臺灣大學數學系 102 學年度上學期博士班資格考試題

科目:機率論

2013.09.27

Answer the following questions in order.

- 1. (25% = 10 + 5 + 10)
 - (a) Give a probabilistic proof, using weak law of large numbers, of Weierstrass polynomial approximation theorem. For (b) and (c), let (F_n) be a sequence of distribution functions such that the limit $\lim_{n\to\infty} \int x^k dF_n(x) = m_k$ exists for each $k = 0, 1, 2, \ldots$
 - (b) Show that (F_n) is tight.
 - (c) Suppose that G is a distribution function concentrated on a compact set of \mathbb{R} and $\int x^k dG(x) = m_k, k = 0, 1, 2, \dots$ Show that $F_n \Rightarrow G$. (Hint. Apply approximation theorem.)
- 2. (25%=5+10+10) Let $B_t = B(t), t \ge 0$, be a one dimensional Brownian motion starting at 0. Define a new process $W_t, t \ge 0$, by $W_0 = 0$ and $W_t = tB(1/t)$ for t > 0.
 - (a) Study the almost sure limit of B_n/n as the integer $n \to \infty$.
 - (b) Derive the estimate

$$P\left(\sup_{t\in[n,n+1]}|B_t - B_n| > n^{2/3}\right) \le c \ n^{-4/3}$$

for some constant c > 0. Hint. Consider $P\left(\sup_{0 < k \le 2^m} |B\left(n + \frac{k}{2^m}\right) - B(n)| > n^{2/3}\right)$ first.

- (c) Use (b) to show that W_t is continuous at t = 0 almost surely. Then verify that the process W_t is also a Brownian motion.
- 3. (25%=10+5+10) Let Z_n be a martingale and τ be a stopping time.
 - (a) Suppose that $P(\tau \leq k) = 1$ for some integer $k \in \mathbb{N}$. Show that $E[Z_0] = E[Z_{\tau}] = E[Z_k]$.
 - (b) Give an example of Z_n such that $E[Z_0] > E[Z_{\tau}]$ for some unbounded τ .
 - (c) Show that $E[Z_0] = E[Z_\tau]$ if $P(\tau < \infty) = 1, E[|Z_\tau|] < \infty$, and $E[Z_n \mathbb{1}_{\{\tau > n\}}] \to 0$ as $n \to \infty$.
- 4. (25%=9+6+10) Let Y_n be an irreducible Markov chain on a countable state space S. No proof is needed in (b).
 - (a) Give the definition that a state $x \in S$ is transient, null recurrent and positive recurrent, respectively.
 - (b) When does the chain have a stationary distribution? Describe this distribution when exists.
 - (c) Discuss the transience or null/positive recurrence of the symmetric simple random walk on \mathbb{Z}^d , $d = 1, 2, 3, \ldots$ Give an outline of the proof.