國立臺灣大學數學系 九十六學年度上學期博士班資格考試題 科目:機率

2007.09

Problems 1-4, 15 points each; Problems 5,6, 20 points each

- 1. Assume SLLN. Let an iid sequence with a positive L^1 rv X as common distribution to represent the life-time of, say, a bulb, Let rv N(t) denote the "renewal number" up to time t. State and prove the LLN for N(t). Let f(t) be a continuous function on unit interval [0,1]. State and prove the so-called Monte Carlo convergence.
- 2. Use ch.f. to discuss the convergence in distribution of iid sequence X_n with symmetric r.v. X as common distribution such that the decay (1) $P\{|X| > x\} \approx x^{-(2+\delta)}, \delta > 0$, and (2) $P\{|X| > x\} \approx x^{-1}$.
- 3. Let (X_n, \mathcal{F}_n) be a martingale, and each X_n is in $L^2(dP)$. 1. prove that (X_n^2, \mathcal{F}_n) is a submartingale. 2. decompose X_n^2 into a sum of a martingale M_n and an increasing process A_n with $A_0 = 0$ (this is called Doob's decomposition, try to start with defining A_n), and explain that A_n is "predictable".
- 4. Let (X_n, \mathcal{F}_n) be a martingale, and each X_n is in $L^2(dP)$. the difference is $\xi_{m,n} := X_n X_m, m < n$. prove 1. $E[\xi_{m,n}^2 | \mathcal{F}_m] = E[X_n^2 | \mathcal{F}_m] X_m^2$. 2. if $\sum_n E\xi_{n-1,n}^2 < \infty$, then the martingale convergence holds both a.s. and in mean square.
- 5. What means a probability distribution to be stationary for a MC? Let X be a finite-states irreducible aperiodic MC. Then prove that there is at most one stationary distribution (try to use basic limit theorem). What means a MC to be doubly stochastic? In case it is, write down the stationary distribution.
- 6. Let $B_t, t \geq 0$, denote the standard Brownian Motion on the line. 1. For each t > 0, define $\Delta_{n,j} := B(\frac{jt}{2^n}) B(\frac{(j-1)t}{2^n})$; prove that $\sum_{j=1}^{2^n} \Delta_{n,j}^2$ converges in L^2 as n tends to ∞ . 2. For any θ , $\exp \theta B_t \theta^2 t/2$, $t \geq 0$, is a martingale.