a < x < b.$$

2. (20%)

Suppose that f and g are measurable functions on \mathbb{R}^d . Recall the definition of the convolution of f and g given by

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y)dy.$$

Show that f * g is integrable whenever f and g are integrable, and that

$$\|f * g\|_{L^1(\mathbb{R}^d)} \le \|f\|_{L^1(\mathbb{R}^d)} \|g\|_{L^1(\mathbb{R}^d)},$$

with equality if f and g are non-negative.

3. (20%)

Suppose $\left\{ \varphi_{k} \right\}_{k=1}^{\infty}$ is an orthonormal basis for $L^{2}\left(\mathbb{R}^{d}\right)$. Prove that the collection $\left\{ \varphi_{j,k} \right\}_{j,k\geq 1}$ with $\varphi_{j,k}\left(x,y\right) = \varphi_{j}\left(x\right)\varphi_{k}\left(y\right)$ is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\times\mathbb{R}^{d}\right)$.

4. (20%)

For p, q > 1, let

$$I_{p,q} = \inf \left\{ \left\| u \right\|_{p}^{p} - \left\| u \right\|_{q}^{q} : u \in L^{p} \cap L^{q} \cap L^{2}, \left\| u \right\|_{2} = 1 \right\},$$

where $\,L^{s}\,$ is the function space defined as $\,L^{s}=L^{s}\left(\mathbb{R}^{2}
ight)\,$ with the

norm $\|u\|_s = \left(\int_{\mathbb{R}^2} \left|u(x)\right|^s \, dx\right)^{\frac{1}{s}}$ for $u \in L^s$ and s > 1. Answer the following questions.

- (i) Suppose p > q > 2. Which one holds true:
 - (A) $I_{p,q}$ is finite, (B) $I_{p,q} = \infty$, (C) $I_{p,q} = -\infty$.
- (ii) Suppose q>p>2 . Which one holds true:
 - (A) $I_{p,q}$ is finite, (B) $I_{p,q} = \infty$, (C) $I_{p,q} = -\infty$.

Justify your answers rigorously.

- 5. (20%)
 - i. Calculate the value

$$I = \inf \left\{ \int_{\mathbb{R}^2} \left[\frac{u^2(x)}{2} - \sqrt{1 + u^2(x)} + 1 \right] dx : \int_{\mathbb{R}^2} u^2(x) dx = 1 \right\}.$$

ii. Can the value $\,I\,$ be achieved by a function i.e. there exists

$$u \in L^2(\mathbb{R}^2)$$
 with $\int_{\mathbb{R}^2} u^2(x) dx = 1$ such that

$$\int_{\mathbb{R}^{2}} \left[\frac{u^{2}(x)}{2} - \sqrt{1 + u^{2}(x)} + 1 \right] dx = I?$$

Prove or disprove your result.