國立臺灣大學數學系 九十五學年度博士班資格考試試題

科目: 偏微分方程

2007.06.01

1. Solve

(a) $(x - y)u_x + u_y = u, u(x, 0) = x;$

(b) $u_t + u^2 u_x = 0$ for $t \ge 0$, u(x, 0) = 1 if x < 1, u(x, 0) = 0 if $x \ge 1$, where u

is a weak solution of the equation.

(c) $u_t + u^2 u_x = 0$ for $t \ge 0$, u(x,0) = 0 if x < 0, u(x,0) = 1 if $0 \le x \le 1$, u(x,0) = 0 if x > 1, where u is the weak solution satisfying the entropy condition.

2. Let u(x,t) satisfy $u_{tt} = \triangle u$ in $\mathbb{R}^3 \times \mathbb{R}$ and

$$U(x,r,t) = \frac{1}{4\pi r^2} \int_{|y-x|=r} u(y,t) \, d\sigma(y)$$

be the average of u over $\partial B(x,r)$. Prove that

(a) $U_{rr} + \frac{2}{r}U_r = U_{tt}$;

(b) $\sum_{i=1}^{3} \dot{U}_{x_i x_i} = U_{tt}$;

(c) $E(t) = \int_{R^3} \int_0^\infty [U_r^2 + \sum_{i=1}^3 U_{x_i}^2 + 2U_t^2] r^2 dr dx$ is independent of t if u(x,0) has compact support.

3. Let g(x) be a continuous function, 0 < g(x) < 1, and $u_N(x)$ be the solution of $\Delta u_N = 0$ in $\Omega_N = \{x: 1 \le |x| \le N\} \subset R^n, n > 2$, $u_N = g(x)$ for |x| = 1, $u_N = 0$ for |x| = N. (a) Show that $0 < u_N < 1$ and $u_N < u_{N+1}$ in Ω_N , and $u = \lim_{N \to \infty} a_N$ exists. (b)Show that u is a solution of $\Delta u = 0$ in $\{x: 1 \le |x| < \infty\}$, u = g(x) for |x| = 1, $u \to 0$ as $|x| \to \infty$. (c) Prove $a < u(x)|x|^{n-2} < b$ for some positive a and b. (Hint: Consider v = 1 and $v = \alpha |x|^{-n+2}$ and use the maximum principle.)

4. Suppose u is a C^2 solution of $u_t = \Delta u$ in $R^n \times [0, \infty)$, u(x, 0) = g(x), $|u(x)| \le e^{|x|}$. Show that (a) $\lim_{t\to\infty} u(x,t) = 0$ for each x if $g(x) = (1+|x|)^{-1}$; (b) u(x,t) is nondecreasing in t if g is convex.