國立臺灣大學數學系 九十六學年度下學期博士班資格考試題

科目:迴歸分析

2008.02

1. (20 pts) Consider $\{(x_1, Y_1), \dots, (x_n, Y_n)\}$. Suppose that the postulated regression model is

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad 1 \le i \le n,$$

where

$$\epsilon_1, \cdots, \epsilon_n \stackrel{i.i.d.}{\sim} N(0,1).$$

In fact, the true model is

$$Y_i = x_i^2 + e_i, \quad 1 \le i \le n,$$

where $e_1, \dots, e_n \stackrel{i.i.d.}{\sim} N(0, 1)$. Let $\hat{\beta}_0$ and $\hat{\beta}_1$ denote the least squares estimators of β_0 and β_1 , respectively.

- (a) (10 pts) Derive $E(r_i)$ and $Var(r_i)$ where r_i is the *i*th residual $Y_i \hat{\beta}_0 \hat{\beta}_1 x_i$.
- (b) (10 pts) Suppose that $x_i = -1 + 2i/n$. Please describe what pattern you expect to see on the scatter plot of (x_i, r_i) .
- 2. (25 pts) Consider the multiple linear regression model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i, \quad 1 \le i \le n,$$

where $1 + p \le n$ and

$$\epsilon_1, \cdots, \epsilon_n \stackrel{i.i.d.}{\sim} N(0, \sigma^2).$$

Write $\mathbf{X}=(x_{ij})_{n\times p}$, and $\mathbf{x}_j=(x_{1j},\ldots,x_{nj})^T$. Let \mathcal{L} denote the linear space spanned by $\mathbf{1},\mathbf{x}_1,\ldots,\mathbf{x}_p$ where $\mathbf{1}_{n\times 1}=(1,\ldots,1)^T$. It is known that the dimension of \mathcal{L} is p+1. Let $\mathbf{v}_1,\ldots,\mathbf{v}_n$ be an orthonormal basis for R^n such that $\mathbf{v}_1,\ldots,\mathbf{v}_{p+1}$ span \mathcal{L} . Let $\mathbf{Y}=(Y_1,\ldots,Y_n)^T$. Write $\mathbf{Y}=\sum_{i=1}^n a_i\mathbf{v}_i,\ \beta_0\mathbf{1}+\sum_{j=1}^p \beta_j\mathbf{x}_j=\sum_{i=1}^n b_i\mathbf{v}_i,\ \text{and}\ (\epsilon_1,\ldots,\epsilon_n)^T=\sum_{i=1}^n c_i\mathbf{v}_i.$

- (a) (10 pts) Determine a_i 's, b_i 's, and c_i 's.
- (b) (8 pts) Let e denote the residual vector after least-squares fit. Denote $S^2 = e^T e/(n p 1)$. Derive the distribution of S^2 .
- (c) (7 pts) Let $\hat{\beta}_k$ denote the least squares estimate of β_k . Derive the distribution of $\sqrt{n}(\hat{\beta}_k \beta_k)/\sqrt{S^2}$.
- 3. (25 pts) Assume

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad 1 \le i \le n,$$

where $\epsilon_1, \ldots, \epsilon_n$ are normally distributed independent random variables with mean 0 and variance σ^2 . Propose a confidence interval for the ratio $\phi = -\beta_0/\beta_1$ which is valid for small sample size and give a justification or answer this question by the following suggestion proposed by Fieller (1940).

- (a) (7 pts) Define $\delta = E[\bar{Y}]/E[\hat{\beta}_1]$ where \bar{Y} is the average of Y_1, \ldots, Y_n and $\hat{\beta}_1$ is the usual leat squares estimate.
- (b) (9 pts) Determine $cov(\bar{Y}, \hat{\beta}_1)$ and $var(\bar{Y} \delta\hat{\beta}_1)$.

- (c) (9 pts) Determine the distribution of $(\bar{Y} \delta \hat{\beta}_1)/S$ where S^2 is the usual estimate of σ^2 based on the residual. Then use it to give a confidence interval of ϕ .
- 4. (25 pts) Consider a simple linear regression model $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ where ϵ_i 's, $1 \le i \le n$, are iid random variables with mean zero and variance σ^2 . Since x_i 's cannot be observed, Z_i 's are observed instead. It is known that

$$Z_i = x_i + \eta_i$$

where η_i 's, $1 \le i \le n$, are iid random variables with mean zero and variance τ^2 . Moreover, ϵ_i 's and η_i 's are independent. Suppose that a simple linear regression model

$$Y_i = \alpha_0 + \alpha_1 Z_i + e_i$$

is used to fit (Z_i, Y_i) by the least-squares method. The resulting estimates are denoted by $\hat{\alpha}_0$ and $\hat{\alpha}_1$.

- (a) (10 pts) When $x_i = i/n$, does $\hat{\alpha}_1$ converge to a constant as $n \to \infty$? If it is, determine that constant.
- (b) (15 pts) For each x_i , we observe

$$Z_{ij} = x_i + \eta_{ij}, \quad j = 1, 2.$$

Is it possible to get a consistent estimator of β_1 ? If it does, please give such a consistent estimator.