臺灣大學數學系 100 學年度上學期博士班資格考試題 科目:機率論

2011.09.16

請依題號次序作答

Ŀ

لاستيناسي

Answer questions in order.

- 1. (10%) Let Z_1, Z_2, \ldots be independent and identically distributed (i.i.d.) uniform random variables on $\{1, 2, \ldots, n\}$, and $T_n = \inf\{k : |\{Z_1, Z_2, \ldots, Z_k\}| = n\}$ be the first time in the sequence Z_1, Z_2, \ldots that all numbers $\{1, 2, \ldots, n\}$ are present. Find a suitable constant sequence (b_n) , and show that T_n/b_n converges in L_2 and thus in probability. Determine the limit.
- 2. (30%=12+6+6+6) Let X_1, X_2, \ldots be independent random variables that each one has mean zero and finite variance, and $S_n = X_1 + \cdots + X_n$.
 - (a) For a > 0, prove Kolmogorov's maximal inequality:

$$\mathbf{P}\left(\max_{1\leq k\leq n}|S_k|\geq a\right)\leq \frac{\mathbf{Var}(S_n)}{a^2}.$$

(b) Let $\rho_k = \sup_{m,n \ge k} |S_m - S_n|$ and $\xi > 0$. Apply the above inequality to show that

$$\mathbf{P}(\rho_k > \varepsilon) \le \mathbf{P}\left(\sup_{n \ge k} |S_n - S_k| > \varepsilon/2\right)$$

- (c) Conclude from (b) that $X_1 + X_2 + \cdots$ converges almost surely if $\sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty$.
- (d) Suppose further that the random variables X_1, X_2, \ldots are identically distributed. For any $\delta > 0$ show that $\frac{S_n}{n^{1/2}(\ln n)^{\frac{1}{2}+\delta}} \to 0$ almost surely as $n \to \infty$. (Hint. You might need Kronecker's lemma.)
- 3. (14% = 10 + 4)
 - (a) Let Y_{λ} be a random variable having Poisson distribution with parameter λ . Find constants $a(\lambda)$ and $b(\lambda)$, and show that $(Y_{\lambda} a(\lambda))/b(\lambda)$ converges weakly as $\lambda \to \infty$. Determine the limit distribution.
 - (b) Let U_1, U_2, \ldots be i.i.d. Poisson random variables with a fixed parameter λ and let $a > \lambda$. Evaluate the limit $\lim_{n \to \infty} \frac{1}{n} \ln \mathbf{P} (U_1 + \cdots + U_n \ge na)$ if exists.
- 4. (14%=10+4) Let (\mathbf{P}_{xy}) be the transition probabilities of a Markov chain X_n on state space \mathbb{S} , and $\mathcal{F}_n = \sigma(X_0, X_1, \ldots, X_n)$. Call a function harmonic (super-harmonic, sub-harmonic) at x if $\sum_{y \in \mathbb{S}} \mathbf{P}_{xy} f(y) = f(x)$ ($\leq \geq f(x)$, respectively.) For $A \subset \mathbb{S}$, define the stopping time $\tau_A = \inf\{n \geq 0 : X_n \in A\}$ that is the first entrance time into A. For any bounded function f on \mathbb{S} denote

$$(Sf)(x) = \sum_{y} \mathbf{P}_{xy} f(y) = \mathbf{E}_{x} [f(X_{1})], \quad (If)(x) = f(x),$$
$$Z_{n} = f(X_{n}) - f(X_{0}) - \sum_{k=0}^{n-1} ((S-I)f)(X_{k}), n \ge 1, Z_{0} = 0,$$
$$U_{A}(x) = \mathbf{P}_{x}(\tau_{A} < \infty).$$

- (a) Prove that Z_n is a martingale with respect to \mathcal{F}_n .
- (b) Show that U_A satisfies $0 \le U_A \le 1$, $U_A = 1$ on A, and $(S I)U_A = 0$ on A^c .

5. (16%=10+6)

- (a) Given a Markov chain, write down the definitions that a state is **transient**, **null recurrent** and **positive recurrent**, respectively. In which case(s) that the chain has a stationary distribution? Is the stationary distribution unique when exists?
- (b) Use the results in Question 4 to show that an irreducible Markov chain is recurrent if and only if every nonnegative super-harmonic function is constant.
- 6. (16%=12+4) Let $B(t), t \ge 0$, be the standard one dimensional Brownian motion. Fix t > 0and let $\Delta_{m,n} = B(tm2^{-n}) - B(t(m-1)2^{-n})$.
 - (a) Apply Borel-Cantelli lemma to show that $\sum_{m=1}^{2^n} \Delta_{m,n}^2$ converges almost surely as $n \to \infty$. Determine the limit.

4

(b) What conclusion can you get from (a)?