臺灣大學數學系 110 學年度上學期博士班資格考試題

科目:機率論

2021.09.24

Answer the following questions in order. 請依序作答·預留足夠空間給未完成或跳過的題目。

- 1. (30%=18+12) Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables on probability space $(\Omega, \mathscr{F}, \mathbf{P})$.
 - (a) Consider the following property (P) and statement (S):
 - (P) For every subsequence $X_{n(m)}$ there exists a further subsequence $X_{n(m_k)}$ that converges almost surely (a.s.) to Z
 - (S) The sequence $\{X_n\}_{n=1}^{\infty}$ satisfies property (P) if and only if $X_n \to Z$ in certain mode of convergence as $n \to \infty$.

Specify the *mode of convergence* in (S) and then prove the statement (S). If you want to apply any particular facts/lemmas/theorems, you have to state and prove them first.

- (b) Suppose the random variables X_n 's are independent and identically distributed (i.i.d.) with mean zero and $\mathbf{E}[X_1^4] < \infty$. Show that $S_n/n^{4/5} \to 0$ a.s., where $S_n = X_1 + \cdots + X_n$. Based on the approach of your proof, can you furthermore improve the factor $n^{4/5}$?
- 2. (30%=4+10+4+12) Let $\{U_n\}_{n=1}^{\infty}$ be a sequence of nonnegative random variables. Suppose that U_n converges weakly/in distribution to V (written $U_n \Rightarrow V$).
 - (a) Show that $P(V \ge 0) = 1$.
 - (b) Answer the following two questions by giving proofs or counterexamples.
 - Does it hold in general that $\mathbf{E}[V] < \infty$?
 - If $\mathbf{E}[V] < \infty$, does it hold that $\mathbf{E}[U_n] \to \mathbf{E}[V]$ in this case?
 - (c) Write down the definition that a collection of random variables W_{λ} , $\lambda \in \Lambda$, is "uniformly integrable".
 - (d) Suppose that the sequence $\{U_n\}$ is uniformly integrable. Show that $\mathbf{E}[V] < \infty$ and $\mathbf{E}[U_n] \to \mathbf{E}[V]$ as $n \to \infty$.
- 3. (24%=12+10+2) Let M_n , $n=0,1,2,\ldots$, be a submartingale with respect to the filtration \mathscr{F}_n and τ be a stopping time satisfying $\mathbf{P}(\tau \leq k) = 1$ for some positive integer k.
 - (a) Prove that $\mathbf{E}[M_0] \leq \mathbf{E}[M_\tau] \leq \mathbf{E}[M_k]$. You might need to show that $M_{\tau \wedge n}$ is also a submartingale.
 - (b) For $\lambda > 0$, let $A = \left\{ \max_{0 \le \ell \le n} M_{\ell}^+ \ge \lambda \right\}$. Prove Doob's inequality:

$$\lambda \mathbf{P}(A) \le \mathbf{E}[M_n \mathbf{1}_A] \le \mathbf{E}[M_n^+],$$

where 1_A is the indicator function of A and M_ℓ^+ is the positive part of M_ℓ .

- (c) Describe a possible application of Doob's inequality. No proof is needed.
- 4. (16%=8+8) Let Y_n be a discrete time irreducible recurrent Markov chain with period d. Denote P_{ij}^n be the n-step transition probability of the chain from state i to state j.
 - (a) Explain the terms "irreducible", "recurrent", "transient", and "period d".
 - (b) For simplicity, suppose that d=1. It can be shown that $\lim_{n\to\infty} P_{ii}^n = \mu_i$ exists for every i. By assume this fact derive all the subsequent results. In particular, show that if the chain has only finitely many states then Y_n has a unique stationary distribution and thus is positive recurrent.