國立臺灣大學數學系 九十六學年度上學期博士班資格考試題

科目:迴歸分析

2007.09

1. (20 pts) Consider data $\{(x_1, y_1), \dots, (x_n, y_n)\}$. Suppose that the postulated regression model is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad 1 \le i < n,$$

where

$$\epsilon_1, \cdots, \epsilon_n \stackrel{i.i.d.}{\sim} N(0, \sigma^2).$$

In fact, the true model is

$$y_i = \alpha_0 + \alpha_1 x_i + \alpha_2 x_i^2 + \alpha_3 x_i^3 + e_i, \quad 1 < i < n,$$

where $e_1, \dots, e_n \overset{i.i.d.}{\sim} N(0, \sigma_0^2)$. Let $\hat{\beta}_0$ and $\hat{\beta}_1$ denote the least squares estimators of β_0 and β_1 , respectively.

- (a) (10 pts) Suppose that n=5m and $x_{5j-k}=-k+2$ where $1 \leq j \leq m$ and k=1,2,3,4,5. Determine $E(\hat{\beta}_0)$, $E(\hat{\beta}_1)$, and $Var(\hat{\beta}_1)$ as $m \to \infty$.
- (b) (10 pts) Suppose that $\alpha_0 = \alpha_1 = \alpha_2 = 0$, n = 4m + 1, and $x_i = (i 1)/m 2$. Find $E(r_1), E(r_{m+1}), E(r_{2m+1})$, and $Var(r_{2m+1})$ where $r_i = y_i \hat{\beta}_0 \hat{\beta}_1 x_i$.
- 2. (25 pts) Consider the multiple linear regression model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{i,p} + \epsilon_i, \quad 1 \le i \le n,$$

where

$$\epsilon_1, \cdots, \epsilon_n \overset{i.i.d.}{\sim} N(0, \sigma^2).$$

Let $\hat{\beta}_0, \dots, \hat{\beta}_p$ denote the least squares estimators and $\hat{Y}_{x_1,\dots,x_p} = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_j$ which is the predicted value of Y at (x_1,\dots,x_p) .

(a) (10 pts) When p = 1, write

$$Y_i = \alpha_0 + \alpha_1(x_{i1} - \bar{x}_{.1}) + \epsilon_i, \quad 1 \le i \le n,$$

where $\bar{x}_{.1} = \sum_{i=1}^n x_{i1}/n$. Write $\hat{\alpha}_0$ and $\hat{\alpha}_1$ in terms of $\hat{\beta}_0$, $\hat{\beta}_1$, and $\bar{x}_{.1}$ and determine $Var(\hat{Y}_{\bar{x}_{.1}})$. Moreover, show that $Var(\hat{Y}_x) \geq \sigma^2/n$.

- (b) (15 pts) For general p, show that $Var(\hat{Y}_{x_1,...,x_p}) \ge \sigma^2/n$ and determine whether $Var(\hat{Y}_{x_1,...,x_p}) = \sigma^2/n$ for some (x_1,\ldots,x_p) .
- 3. (20 pts) Suppose

$$Y_i = \beta_0 x_{i0} + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1} + \epsilon_i, \quad 1 \le i \le n,$$

where $\epsilon_1, \ldots, \epsilon_n \stackrel{iid}{\sim} N(0, \sigma^2)$. Write X as the $n \times p$ design matrix with the *i*th row $(x_{i0}, x_{i1}, \ldots, x_{i,p-1})$. Assume X is full rank. Let r be a nonzero positive constant.

(a) (8 pts) Let $\hat{\beta}_{r0}$, $\hat{\beta}_{r1}$, $\hat{\beta}_{r2}$, ..., $\hat{\beta}_{r,p-1}$ denote the maximum likelihood estimates of β_0 , β_1 , β_2 , ..., β_{p-1} under the constraint $\beta_0^2 + \beta_1^2 + \cdots + \beta_{p-1}^2 \le \tau^2$. Determine $\hat{\beta}_{r0}$, $\hat{\beta}_{r1}$, $\hat{\beta}_{r2}$, ..., $\hat{\beta}_{r,p-1}$.

(b) (12 pts) When p = 2 and

$$\mathbf{X}^T\mathbf{X} = n \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$$

determine the maximum likelihood estimates of β_0 and β_1 under the constraint $|\beta_0| + |\beta_1| \le \tau$.

4. (15 pts) Consider

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 (x_i - x) \delta_i + \epsilon_u, \quad i = 1, ..., n,$$

where $\delta_i = I(x_i > x)$, $I(\cdot)$ is the indicator function, and ϵ_i , $i = 1, \ldots, n$, are uncorrelated random errors. x is unknown but $x_{(1)} < x < x_{(n)}$. Devise a method to estimate β_2 and explain why it works.

5. (20 pts) Suppose that

$$Y_i = \beta_0 + \beta_1(x_{i1} - \bar{x}_{\cdot 1}) + \beta_2(x_{i2} - \bar{x}_{\cdot 2}) + \epsilon_i, \quad i = 1, \dots, n.$$

Here $\bar{x}_{\cdot j}$ denotes the average of x_{1j}, \ldots, x_{nj} . Someone suggests to find the least squares estimates of β_0 , β_1 , and β_2 by the following two-stage procedure:

(a) Determine the least squares estimates of

$$Y_i = \beta_0 + \beta_1(x_{i1} - \bar{x}_{\cdot 1}) + \epsilon_i, \quad i = 1, \dots, n.$$

(b) Regress the residual from (1) on $(x_{i1} - \bar{x}_{\cdot 2})$.

Does this two-stage procedure leads to the usual least squares estimates of β_0 , β_1 , and β_2 ? Justify your answer.