臺灣大學數學系 99 學年度上學期博士班資格考試題 科目:迴歸分析

- 1. (25%) Suppose that, conditional on the covariates $\mathbf{X} \in \mathbb{R}^p$, the Y's are independent 0-1 variables, with logit $P(Y_i = 1 | \mathbf{X}_i) = \mathbf{X}_i \boldsymbol{\beta}$, i.e., the logit model holds.
 - (a) (8%) Show that the log likelihood function can be written as

$$L_n(\boldsymbol{\beta}) = -\left(\sum_{i=1}^n \log[1 + \exp(\mathbf{X}_i \boldsymbol{\beta})]\right) + \left(\sum_{i=1}^n \mathbf{X}_i Y_i\right) \boldsymbol{\beta}.$$

- (b) (12%) Show that $L_n(\beta)$ is a concave function of β , and strictly concave if the design matrix formed by the \mathbf{X}_i has full rank.
- (c) (5%) Discuss the existence of maximum likelihood estimate of β using (a) and (b).
- 2. (25%) Consider data $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$. Suppose that the postulated regression model is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad 1 \le i \le n,$$

where

$$\epsilon_1, \cdots, \epsilon_n \stackrel{i.i.d.}{\sim} N(0, \sigma^2).$$

In fact, the true model is

$$y_i = \theta(x_i) + e_i, \quad 1 \le i \le n,$$

where $\theta(\cdot)$ is bounded, $E(e_i) = 0$, $Var(e_i) = \sigma_0^2$, and

$$Cov(e_i, e_j) = \left\{ egin{array}{cc}
ho \sigma_0^2 & ext{when } |i-j| = 1, \ 0 & ext{otherwise} \end{array}
ight.$$

Let $\hat{\beta}_0$ and $\hat{\beta}_1$ denote the least squares estimators of β_0 and β_1 , respectively.

- (a) (7%) Determine $E(\hat{\beta}_1)$ and $Var(\hat{\beta}_1)$.
- (b) (5%) Describe the distribution of $\hat{\beta}_1$ if (e_1, \dots, e_n) has a multivariate normal distribution. Give reason to justify your result.
- (c) (13%) When $x_i = i/n$ and n is large, does $\hat{\beta}_1$ converge to a constant a_1 in probability? If it does, describe a_1 in terms of $\theta(\cdot)$. Justify your answer.
- 3. (25%) Let $Y_{ij} = \alpha_i + \beta x_{ij} + \epsilon_{ij}$, where i = 1, 2, ..., I; j = 1, 2; and the ϵ_{ij} are independently distributed as $N(0, \sigma^2)$.
 - (a) (13%) Obtain the maximum likelihood estimate of β , $\hat{\beta}$, and give condition in terms of x_{ij} to ensure that $\hat{\beta}$ is a consistent estimate of β . Justify your answer.
 - (b) (12%) Obtain a test statistic and testing procedure for testing the hypothesis

$$H_0: \alpha_i = \alpha, \quad \text{all } i.$$

4. (25%) Consider the multiple regression models

•

.

~

e

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, \quad 1 \le i \le n,$$

where $\sum_{i=1}^{n} X_{i1} = \sum_{i=1}^{n} X_{i2} = \sum_{i=1}^{n} X_{i1} X_{i2} = 0$. It is known that $|\beta_1| + |\beta_2| \le 1$.

 $\mathbf{2}$

- (a) (12%) Derive the least squares estimate of $(\beta_0, \beta_1, \beta_2)$, $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$, satisfying the constraint $|\beta_1| + |\beta_2| \leq 1$.
- (b) (13%) When $\beta_1 = 0$, $\beta_2 = 1$, $\sum_{i=1}^n X_{i1}^2 = \sum_{i=1}^n X_{i2}^2 = n$, and ϵ_i 's are iid with distribution $N(0, \sigma^2)$, derive the joint distributions of $(\hat{\beta}_1, \hat{\beta}_2)$.