臺灣大學數學系 100 學年度上學期博士班資格考試題 科目:迴歸分析

2011.09.16

- 1. (15%) Consider the multiple linear regression model $Y = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ with \mathbb{X} being a $n \times (p+1)$ full rank matrix and $\boldsymbol{\varepsilon} \sim N_n(0, \sigma^2 I_n)$. Let $\tilde{\boldsymbol{\beta}}$ and $\tilde{\sigma}^2$ be the maximum likelihood estimators of $\boldsymbol{\beta}$ and σ^2 . Derive the distribution of $n\tilde{\sigma}^2/\sigma^2$.
- 2. Consider the linear regression model $y_t = \beta_0 + \beta_1 x_{t1} + \dots + \beta_p x_{tp} + \varepsilon_t$, $t = 1, \dots, n$, where $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$ with u_t 's $\overset{i.i.d.}{\sim} N(0, \sigma_u^2)$.
- (2a) (10%) Find the estimated generalized least squares estimator of $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)$. (2b) (10%) State the testing procedure for the null hypothesis $H_0: \rho = 0$ against the alternative hypothesis $H_A: \rho \neq 0$.
- 3. (10%) State the stepwise variable selection procedure under the mechanism of a linear regression model.
- 4. (15%) Let $Y_i^{(\lambda)}$ be the Box and Cox transformation of the positive response Y_i , $i=1,\cdots,n$. Moreover, assume that $Y_i^{(\lambda)}=\beta_0+\beta_1x_{i1}+\cdots+\beta_px_{ip}+\varepsilon_i$, where ε_i 's $\stackrel{\text{i.i.d.}}{\sim} N(0,\sigma^2)$. State the testing procedure for the null hypothesis $H_0: \lambda = \lambda_0$ versus the alternative hypothesis $H_0: \lambda \neq \lambda_0$.
- 5. Consider the linear regression model $Y = \mathbb{X}\beta + \varepsilon$, where \mathbb{X} is a $n \times p_i$ full rank covariate matrix, β is a $p \times 1$ parameter vector, and $\varepsilon \sim (0, \sigma^2 I_n)$.
- (5a) (10%) Find the minimizer, say, $\widetilde{\beta}$ of the sum of squares $(Y \mathbb{X}\beta)^T (Y \mathbb{X}\beta)$ with constraint $\mathbb{C}\beta = \gamma$, where \mathbb{C} is a $J \times p$ full rank matrix.
- (5b) (10%) Assume that $\mathbb{C}\beta = \gamma$. Show that $Var(\widehat{\beta}) Var(\widetilde{\beta})$ is at least positive semidefinite, where $\widehat{\beta}$ is the ordinary least squares estimator of β .
- 6. Consider the linear regression model $Y = \tilde{\mathbb{Z}}_{(s)} \beta_{(s)} + \varepsilon$, where $\tilde{\mathbb{Z}}_{(s)} = (1, \mathbb{Z}_{(s)})$ with $\mathbb{Z}_{(s)}$ being a $n \times p$ standardized covariate matrix, $\beta_{(s)} = \begin{pmatrix} \gamma_0 \\ \beta_{(0)} \end{pmatrix}$, and $\varepsilon \sim (0, \sigma^2 I_n)$. Assume that an approximate linear relationship exists among the column vectors of $\mathbb{Z}_{(s)}$.
- (6a) (10%) Show that $(R^{-1})_{jj} = VIF_j$, $j = 1, \dots, p$, where $R = (\mathbb{Z}_{(s)}^T \mathbb{Z}_{(s)})/n$ and VIF is the variance inflation factor.
- (6b) (10%) Let $\widehat{\beta}_{(0)}$ and $\widehat{\beta}_{(0)R}$ denote the least squares estimator and the ridge regression estimator of $\beta_{(0)}$, respectively. Show that $Var(\widehat{\beta}_{(0)}) Var(\widehat{\beta}_{0R})$ is at least positive semi-definite.